
Testing Database-Centric Applications For Causes
of Database Deadlocks

Mark Grechanik, B. M. Mainul Hossain, Ugo Buy

University of Illinois at Chicago

Chicago, IL 60607

{drmark,bhossa2,buy}@uic.edu

Abstract—Many organizations deploy applications that use
databases by sending Structured Query Language (SQL) state-
ments to them and obtaining data that result from executions
of these statements. Since applications often share the same
databases concurrently, database deadlocks routinely occur in
these databases. Testing applications to determine how they cause
database deadlocks is important as part of ensuring correctness,
reliability, and performance of these applications. Unfortunately,
it is very difficult to reproduce database deadlocks, since it
involves different factors such as the precise interleavings in
executing SQL statements.

We created a novel approach for Systematic TEsting in Pres-
ence of DAtabase Deadlocks (STEPDAD) that enables testers to
instantiate database deadlocks in applications with a high level
of automation and frequency. We implemented STEPDAD and
experimented with three applications. On average, STEPDAD
detected a number of database deadlocks exceeding the deadlocks
obtained with the baseline approach by more than an order of
magnitude. In some cases, STEPDAD reproduced a database
deadlock after running an application only twice, while no
database deadlocks could be obtained after ten runs using the
baseline approach.

I. INTRODUCTION

Many organizations and companies deploy Database-
centric applications (DCAs), which use databases by sending

transactions to them – atomic units of work that contain

Structured Query Language (SQL) statements [14] – and

obtaining data that result from the execution of these SQL

statements. When DCAs use the same database at the same

time, concurrency errors are observed frequently, and these

errors are known as database deadlocks, which is one of

the reasons for major performance degradation in these ap-

plications [24] [16, pages 163,223]. The responsibility of

relational database engines is to provide layers of abstractions

to guarantee Atomicity, Consistency, Isolation, and Durability
(ACID) properties [14]; however, these guarantees do not

include freedom from database deadlocks.

In general, deadlocks occur when two or more threads of

execution lock some resources and wait on other resources in

a circular chain, i.e., in a hold-and-wait cycle [7]. Database

deadlocks occur within database engines and not within DCAs

that use these databases. A condition for observing database

deadlocks is that a database should simultaneously service two

or more transactions that come from one or more DCAs, and

these transactions contain SQL statements that share the same

resources (e.g., tables or rows). In enterprise systems, database

deadlocks may appear when a new transaction is issued by a

DCA to a database that is already used by some other legacy

DCA, thus making the process of software evolution error-

prone, expensive, and difficult.

Currently, database deadlocks are typically detected within

database engines using special algorithms that analyze whether

transactions hold resources in cyclic dependencies, and these

database engines resolve database deadlocks by forcibly break-

ing the hold-and-wait cycle [1], [14], [16]–[18], [23], [28].

That is, once a deadlock occurs, the database rolls back one

or more of the transactions that is involved in the circular wait.

Doing so effectively resolves the database deadlock, however,

exceptions are thrown in the components of the DCAs that

sent these aborted transactions.

Essentially, these exceptions are notification mechanism to

let stakeholders know that a business flow is disrupted, since

some transactions did not go through. Next, stakeholders study

causes of database deadlocks, so that they can avoid them.

Programmers are advised to practise defensive programming

by writing special database deadlock exception-handling code,

for example, to repeat aborted transactions when applicable

– searching for “database deadlock exception” on the Web

yields close to 2,500 web pages, many of which instruct

programmers on how to handle database deadlock exceptions

for different databases. However, this solution is considered

a temporary patch, since it leads to significant performance

degradation – detecting a database deadlock, throwing an

exception, and retrying a transaction comes at a high cost.

Thus, it is important to analyze these exceptions to determine

the causes of database deadlocks, so that they can be avoided

altogether by refactoring DCAs1.

Different database deadlock avoidance programming pat-

terns help database designers and programmers structure their

code, transactions, and data so that they can avoid database

deadlocks [11], [15], [22] [27, pages 249–252]. For example,

Microsoft published guidelines for minimizing database dead-

locks in SQL Server2. These guidelines include, among others,

accessing database objects in the same order, avoiding user

interaction in transactions, and keeping transactions short and

in one batch. Since these solutions are manual and error-prone,

1http://stackoverflow.com/questions/595187/
orm-support-for-handling-deadlocks. Last verified December 22, 2012.

2http://msdn.microsoft.com/en-us/library/ms191242(v=sql.105).aspx. Last
verified on December 22, 2012.

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.19

174

it is important to reproduce database deadlocks using DCAs

automatically during testing to see what avoidance patterns

fit best. Consistently and systematically reproducing database

deadlocks is very difficult and laborious, since identifying

execution scenarios that lead to database deadlocks requires

sophisticated reasoning about the combined behavior of DCAs

and their databases. The result of this process is overwhelming

complexity and a significant cost of reproducing database

deadlocks. Our interviews with different Fortune 100 compa-

nies confirmed that database deadlocks occur on average every

two to three weeks for large-scale enterprise DCAs, some

of which have been around for over 20 years. For instance,

database deadlocks still occur every ten days on average in a

commercial large-scale DCA that handles over 70% of cargo

flight reservations in the USA. In this case, a test engineer

would wait for ten days in order to detect a single database

deadlock, which is obviously impractical.

We created a novel approach for Systematic TEsting in
Presence of DAtabase Deadlocks (STEPDAD) that enables

testers to instantiate database deadlocks in DCAs with a high

level of automation and frequency. This paper makes the

following contributions.

• We model transactions using lock graphs to detect hold-

and-wait cycles in transactions.

• STEPDAD exploits information about hold-and-wait cy-

cles to explore interleavings of queries performed by

different transactions using a technique called execu-

tion hijacking [32]. These interleavings attempt to pro-

duce deadlocks matching the detected hold-and-wait cy-

cles, thereby significantly increasing the probability of

database deadlocks.

• We implemented STEPDAD and experimented using

three client/server DCAs. On average STEPDAD pro-

duced a number of database deadlocks exceeding by

more than an order of magnitude the number of database

deadlocks obtained the baseline approach. In some cases,

STEPDAD produced a database deadlock after running an

application only two times, while no database deadlocks

were produced after ten runs using the baseline approach.

Our tool is publically available at http://www.cs.uic.edu/
∼drmark/STEPDAD.htm.

II. THE PROBLEM

In this section we give an illustrative example of a database

deadlock, show how DCAs use databases, and formulate the

problem statement.

A. An Illustrative Example

Consider the example of database deadlock shown in Ta-

ble I. Transactions T1 and T2 are independently sent by

DCAs to the same database at the same time. When the first

DCA executes the UPDATE statement in Step 1, the database

locks rows of table authors in which the value of attribute

paperid is 1. Next, the second DCA executes the UPDATE
statement in Step 2 and the database locks rows of table

titles in which attribute titleid is 2. When the SELECT

TABLE I
EXAMPLE OF A DATABASE DEADLOCK THAT MAY OCCUR WHEN TWO

TRANSACTIONS T1 AND T2 ARE ISSUED BY DCA(S).

Step Transaction T1 Transaction T2

1 UPDATE authors
SET citations=100
WHERE paperid=1

2 UPDATE titles
SET copyright=1
WHERE titleid=2

3 SELECT title, doi
FROM titles

WHERE titleid=2
4 SELECT authorname

FROM authors
WHERE paperid=1

�
�

�
�

������	

�
���	

Fig. 1. A lock graph for the transactions shown in Table I. The lock graph
shows the hold-and-wait cycle T1→authors→ T2→titles→ T1.

statement in Step 3 is executed as part of transaction T1, the

database attempts to obtain a read lock on the rows of table

titles, which are exclusively locked by transaction T2 of

the second DCA.

Since these locks cannot be imposed simultaneously on the

same resource (i.e., these locks are not compatible), T1 is put

on hold. Finally, the SELECT statement in Step 4 is executed

as part of transaction T2; the database attempts to obtain a read

lock on the rows of table authors, which are exclusively

locked by transaction T1 of the first DCA. At this point both

T1 and T2 are put on hold resulting in a database deadlock.

Figure 1 shows the lock graph for the transactions appear-

ing in Table I. Transactions are depicted as rectangles and

resources (i.e., tables) are shown as ovals. Arrows directed

towards resources designate locks held by transactions on

those resources; arrows in the opposite direction designate

transactions that are waiting to obtain resource locks. The

lock graph shows the hold-and-wait cycle T1 →authors→
T2→titles→ T1. This hold-and-wait cycle may not always

result in a database deadlock; however, when interleaving steps

occur as shown in Table I, a database deadlock is highly likely.

One exception is when these tables contain little or no data; in

this case, locks may be released by the database engine almost

instantaneously or not imposed at all.

B. How DCAs Use Databases

Many enterprise-level DCAs are written in general-purpose

programming languages (e.g., Java); they communicate with

relational databases by using standardized application pro-
gramming interfaces (APIs), such as Java DataBase Connec-
tivity (JDBC). Using JDBC, programs pass SQL statements

as string parameters in API calls that send these SQL state-

ments to databases for execution. For example, the API call

executeQuery of the class Statement takes a string

containing an SQL statement that is sent to a database for

175

execution. Once executed, values of database attributes that

are specified in SQL statements are returned to DCAs using

JDBC’s ResultSet interface. These SQL statements are

executed as part of a transaction that is delimited by statements

“begin transaction” (by setting the connection’s autocommit

mode to false) and “end transaction” with the subsequent

API call commit. In case a transaction is not explicitly

delimited in the source code, each SQL statement is taken to be

a separate transaction, which may be committed automatically

by the database.

We observe that large-scale multi-tiered software appli-

cations have significantly more complex interactions with

databases through a variety of components that are orga-

nized in different tiers. For example, an Enterprise Claim
Application (ECA) at a major insurance company integrates

different databases and programming components (some of

which are legacy components), which include database trig-
gers and stored procedures, which are database objects that

consist of SQL statements and some fourth-generation lan-

guage statements designed to work with SQL. Essentially,

a stored procedure is a function written in a high-level

language that resides within the database. Database triggers

are stored procedures associated with certain operations on

database objects (e.g., tables and rows) [6], [8], [30]. Triggers

autonomously react to database events by evaluating a data-

dependent condition and by executing a reaction whenever

the condition is satisfied [21]. In addition, engineers develop

database plugins that are programming components written

in general-purpose programming languages and invoked in

response to events that occur within database engines [13].

Stored procedures, triggers, and plugins may be written by

different programmers, and it is difficult to determine the

execution path that leads to database deadlocks.

In the ECA, which is a representative of many large-

scale applications, a transaction sent by some component to a

database invokes an internal program that sets off a chain of

invocations. For example, this internal program can be a trigger

that calls an external component that sends a new transaction

to a different database that invokes a stored procedure that

executes a different transaction that results in a database

deadlock. In this kind of situation, it is not only important to

identify what components catch database deadlock exceptions,

but also to determine the execution trace that leads to the

deadlock. Knowing a precise set of invocations that leads to

a database deadlock enables stakeholders to design a strategy

to avoid this deadlock.

C. Reproducing Versus Simulating Database Deadlocks

Reproducing database deadlocks is difficult, since it in-

volves executing applications using certain input data that lead

to sending specific transactions to databases that have hold-

and-wait cycles that can be realized as database deadlocks. An

alternative approach is to simulate database deadlocks using

mock objects that throw exceptions when a transaction is sent

to the database. That is, a mock object represents databases,

making it easy for programmers to test their exception-

handling code without having actual databases. While this

idea offers a simple implementation and may be effective

in a number of situations, there are drawbacks. In our ECA

example, different exception objects propagate through layers

of software by being caught and sometimes re-thrown. The

logic of exception handling depends on the application, and

it is often unclear for testers how an exception should be

handled, if at all. Understanding how database deadlocks are

caused is equally or more important.

In addition, database deadlock resolution and exception

throwing mechanisms are not perfect. In some cases, database

deadlocks are incorrectly processed by database layers leading

to null pointer exceptions3. Mock objects offer very limited

benefits in such cases, because the source of the problem

can be traced only with the actual database deadlocks. In

certain cases, retrying aborted transactions is not an acceptable

solution, since it may interfere with timing constraints on the

application (e.g., high-frequency stock trading) and lead to an

incorrect state of the database. This is why it is often more

valuable to actually reproduce database deadlocks rather than

just simulating them.

The other drawback is that using mock objects does not al-

low testers to observe actual database deadlocks and to obtain

from the database engine SQL execution traces showing how

database deadlocks happen. Database deadlocks often involve

complex interactions among different database objects, with

hold-and-wait cycles among transactions. SQL Server has over

dozen of documented kinds of database deadlocks4 besides

the classic one that we showed using the illustrative example

in Table I. For example, there is a database deadlock that

occurs during savepoint rollback—a complicated set of locks

are imposed by objects of the database engine leading to a

database deadlock even if there are no hold-and-wait cycles in

SQL statements of the transactions that are concurrently issued

by different DCAs to the same database. Thus, it is important

to produce database deadlocks, so that database administrators,

testers, and developers can understand the runtime concurrent

behavior of their DCAs and ways to improve it.

D. The Problem Statement

This paper addresses the following main question: How

does one test existing DCAs that share the same databases for

causes of database deadlocks arising from transactions issued

by these DCAs? Therefore, our main goal is to reproduce

database deadlocks with a high level of automation and

frequency, thus enabling software engineers to determine how

these database deadlocks are caused. It is not a goal of our

solution to reproduce all database deadlocks that involve all

potential hold-and-wait cycles among different transactions,

but instead to reproduce as many database deadlocks as

possible.

3http://www-01.ibm.com/support/docview.wss?uid=swg1JR33072. Last
verified on December 22, 2012.

4http://sqlindian.com/2012/07/06/sql-server-deadlocks-and-live-
lockscommon-patterns. Last verified on December 22, 2012.

176

If hold-and-wait cycles are detected statically in different

transactions, the information about these cycles can be used

to force these transactions to execute simultaneously by the

database engine, thus increasing the probability of occurrence

of database deadlocks. Once statically detected, these hold-

and-wait cycles may potentially result in database deadlocks.

However, depending on interleavings in different execution

scenarios, not all of these cycles will lead to database dead-

locks, meaning that false positives (FPs) are possible. Given

that predicting when deadlocks will occur is practically im-

possible, we would rather err on the side of FPs.

Our approach should not depend on a specific database

engine or require modifications of the kernels of database

engines. Similar to operating systems, database engines are

very complex, fragile, and closed software systems; a solution

that requires their modification is unlikely to be practical.

Moreover, our approach should not depend on specific archi-

tectures of DCAs. Finally, it is important for STEPDAD to be

efficient, that is, it should not take an excessive amount of time

to reproduce a database deadlock. A baseline method is to run

DCAs for some time to observe database deadlocks. Different

runs of DCAs yield different times to database deadlocks

because of their probabilistic nature. The values of mean time
to database deadlock (MTTDD) should be much smaller with

STEPDAD when compared with the baseline approach.

III. OUR APPROACH

In this section we describe our key ideas and the abstraction

on which they are based, we explain the architecture of

STEPDAD, we describe the cycle detection algorithm that

we use to detect hold-and-wait cycles in lock graphs, and we

show how STEPDAD schedules transactions to increase the

probability of database deadlock occurences.

A. Our Abstraction

STEPDAD is based on our abstraction that represents re-

lational databases as sets of resources (e.g., database tables)

and transactions that DCAs issue to databases as sets of

abstract operations. Examples of abstract operations include

reading from and writing into resources; these operations also

issue synchronization requests. Using this abstraction unifies

DCAs that use the same databases in a novel way: their

independently issued transactions become abstract operations

with resource sharing requests. With this abstraction, we hide

the complex machinery of database engines. Instead we focus

on abstract operations performed by transactions and the

engines’ concurrency control locking mechanisms associated

with these abstract operations.

B. Key Ideas

Our solution rests on a key idea that transactions involved

hold-and-wait cycles should be executed simultaneously in

order to increase the probability that a deadlock will occur. We

specifically introduce a mechanism for scheduling executions

of DCAs in such a way that these transactions will be issued

in close temporal proximity. A rationale for this idea is that

database schedulers are more likely to create interleavings of

instructions that realize hold-and-wait cycles if transactions

arrive at the same time. This idea is related to work on

producing scheduling that causes concurrent programs to fail

[3]. Of course, there is no guarantee that the simultaneous

arrival of transactions may result in a database deadlock—this

is a hypothesis that we evaluate in Section V.

The other key idea is to replicate transactions that have

hold-and-wait cycles by issuing them simultaneously from

different client applications to further increase the probability

of observing database deadlocks. Consider the motivating

example that is shown in Table I. By adding two or more

replicated transactions T1 and T2 we can increase the “density”

of SQL statements that contain hold-and-wait cycles per time

unit of processing. Our hypothesis is that by increasing the

number of replicated transactions that contain hold-and-wait

cycles and that are sent to the database simultaneously, we can

increase the probability of occurrence of database deadlocks.

We evaluate this hypothesis and report the results of our

evaluation in Section V.

C. The Architecture of STEPDAD

The design of STEPDAD rests on a common set of re-

quirements to realize our key ideas. The first requirement

is that a DCA should be forced to issue transactions to

databases for execution. The next requirement is to intercept

all sent transactions either to simulate exceptions thrown by

the database or to cause a delay long enough to accumulate a

set of different transactions that form hold-and-wait cycles.

Finally, the third requirement is to increase the “density”

of transactions to force a database deadlock faster. These

requirements define the architecture of STEPDAD that is

shown in Figure 2. This architecture shows two DCAs (i.e.,

DCAm and DCAn) that use the shared Database as it is shown

with dashed arrows labeled with (1). We also assume that

stored procedures, triggers, and other database objects that

contain transactions are incorporated in the Transactions block

in this architecture.

The first step in this architecture involves extracting trans-

actions that contain SQL statements from these DCAs as

shown with dashed arrows labeled with (2). In addition, SQL

statements from other transactions from database objects can

be extracted. This is a one-time manual effort that may be

required (as it was done for three subject DCAs in this

paper). At first glance, it appears to be tedious and laborious

work for programmers to extract SQL statement from the

source code of DCAs. In reality, it is a practical and modest

exercise that takes little time. We observed in industry that

all transactions with SQL statements are available in separate

documents for many enterprise applications. The explanation

is simple—transactions contain complicated SQL statements

that should be debugged and tested by database analysts using

specialized SQL development environments before they are

used by developers of DCAs.

Once transactions are extracted, the static analysis phase

starts. First, (3) SQL statements that are contained in these

177

���
�

���
���������

������	
����

���

������	
����

���

�������	��

���

�������	��

�������

�����	
�

�������
�����������

�����

������

���������

��	
��
����

��
��
	��

�����	
��

��
��
���

���������

��	
��
����

�

�

��

�

�

�

����
�

��	�������

��

�

�� ��

� �

��� 	

	 	

Fig. 2. The architecture of STEPDAD.

transactions are parsed, (4) and the resulting parse trees are

input into the Modeler that automatically transforms SQL

statements into the abstract operations and synchronization

requests. In STEPDAD, we extracted the SQL parser from

the Apache Derby database. The Modeler (5) uses database

settings that include a locking strategy (6) to produce a lock-

graph model, similar to the one that is shown in Section II-A.

This model (7) serves as the input to an algorithm that (8)

detects at most one hold-and-wait cycle between each pair

of transactions, that are in turn (9) used as inputs to the

STEPDAD Controller. This step concludes the static phase

of STEPDAD.

At this point, we describe the dynamic phase during which

DCAs are run for the purpose of producing database dead-

locks. We accomplish this goal by diverting SQL statements

from DCAs to the Controller, which can then determine

whether executing these SQL statements may result in the

creation of hold-and-wait cycles and therefore deadlocks.

STEPDAD diverts SQL statements with the interceptor pattern
whose implementation uses a framework associating call-

backs with particular events [29]. In STEPDAD, we use

AspectJ5 to instrument subject DCAs with aspects to intercept

SQL statements, even though different binary rewriting tools

can be used for this purpose. We extend this framework by

writing modules that register user-defined call-backs with the

framework. When a framework event arises, the registered

methods are invoked thereby alerting the user to these events.

The first step is to add interceptors to DCAs. These in-

terceptors are shown as a partial rectangle labeled Int and

positioned next to the corresponding DCA in Figure 2. These

interceptors trap JDBC API calls that take SQL statements

as string parameters from DCAm and instead of (1) sending

these statements to the Database, (10) they divert them to

5http://www.eclipse.org/aspectj, verified September 17, 2012.

the Controller, whose goal is to quickly look up if hold-

and-wait cycles are present that involve SQL statements in

other transactions, for example, from DCAn. In doing so, the

Controller utilizes the information obtained from the static

analysis phase. Once the Controller determines what other

SQL statements have hold-and-wait cycles with the pending

SQL statements, (11) the Controller sends instructions to the

execution hijacking layer (EH) [32] that forces DCAn to

execute the statement containing the JDBC API call with the

conflicting SQL statement. Once both SQL statements are

pending at the Controller, (12) the Controller forwards these

SQL statements to the database for execution, thus increasing

the probability that the database deadlock will actually occur.

This concludes the description of STEPDAD’s architecture.

Algorithm 1 The cycle detection algorithm for lock graphs.

1: CycleDetect(Lock graph G))

2: ∀t ∈ T , color(t)← BLUE{Initialize color of each trans-

action node.}
3: for all t ∈ T do
4: if color(t) = BLUE then
5: DFS_visit(t)
6: end if
7: end for
8: return
9: DFS_visit(Transaction v)

10: color(v)← RED
11: for all w ∈ T , s.t. (v,r) ∈ E ∧ (r,w) ∈ E ∧ r ∈ R do
12: if color(w) = RED ∧w� v then
13: print w� v
14: else if color(w) = BLUE then
15: DFS_visit(w)
16: end if
17: end for
18: color(v)← WHITE

D. The Cycle Detection Algorithm

The procedure CycleDetect is shown in Algorithm 1

that is a variation of the algorithm for finding cycles in

a directed graph using depth-first search (DFS) [31]. This

algorithm takes as its input the lock graph G = (V ,E) where

V is the set of nodes and E is the set of edges. The set of

nodes, V is the union of the set of transactions, T and the

set of resources, R. Directed edges designate read and write

locks by connecting transactions and resources. Hold-and-wait

cycles are computed and returned in Line 13 of the algorithm.

where the arrow � designates a hold-and-wait cycle path

between transactions w and v. The algorithm recursively calls

the procedure DFS_visit (see Line 15) that performs a

depth-first search on the graph G . A key idea of this algorithm

is to exploit the DFS to compute hold-and-wait cycles with

respect to transactions that hold locks on resources.

In line 2 of Algorithm 1 all transaction nodes are initialized

with the color BLUE. Lines 3–7 iteratively check all such

178

nodes. Any transaction node colored BLUE is explored by

invoking procedure DFS_visit, which searches recursively

for hold-and-wait cycles.

Lines 9–18 in Algorithm 1 specify the body of the procedure

DFS_visit. The procedure takes as input the transaction

node v. Line 10 initializes the color of this transaction node

to RED. Lines 11–17 iterate through other transaction nodes

that are connected to this node via shared locks on resources. If

a transaction node is encountered that is already colored RED,

then a hold-and-wait cycle is found and reported in Line 13.

Line 18 paints node v WHITE meaning that this node does

not participate in any cycle and can be ignored. The algorithm

terminates when all transaction nodes are explored.

We implemented Algorithm 1 in a hold-and-wait cycle

detection tool whose GUIs are shown in Figure 3. On the left,

the GUI shows a list of transactions, one per list box with

SQL statements that constitute a transaction. On the right, a

detected hold-and-wait cycle is visualized as a lock graph.

IV. EXPERIMENTS

In this section we describe our empirical evaluation of

STEPDAD on three small Java DCAs.

A. Research Questions

We seek to answer the following research questions.

RQ1: Can STEPDAD effectively reproduce database dead-

locks for DCAs that issue transactions to the

database?

RQ2: Is STEPDAD efficient in reproducing database dead-

locks?

The rationale for both RQs is to compare STEPDAD with

the baseline approach where multiple DCAs are run for a

certain period of time until a database deadlock is registered or

until a time period expires. Our goal is to show that STEPDAD

is more effective and efficient than this baseline approach. We

address RQ1 by measuring the number of deadlocks reported

by STEPDAD vs. the baseline approach. The rationale for RQ2

is determine the mean time to database deadlock (MTTDD). To

address RQ2 we measure STEPDAD’s MTTDD and compare

it with the baseline approach.

B. Subject DCAs

We evaluate STEPDAD with three Java DCAs whose

characteristics are shown in Table II. HIM is a program for

maintaining health information records. DAN is a demographic

analysis program. Finally, UCOM is a program for obtaining

statistics on how users interact with Unix systems using their

commands. These DCAs were created by 32 graduate students

(divided into three groups) from the University of Illinois at

Chicago who wrote them as part of a graduate course of

distributed object programming using simplified specifications

from real-world applications that came from different projects

at Accenture. Databases were created using UCI Knowledge

Discovery in Databases Archive6. The subject DCAs as well

6http://kdd.ics.uci.edu, last verified on August 16, 2012.

TABLE II
SUBJECT DCAS AND THEIR DATABASES. THE COLUMNS SHOW LINES OF

CODE (LOC) IN DCAS, THE SIZE OF DB IN MEGABYTES, THE NUMBER OF

TRANSACTIONS, T IN THE DCA AND HOW MANY SQL STATEMENTS, S AT

MOST ARE CONTAINED IN EACH TRANSACTION, THE NUMBER OF TABLES

IN THE DATABASE, TDB , THE NUMBER OF TABLES USED IN TRANSACTIONS,
Ttrans , AND THE TOTAL NUMBER OF ROWS IN THE DATABASE.

App LOC DB Size T S TDB Ttrans Rows

HIM 3,421 248MB 4 2 10 6 1,330,107
UCOM 2,127 29MB 2 2 8 2 250,532
DAN 6,034 371MB 2 2 13 2 1,270,897

as their databases are available from Sourceforge7. Each DCA

consists of the server component that spawns multiple threads

that use its backend database, and a client component that

submits client requests and obtains data from the server.

C. Methodology

We aligned our methodology with the guidelines for sta-

tistical tests to assess randomized approaches in software

engineering [2]. Since database deadlocks are not easy to

reproduce, different runs of the DCA may reveal different

number of deadlocks and different MTTDDs. Our goal is to

collect highly representative samples of runs when applying

different approaches, perform statistical tests on these samples,

and draw conclusions from these tests. Since our experiments

involve the probability of encountering database deadlocks, it

is important to conduct the experiments multiple times to pick

the average to avoid skewed results. For each subject DCA,

we ran each experiment 10 times with each approach to obtain

a good representative sample.

1) Independent Variables: We have three independent vari-

ables: the subject DCA, the type of the experiment, and the

number of DCA clients. There are three types of experiment:

the Regular or baseline, where a subject DCA is run without

STEPDAD, the experiment with the Controller that enables si-

multaneous delivery of transactions from subject DCA clients

to the database for execution, and finally, the experiment with

Artificially replicated transactions to increase concurrency. For

each subject DCA, we carried out experiments with two, four,

and six clients for five minutes per experiment.

2) Dependent Variables: We have two dependent variables:

the number of database deadlocks that are observed during

the experiment and the running time of each subject DCA

until at least one database deadlock is encountered. Since

exhibiting database deadlocks requires specific interleavings

of transactions, we repeated each experiment 10 times. Thus,

the total number of experiments is equal to three DCAs ×
three types (R,C,A) × three client settings × 10 times = 270

experiments. We report statistical results (average, median,

min, max, variance) for 10 runs for the number of observed

deadlocks and the time taken to run the subject DCAs into

these deadlocks.

D. Hypotheses

We introduce the following null and alternative hypotheses

to evaluate how close the means are for MTTDD for different

7http://sourceforge.net/projects/redactapps, verified on September 17, 2012.

179

Fig. 3. The GUI of STEPDAD’s hold-and-wait cycle detection tool. On the left, the GUI shows a list of transactions, one per list box with SQL statements
that constitute a transaction. On the right, a detected hold-and-wait cycle is visualized as a lock graph.

approaches. We seek to evaluate the following hypotheses at

a 0.05 level of significance.

H0 The primary null hypothesis is that there is no

difference in the values of MTTDD between R, C,

and A approaches for all subject DCAs.

H1 An alternative hypothesis to H0 is that there is

statistically significant difference in the values of

MTTDD between R, C, and A approaches for all

subject DCAs.

Once we test the null hypothesis H0, we are interested in the

directionality of means, μ, of the results of control and treat-

ment groups. We are interested to compare the effectiveness

of STEPDAD versus the R and A approaches.

H1 (MTTDD of R versus C). The effective null hypoth-

esis is that μR = μC, while the true null hypothesis is

that μR ≤ μC. Conversely, the alternative hypothesis

is μR > μC.

H2 (MTTDD of R versus A). The effective null hypoth-

esis is that μR = μA, while the true null hypothesis is

that μR ≤ μA. Conversely, the alternative hypothesis

is μR > μA.

H3 (MTTDD of C versus A). The effective null hypoth-

esis is that μC = μA, while the true null hypothesis is

that μC ≤ μA. Conversely, the alternative is μC > μA.

The rationale behind the alternative hypotheses to H1–H3 is

that STEPDAD allows testers to quickly reproduce database

deadlocks. These alternative hypotheses are motivated by our

belief that by reducing the number of interleavings among

transactions that contain hold-and-wait cycles in addition to

increasing concurrency by replicating these transactions, they

can result in reproducing database deadlocks much faster when

compared to the baseline approach.

E. Threats to Validity

A threat to the validity of this experimental evaluation is that

our subject programs are relatively small; it is difficult to find

large open-source DCAs that use nontrivial databases. Large

DCAs may have millions of lines of code and use databases

whose sizes are measured in thousands of tables and attributes.

Those DCAs and databases may have different characteristics

compared to our smaller subject programs. On the one hand,

increasing the size of applications to millions of lines of

code is unlikely to affect the time and space demands of

our analyses because STEPDAD only considers transactions.

Thus, the source code of DCAs is ignored in the cycle analysis,

which is focused on the transactions that these DCAs issue to

their databases. On the other hand, increasing the size and the

number of transactions may have a significant impact on the

cost of cycle analysis. In addition, it may be more challenging

to schedule the execution of large and complex applications

to reproduce database deadlocks. Evaluating this impact is a

subject of future work.

Additional threats to validity of this study is that we used

graduate students as programmers who created DCAs, and

this task should be tackled by professional programmers.

However, most of these students have at least one year of

professional programming experience, thereby reducing this

threat to validity.

Finally, recall that there are over two dozens of different

kinds of database deadlocks. In this paper, we experimented

only with circular database deadlocks that are realized from

hold-and-wait cyclic locks on resources by transactions. It is

unclear how well STEPDAD will perform on other kinds of

database deadlocks, so this is a threat to external validity of

our results.

V. RESULTS

In this section, we report the results of our experiment and

evaluate the hypotheses. We use one-way ANOVA and t-tests

for paired two sample for means to evaluate the hypotheses

that we stated in Section IV.

A. Analyzing Experimental Results

Experimental results are summarized and shown in Ta-

ble III. We use dash instead of reporting time for the ex-

periments where no database deadlocks were reproduced. For

DCAs HIM and UCOM with two clients for the regular

baseline experiments, database deadlocks were not reproduced

at all. Even for the subject DCA HIM with six concurrent

180

TABLE III
EACH SUBJECT DCA (I.E., HIM, UCOM AND DAN) IS EVALUATED USING (R)EGULAR, (C)ONTROLLER AND (A)RTIFICIAL INJECTION

METHODOLOGIES. EACH DCA WAS RUN WITH 2, 4 AND 6 CLIENTS FOR 5 MINS PER EXPERIMENT. WE MEASURED THE NUMBER OF DETECTED

DEADLOCKS IN 5 MINS OF THE EXPERIMENT(IN COLUMN DEADLOCKS) AND ALSO THE TIME FOR THE DETECTION OF THE FIRST DEADLOCK WITHIN 5
MINS (IN COLUMN TIME). FOR THE COLUMNS DEADLOCK AND TIME, WE REPORT STATISTICAL RESULTS (MTTDD, MEDIAN, MIN, MAX, VARIANCE)

OF 10 RUNS FOR EACH DCA/CLIENT SETTING. WE USE DASH INSTEAD OF REPORTING TIME FOR THE EXPERIMENTS WHERE NO DATABASE DEADLOCKS

WERE REPRODUCED.

DCA Deadlocks Time (in seconds)
Name Type Clients Avg Med Min Max Var MT T DD Med Min Max Var

HIM

R
2 0 0 0 0 0 - - - - -
4 0.6 0.5 0 2 0.49 146.4 102 56 262 9883.3
6 1.2 1 0 3 1.73 169.2 197 86 240 4917.7

C
2 0.6 0.5 0 2 0.49 169.8 171 120 209 1610.7
4 0.9 1 0 2 0.32 161 148.5 65 256 5128.57
6 3 3 2 4 0.44 80.1 74.5 58 122 433.88

A
2 1.5 1.5 0 3 1.17 129.38 115 53 270 5784.27
4 2.5 2.5 0 5 2.5 103.44 70 59 266 4576.53
6 4.5 4.5 3 6 1.61 95.1 87.5 46 194 1838.1

UCOM

R
2 0 0 0 0 0 - - - - -
4 0.2 0 0 1 0.18 46.5 46.5 39 54 112.5
6 7.1 7 3 13 9.66 57.5 47.5 32 146 1132.28

C
2 0 0 0 0 0 - - - - -
4 1.3 1 0 3 0.9 115.88 109 36 226 3965.84
6 7.4 7.5 2 12 10.93 76.6 61.5 22 207 3663.38

A
2 1.5 1.5 0 3 0.72 102.11 108 48 149 1228.11
4 10.9 10 6 15 7.43 48.6 47.5 23 72 301.6
6 22.3 22 15 30 15.34 32.2 31.5 22 48 59.73

DAN

R
2 0.9 1 0 2 0.54 173.86 206 69 264 6056.48
4 5 5.5 1 9 5.56 85.3 86 32 147 1318.01
6 10.5 10.5 7 15 5.83 51.6 40 26 138 1326.71

C
2 1.9 2 1 3 0.77 136.8 123.5 56 251 4815.96
4 6.7 6.5 4 10 4.68 54.7 48 36 107 436.68
6 9.7 10 5 13 5.57 47.2 38.5 31 85 325.96

A
2 3.7 4 2 5 1.12 83.5 69 36 188 2749.83
4 6.8 7 4 8 1.96 54.8 50 35 112 571.73
6 11.3 11.5 7 16 7.34 52.3 41.5 31 103 639.57

clients database deadlocks were not reproduced in five out of

ten regular baseline experiments. In contrast, with the artificial

injection experiment, database deadlocks were reproduced in

almost all experiments, except for two experiments with two

clients for HIM, one experiment with four clients for HIM,

and one experiment for two clients for UCOM.

In total, for the regular baseline approach, 20 out of 30

experiments did not result in any database deadlocks for HIM;

18 out of 30 experiments did not result in any database

deadlocks for UCOM; and three out of 30 experiments did not

result in any database deadlocks for DAN. For the Controller-

based approach, only seven out of 30 experiments did not

result in any database deadlocks for HIM; 12 out of 30

experiments did not result in any database deadlocks for

UCOM; and all 30 experiments resulted in database deadlocks

for DAN. Finally, for the artificially injected transactions

approach, only three out of 30 experiments did not result in any

database deadlocks for HIM; only one out of 30 experiments

did not result in any database deadlocks for UCOM; and all 30

experiments resulted in database deadlocks for DAN. Based on

these results, we can positively answer RQ1 that STEPDAD

effectively reproduces at least one database deadlock.

B. Testing the Null Hypothesis

We used ANOVA to evaluate the null hypothesis H0 that

the variation in an experiment is no greater than that due to

normal variation of DCAs’ characteristics and measurement

errors given the probabilistic nature of reproducing database

deadlocks. The results of ANOVA confirm that there are large

differences between the groups in terms of MTTDD for HIM

for two clients with F = 5.64 > Fcrit = 3.35 with p ≈ 0.009

which is strongly statistically significant. Similarly, the results

of ANOVA for MTTDD for UCOM for two clients with

F = 35.6 > Fcrit = 3.35 with p≈ 9.4 ·10−9 which is strongly

statistically significant. However, the results of ANOVA for

MTTDD for DAN for two clients are inconclusive with

F = 1.2 < Fcrit = 3.35 with p ≈ 0.31, while for four clients

the differences are statistically significant with F = 4 > Fcrit =
3.35 with p≈ 0.03. Based on these results we reject the null

hypothesis and we accept the alternative hypothesis H1.

C. Comparing Baseline with Controller

To test the null hypothesis H1, we applied two t-tests

for two paired sample means, in this case MTTDDs for the

regular baseline and the controller approaches. Since we did

not reproduce database deadlocks with the regular baseline

approach for a number of experiments, we cannot run t-tests on

these results. Instead, we statistically evaluated UCOM for six

clients, and DAN for four and six clients. Statistical evaluation

of UCOM is inconclusive, and for DAN for four clients,

t > tcrit as 2.25 > 1.85 with p ≈ 0.025 and for six clients it

is inconclusive with MT T DDR = 51.6 > MT T DDC = 47.2.

Based on these results we reject the null hypothesis for a

general case H1 and we accept the alternative hypothesis

181

that states that MTTDD for STEPDAD with Controller
is generally lower than MTTDD for the regular baseline
approach.

D. Comparing Baseline with Artificial

To test the null hypothesis H2, we applied two t-tests for

two paired sample means, in this case MTTDDs for the regular

baseline and the artificial injection approaches. Since we did

not reproduce database deadlocks with the regular baseline

approach for a number of experiments, we cannot run t-tests on

these results. Instead, we statistically evaluated UCOM for six

clients, and DAN for four and six clients. Statistical evaluation

of UCOM show that the artificial approach results in smaller

MTTDD with MT T DDR = 57.5 > MT T DDC = 32.2 with

t > tcrit as 2.27 > 1.83 with p ≈ 0.027. For DAN for four

clients, the result is strongly statistically significant and for

six clients it is inconclusive. Based on these results we reject

the null hypothesis for a general case H2 and we accept the

alternative hypothesis that states that MTTDD for STEPDAD
with Artificial injector is generally lower than MTTDD for
the regular baseline approach.

E. Comparing Controller with Artificial

To test the null hypothesis H3, we applied two t-tests for two

paired sample means, in this case MT T DDs for the artificial

injector and the controller approaches. Based on these results

we accept the null hypothesis H3 that say that MTTDD for
STEPDAD with Artificial injector is generally the same as
MTTDD for the controller-based approach.

F. Discussion

One important conclusion from our experiments is that

replication of database deadlocks is as effective with schedul-

ing transactions using the controller as with artificial injection.

Essentially, this is not surprising, since artificially injecting

multiple transactions that hold-and-wait cycles is likely to

result in a higher frequency of database deadlocks—more

contention is created. Of course, database engine is a com-

plex mechanism that parses SQL statements in transactions,

translates them into low-level relational algebra operators, and

creates their execution plans that is later carried out by the

engine. Simply timing transactions to arrive to the database

engine at the same time may not always result in a significantly

higher frequency of database deadlocks.

However, further analysis of our results shows that the

variance of the measured numbers of reported database dead-

locks for the approach with scheduling transactions using the

controller is much smaller when compared with the variance

using the artificial injection approach. We think that the main

reason for it is that scheduling transactions to arrive to the

database engine at the same time increases the probability

that low-level relational algebra operators that form a hold-

and-wait cycle may execute at the same time.

When we study the values for the time it takes to reproduce

the first occurrence of a database deadlock, the approach with

scheduling transactions using the controller takes less MTTDD

when compared with the MTTDD using the artificial injection

approach for the experiment with a larger number of clients.

Increasing the number of concurrent operations that have hold-

and-wait cycles and timing them to arrive to the database

engine at the same time makes it much quicker to reproduce

the first occurrence of a database deadlock. This conclusion

may be useful for stress and load testing of DCAs, since it

specifies a direction with which it is likelier to cause database

deadlocks, thus finding this abnormal behavior quicker and

with fewer resources.

VI. RELATED WORK

Language-based approaches offer different type systems and

annotation facilities for programmers to annotate programs,

so that type checkers can analyze and detect deadlocks [4],

[12]. Given that DCAs contain embedded SQL statements, this

approach requires a combination of type systems: one of SQL

and the other of the host language in which DCA is written.

We are not aware of any language-based approach that can be

currently applied to reproduce database deadlocks.

Some approaches use static program analysis to obtain

information about deadlocks. RacerX is a static tool that uses

flow-sensitive, interprocedural analysis to detect both race

conditions and deadlocks [9]. Williams et al. [34] defined

a deadlock detection algorithm for Java libraries. In contrast

with our method, these approaches derive lock graphs directly

from Java and C++ source code. These approaches are not

currently applicable to reproduce database deadlocks.

Dynamic approaches use runtime data to infer where dead-

locks may occur or determine how to predict and resolve them

in future program runs. An approach called Dimmunix “im-

munizes” programs against deadlocks by collecting deadlock

patterns, which are subsets of control flow traces that lead

to deadlocks [19]. It uses detected hold-and-wait cycles to

prevent database deadlocks, but unlike STEPDAD Dimmunix

is not designed to reproduce them.

Rx is a dynamic approach that rolls back an application

once a deadlock occurs to a checkpoint and retries it again

with the hope that the deadlock will be avoided in subsequent

executions [26]. A recent work on MagicFuzzer describes

a dynamic deadlock detection technique for C++ programs,

where MagicFuzzer uses runtime information to prune the

number of choices that may lead to deadlocks [5]. A dy-

namic approach called Sammati provides automatic deadlock

detection and recovery for POSIX threaded applications [25].

Unlike Rx, MagicFuzzer, and Sanmati, STEPDAD reproduces

database deadlocks instead of fixing them.

Pike is a concurrency bug detector that automatically iden-

tifies when an execution of a program triggers a concurrency

bug [10]. Pike is related to STEPDAD in that it uses a

scheduler to control thread interleaving by intercepting certain

library calls and forcing a thread to run at a time that is

randomly chosen by the scheduler in an attempt to reproduce

a bug. In that, Pike is complementary to STEPDAD, which

can use ideas from Pike to improve its scheduler. Unlike Pike,

182

STEPDAD deals with database deadlocks, and it is unclear

how Pike can be extended to handle such deadlocks.

Approaches for preventing deadlocks using transactional

memory are gaining increasing popularity [20], [33]. Unfortu-

nately, database deadlocks often occur in the distributed setting

where there is no shared memory. In contrast to STEPDAD,

these approaches may be applicable to reproduce deadlocks

among different threads within the same process, but not for

distributed environment where external databases and DCAs

could be located on different computers.

VII. CONCLUSION

We created a novel approach for Systematic TEsting in
Presence of DAtabase Deadlocks (STEPDAD) that enables

testers to instantiate database deadlocks in applications with

a high level of automation and frequency. We implemented

STEPDAD and experimented with three applications. STEP-

DAD reproduced a number of database deadlocks in these

applications that is bigger by more than an order of magnitude

on average when compared with the number of reproduced

database deadlocks using the baseline approach. In some cases,

STEPDAD reproduced a database deadlock after running an

application only two times, while no database deadlocks were

reproduced after ten runs using the baseline approach.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers and to the

PC chairs who provided valuable feedback that helped us

improve the quality of this paper. We warmly thank Tathagata

Dasgupta, a graduate student from the UIC who contributed to

STEPDAD as part of his work towards the completion of the

Master of Science degree. We also thank graduate students

from the University of Illinois at Chicago who developed

subject applications as part of taking a graduate course.

We are grateful to the anonymous managers from Fortune

100 companies for their relevant and useful comments and

suggestions about testing for database deadlocks. This work

is supported by NSF CCF-0916139, CCF-1017633, and CCF-

1217928.

REFERENCES

[1] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control perfor-
mance modeling: alternatives and implications. ACM Trans. Database
Syst., 12(4):609–654, Nov. 1987.

[2] A. Arcuri and L. C. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In ICSE, pages
1–10, 2011.

[3] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Producing scheduling
that causes concurrent programs to fail. In Proceedings of the 2006
workshop on Parallel and distributed systems: testing and debugging,
PADTAD ’06, pages 37–40, New York, NY, USA, 2006. ACM.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. OOPSLA ’02, pages
211–230, New York, NY, USA, 2002. ACM.

[5] Y. Cai and W. K. Chan. Magicfuzzer: scalable deadlock detection for
large-scale applications. ICSE 2012, pages 606–616, Piscataway, NJ,
USA, 2012. IEEE Press.

[6] R. Cochrane, H. Pirahesh, and N. M. Mattos. Integrating triggers and
declarative constraints in sql database sytems. VLDB ’96, pages 567–
578, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[7] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM
Comput. Surv., 3(2):67–78, 1971.

[8] K. R. Dittrich, A. M. Kotz, and J. A. Mülle. An event/trigger mech-
anism to enforce complex consistency constraints in design databases.
SIGMOD Rec., 15(3):22–36, Sept. 1986.

[9] D. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. SOSP ’03, pages 237–252, New York, NY,
USA, 2003. ACM.

[10] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency
bugs in large multi-threaded applications. In Proceedings of the sixth
conference on Computer systems, EuroSys ’11, pages 215–228, New
York, NY, USA, 2011. ACM.

[11] H. Garcia-Molina. A concurrency control mechanism for distributed
databases which use centralized locking controllers. In Proceedings of
the Fourth Berkeley Workshop on Distributed Databases and Computer
Networks, pages 113–122, Berkeley, CA, USA, Aug. 1979.

[12] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type and effect system
for deadlock avoidance in low-level languages. 7th ACM SIGPLAN
TLDI ’11, pages 15–28, New York, NY, USA, 2011. ACM.

[13] S. Golubchik and A. Hutchings. MySQL 5.1 Plugin Development. Packt
Publishing, Aug. 2010.

[14] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 1992.

[15] J. Griggs. Database deadlock avoidance patterns.
http://c2.com/cgi/wiki?DatabaseDeadlockAvoidancePatterns, Sept.
2003.

[16] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a
database system. Found. Trends databases, 1(2):141–259, Feb. 2007.

[17] M. Hofri. On timeout for global deadlock detection in decentralized
database systems. Inf. Process. Lett., 51:295–302, September 1994.

[18] S. S. Isloor and T. A. Marsland. The deadlock problem: An overview.
Computer, 13(9):58–78, Sept. 1980.

[19] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity:
enabling systems to defend against deadlocks. OSDI’08, pages 295–308,
Berkeley, CA, USA, 2008. USENIX Association.

[20] E. Koskinen and M. Herlihy. Dreadlocks: efficient deadlock detection.
SPAA ’08, pages 297–303, New York, NY, USA, 2008. ACM.

[21] D. Lee, W. Mao, H. Chiu, and W. W. Chu. Designing triggers with
trigger-by-example. Knowl. Inf. Syst., 7(1):110–134, Jan. 2005.

[22] D. B. Lomet. Subsystems of processes with deadlock avoidance. IEEE
Trans. Software Eng., 6(3):297–304, 1980.

[23] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in
the r* distributed database management system. ACM Trans. Database
Syst., 11(4):378–396, Dec. 1986.

[24] M. Nonemacher. Deadlocks in j2ee. Java Dev. Journal, Apr. 2006.
[25] H. K. Pyla and S. Varadarajan. Avoiding deadlock avoidance. PACT

’10, pages 75–86, New York, NY, USA, 2010. ACM.
[26] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating bugs as

allergiesa safe method to survive software failures. ACM Trans. Comput.
Syst., 25(3), Aug. 2007.

[27] S. K. Rahimi and F. S. Haug. Distributed Database Management
Systems: A Practical Approach. Wiley-IEEE Computer Society Pr, New
York, NY, USA, 1st edition, Aug. 2010.

[28] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. System level
concurrency control for distributed database systems. ACM Trans.
Database Syst., 3(2):178–198, June 1978.

[29] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 2000.

[30] A. P. Siebes, M. H. Voort, and M. L. Kersten. Towards a design theory
for database triggers. Technical report, Amsterdam, The Netherlands,
The Netherlands, 1992.

[31] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[32] P. Tsankov, W. Jin, A. Orso, and S. Sinha. Execution hijacking:
Improving dynamic analysis by flying off course. In ICST, pages 200–
209, 2011.

[33] H. Volos, A. J. Tack, M. M. Swift, and S. Lu. Applying transactional
memory to concurrency bugs. ASPLOS ’12, pages 211–222, New York,
NY, USA, 2012. ACM.

[34] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for
Java libraries. In ECOOP 2005, pages 602–629, Glasgow, Scotland,
July 27–29, 2005.

183

