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ABSTRACT
Which is the defect that causes a software failure? By comparing
the program states of a failing and a passing run, we can iden-
tify the state differencesthat cause the failure. However, these
state differences can occur all over the program run. Therefore,
we focusin spaceon those variables and values that are relevant
for the failure, andin time on those moments wherecause tran-
sitions occur—moments where new relevant variables begin be-
ing failure causes: “Initially, variableargc was3; therefore, at
shell sort() , variablea[2] was 0, and therefore, the pro-
gram failed.” In our evaluation, cause transitions locate the failure-
inducing defect twice as well as the best methods known so far.

Keywords: Automated debugging, program analysis, adaptive test-
ing, tracing

1. INTRODUCTION
Some program fails. How did this happen? In principle, a failure is
created by adefectin the code, which creates a fault orinfection1,
in the program state which then propagates until it becomes an ob-
servablefailure. Tracing back the infection chain from failure to
defect is a hard task, because programmers must both

• search in spaceacross a program state to find the infected
variable(s)—often among thousands—, and

• search in timeover millions of such program states to find
the moment in time when the infection began—that is, the
moment the defect was executed.

We want to ease this search as much as possible. In earlier work [16],
we have shown how tosearch in space—by focusing on those vari-
ables that actuallycausethe failure. The idea is to focus on the
differencebetween the program states of a run where the failure in
question occurs, and the states of a run where the failure does not
occur. Using an automatic strategy called Delta Debugging, we can

1The term “infection” was coined in [14]; we prefer it over “fault”
because it applies exclusively to program state, and because it im-
plies the idea of propagation.
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systematically narrow these initial differences down to a small set
of variables: “TheGCCfailure occurs if and only iffld[0].rtx ,
the second child of thelink node, points to its parent”—a cycle in
the abstract syntax tree. That is, variablefld[0].rtx is afailure
cause: if fld[0].rtx is altered such that it no longer induces a
cycle, the failure no longer occurs.

Unfortunately, finding causes in state is not enough. From input
to failure, a program passes through thousands of states. In these,
we can always isolate differences that cause the failure in one run
and not in the other—simply because identical inputs and states
would result in identical outcomes. Which are the moments in time
we should focus upon?

In this paper, we show how tosearch in time—by focusing on
cause transitions:moments in time where some variable ceases to
be a failure cause and another variable begins. In theGCCexample,
such a cause transition is the moment where an earlier variablev

caused the cycle to be created. From this moment on,v no longer
has an effect on the failure, but the cycle has; the statement which
created the cycle is likely the defect we are looking for.

A cause transition is where a cause originates—that is, it points
to program codethat causes the transition and hence the failure.
Thus, a cause transition is a candidate for a code correction—and
cause transitions can be isolated automatically, just like causes in
the program state. But cause transitions are not only good locations
for fixes—they actually locatethe defects that cause the failure.In
fact, we show that cause transitions are significantly better locators
of defects than any other methods previously known.

This paper is organized as follows: We illustrate our techniques
with a short example (Section2). We then recall our earlier work on
isolating failure causes from program states—that is, searching in
space (Section3). Section4 shows how to find cause transitions—
that is, searching in time. Section5 demonstrates how the tech-
nique scales, creating a diagnosis for theGCCcompiler. Section6
discusses complexity and other practical issues. Our evaluation in
Section7 demonstrates the general effectiveness of our approach,
comparing against related work. Section8 closes with conclusion
and consequences; an appendix summarizes formal definitions.

2. A SAMPLE FAILURE
Figure1 shows our ongoing example. Ideally, thesample pro-
gram sorts its arguments numerically and prints the sorted list, as
in this run (r✔):

$ sample 9 8 7
7 8 9
$

With certain arguments,sample fails (runr✘):

$ sample 11 14



1 /* sample.c -- Sample C program to be debugged */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 static void shell_sort(int a[], int size)
7 {
8 int i, j;
9 int h = 1;

10 do {
11 h = h * 3 + 1;
12 } while (h <= size);
13 do {
14 h /= 3;
15 for (i = h; i < size; i++)
16 {
17 int v = a[i];
18 for (j = i; j >= h && a[j - h] > v; j -= h)
19 a[j] = a[j - h];
20 if (i != j)
21 a[j] = v;
22 }
23 } while (h != 1);
24 }
25
26 int main(int argc, char *argv[])
27 {
28 int i = 0;
29 int *a = NULL;
30
31 a = (int *)malloc((argc - 1) * sizeof(int));
32 for (i = 0; i < argc - 1; i++)
33 a[i] = atoi(argv[i + 1]);
34
35 shell_sort(a, argc);
36
37 for (i = 0; i < argc - 1; i++)
38 printf("%d ", a[i]);
39 printf("\n");
40
41 free(a);
42 return 0;
43 }

Figure 1: The buggy sampleprogram. This program sorts its
arguments—that is, mostly.

0 11
$

Although the output is properly sorted, one of the arguments has
been replaced by another number: in runr✘, the argument14 has
been replaced by0. The presence of0 is a failure, which implies
that there is some bug (ordefect) in the program code. When the
defect is executed, it makes the state faulty (orinfected). As the
execution progresses, this infection causes further infections, until
the infection becomes visible as the failure.

To find the defect, we must trace back thisinfection chain:For
each infectionI ′, we must find the earlier infectionI that causesI ′

as well as the failure (or find that there is no earlier infection, in
which case we found the defect). This requires two proofs:

• To prove thatI and I ′ are infected,we must show that they
violate the specification.

• To prove thatI causes I′, we must show that the effectI ′

does not occur if the causeI does not occur.

In the absence of a detailed specification, we cannot determine
whether a program state is infected or not. (Furthermore, a specifi-
cation that covers every aspect of each program state as it occurs
during the run is unlikely to exist.) However, we can focus on
causes. In earlier work [16], summarized in Section3, we have
shown how tosearch causes in space:The basic idea is to identify
the state difference betweenr✔ andr✘ at some moment in time and
to narrow down that difference to a relevant subset that causes the

Var Value
in r✔ in r✘

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NULL)
i ′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Var Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

Table 1: State differences betweenr✔ and r✘. One of these dif-
ferences causessampleto fail.

failure. In thesample program, for instance, we can examine the
call of shell sort() in Line 35 and find thata[2] being zero
causes the failure ofr✘.

The variablea[2] is a cause, but not infected. Actually, the value
of a[2] should not influence the outcome at all, asa[] should have
only two elements. Variablea[2] doesaffect the outcome, though.
Therefore, it must be some other infection that makesa[2] affect
the outcome, and this can only besize, the number of arguments
to be sorted. To correct the defect, Line 35 should be changed to
shell sort(a, argc - 1) .

But how do we know that we should search at Line 35 in the first
place? In terms of causality, Line 35 is a highly interesting place.
Up to Line 35, variableargc causes the failure (because changing
argc, andargc only, determines whether the failure occurs). From
Line 35 on, it isa[2] that causes the failure. Thiscause transition
from argc to a[2] means that the new causea[2] originatedright at
Line 35. Line 35 is thus a likely candidate for fixing the program.

Two more such cause transitions occur withinshell sort() —
from a[2] to v in Line 17 and fromv to a[0] in Line 21. Taken
together, these locations are central for explaining how the failure
came to be—but they are alsofailure causes,because if they had
been executed differently, the failure-causing state would not have
come to be. This is the key question of this paper: To which ex-
tent are such cause transitions not only failure causes, but actual
defects?

3. SEARCHING IN SPACE
Let us first recall our earlier work [16] on isolating causes in pro-
gram state. Given some moment in time, we can extract program
states from bothr✔ andr✘, andcomparethese two states. (Techni-
cally, this is achieved by instrumenting an ordinary debugger such
asGDB.) Table1 lists thesample program states, as well as the
differences, as obtained from bothr✔ and r✘ when Line 9 was
reached. (a and i occur inshell sort() and inmain() ; the
shell sort() instances are denoted asa′ andi ′.)

Formally, this set of 12 differences is a failure cause: If we
change the state ofr✔ to the state inr✘, we obtain the original
failure. However, of all differences, only some may berelevantfor
the failure—that is, it may suffice to change only asubsetof the
variables to make the failure occur. For a precise diagnosis, we are
interested in obtaining a subset of relevant variables that is as small
as possible.

Delta Debugging [18] is a general procedure to obtain such a
small subset. Given a set of differences (such as the differences be-
tween the program states in Figure1), Delta Debugging determines
a relevant subsetin which each remaining difference is relevant
for the failure to occur. To do so, Delta Debugging systematically
and automaticallytestssubsets and narrows down the difference
depending on the test outcome, as sketched in Figure2. Overall,



Passing state Failing state
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Figure 2: Narrowing down state differences. By assessing
whether a mixed state results in a passing (✔), a failing (✘), or
an unresolved ( ) outcome, Delta Debugging isolates a relevant
difference.

Delta Debugging behaves very much like a binary search.
Applied on the differences in Table1, Delta Debugging would

result in a first test that

• runsr✔ up to Line 9,

• applieshalf of the differences onr✔—that is, it setsargc,
argv[1], argv[2], argv[3], size, andi to the values fromr✘—,
and

• resumes execution and determines the outcome.

This test results in the same output as the original run; that is,
the six differences applied were not relevant for the failure. With
this experiment, Delta Debugging has narrowed down the failure-
inducing difference to the remaining six differences. Repeating the
search on this subset eventually reveals one single variable,a[2],
whose zero value is failure-inducing: If, inr✔, we seta[2] from
7 to 0, the output is0 8 9—the failure occurs. We can thus con-
clude that the zero being printed is caused bya[2]—which we can
confirm further by changinga[2] in r✘ from 0 to 7, and obtain-
ing the output7 11 . Thus, in Line 9,a[2] being zero causes the
sample failure.

The idea of determining causes by experimenting with mixed
program states (rather than by analyzing the program or its run, for
instance) may seem strange at first. Yet, the technique has been
shown to produce useful diagnoses for programs as large as the
GNU compiler (GCC); it has also been implemented in theASK-
IGOR public debugging server [1]. As detailed in [16], scaling up
the general idea, as sketched here, requires capturing and compar-
ing program states asmemory graphs[19]. Also, Delta Debugging
must do more than simple binary search; it needs to cope with in-
terferences of multiple failure-inducing elements as well as with
unresolved test outcomes [18].

4. SEARCHING IN TIME
When debugging, we are ultimately looking for thedefect that
causes the failure. This impliessearching in timefor the moment
the defect has been executed and originated the infection chain.

In the absence of a correct program, we cannot tell whether a
piece of code is a defect. What we can tell, though, is whether a
piece of code is the origin of a cause-effect chain that leads to the
failure. Such origins are can be tied tovariables. Assume there
is a point where a variableA ceases to be a failure cause, and a
variable B begins. (These variables are isolated using Delta De-
bugging, as sketched in Section3.) Such acause transitionfrom
A to B is an origin of B as a failure cause. A cause transition
thus is a good place tobreak the cause-effect chain and to fix the
program—and since a cause transition may be a good fix, it may
also indicate the actual defect.

✔ ✘

a[2] = 0

argc = 3

argc = 3

tim
e

Passing run Failing runCauses

… …shell_sort(a[], argc);

Program
states

Cause
transition
from argc
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… …
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…
…

Figure 3: A cause transition. For each program step, we can
narrow down variables that cause the failure. When these vari-
ables change, we have a cause transition—a potential defect.

How do we locate such transitions? The process is sketched in
Figure3: before the call toshell sort() , Delta Debugging iso-
latesargc as a failure cause. Afterwards,a[2] is the failure cause.
In order to find the moment of that cause transition, we apply Delta
Debugging in the middle of the interval. Then we repeat the pro-
cess for the two sub-intervals, effectively narrowing down the tran-
sitions until we find onlydirect transitions from one moment to
the next. These direct transitions are associated with the statement
executed at this point, resulting in Line 35, theshell sort()
call.

The actual algorithm which finds direct cause transitions from
two runs is namedcts for cause transitions; it is formally defined
in the Appendix. To understand howctsworks, we illustrate it on
thesample program.

Table 2 summarizes the execution ofcts. The runsr✔ and r✘

execute a sequence of 54 and 38 statements, respectively; Column 1
shows the sequence number of the executed statement, Column 2
contains line number and code. Not every line is executed in both
runs, though; coverage is indicated by “•” in the r✔ andr✘ columns,
respectively.

1. To find an interval of matches to start with, we determine
relevant variables at the first matching point and the last point
where the failure has not occurred.

2. At the first executed line of both runs (Step 1), the value of
variableargccan be determined to be relevant for the failure.
Obtaining the relevant variables at the last executed line be-
fore printing zero (Step 44) yieldsa[0], which contains zero.
So, there was a cause transition betweenargc in step 1 and
a[0] in Step 44, sincea[0] did not exist in Step 1;argc is
no longer relevant in Step 44, even though it holds the same
value as in the beginning.

3. To narrow down this cause transition,ctssearches a matching
point between Steps 1 and 44. Our implementation prefers
function calls to other statements, so we end up in Step 11.
Applying Delta Debugging now isolatesa[2] as relevant. Thus,
we have a transition fromargc to a[2], and a transition from
a[2] to a[0]. Again, these transitions must be narrowed down.

4. At Step 26, againa[2] is isolated, so there is no need to
search between Steps 11 and 26. Between Steps 26 and 44
lies Step 35, wherev is relevant, refining the cause transition
from a[2] to a[0] into two cause transitions to and fromv.



Step Line Code r✔ r✘ Vars ctsstep
1 28 int i=0; • • argc=3 2
...
6 32 for(i=0;i<argc-1;i++) • • argc=3 11
7 33 a[i]=atoi(argv[i+1]); • •

8 32 for(i=0;i<argc-1;i++) • • argc=3 12
9 33 a[i]=atoi(argv[i+1]); • ?

10 32 for(i=0;i<argc-1;i++) • ?
11 35 shell_sort(a,argc); • • a[2]=0 3

...
26 20 if(i!=j) • • a[2]=0 4
27 21 a[j]=v; •

28 15 for(i=h;i<size;i++) • • a[2]=0 9
29 17 int v=a[i]; • • a[2]=0 10
30 18 for(j=i;j>=h&&a[... • • v=0 8

...
35 20 if(i!=j) • • v=0 5
36 21 a[j]=v; • • v=0 7
37 15 for(i=h;i<size;i++) • • a[0]=0 6

...
44 37 for(i=0;i<argc-1;i++) • • a[0]=0 1
45 38 printf("%d ",a[i]); • •

Table 2: Locating direct cause transitions

5. Continuing the process, we find three direct cause transitions,
highlighting how the failure came to be. In Table2, Col-
umn ”Vars” shows the relevant variables, and Column ”cts
step” shows the order of search points where relevant states
were isolated. Direct cause transitions are shown by dividing
lines.

6. Note the cause transition between Steps 8 and 11: the exe-
cution traces have no matching points in between, thus the
transition cannot be exactly located at one executed line of
code. Settingargc to the value of the failing run alone causes
the control flow of the resumed run to change, being different
from both original runs. Our implementation thus locates the
beginning of the cause transition at the earlier matched point.

Overall, we obtain cause transitions fromargc to a[2] in Lines 32–
35 (Steps 8–11), froma[2] to v in Line 17 (Step 29), and from
v to a[0] in Line 21 (Step 36). All of these locations are potential
places to fix such that the cause-effect chain is broken.

Thectsalgorithm has been implemented as part of theASKIGOR
public debugging server. The cause transitions forsample and the
involved variables are reported as a cause-effect chain (Figure4).

5. CASE STUDY: THE GCC FAILURE
Thesample program is a relatively small program, such that the
question may arise whether the approach is feasible for larger pro-
grams, too. To explore scaleability, we applied the technique to
locate a failure cause in theGNU compiler (GCC).

Consider thefail.c program in Figure5. This program is interest-
ing in one aspect: It causes theGNU C compiler (GCC) to crash—at
least, when using version 2.95.2 on Intel-Linux with optimization
enabled:

$ gcc −O fail.c
gcc: Internal compiler error:

program cc1 got fatal signal 11
$ _

Figure 4: ASKIGOR with a diagnosis forsample

In earlier work, we had used this example twice to determine failure
causes:

• Applying Delta Debugging on the input (i.e. the codefail.c),
it turned out that if the code+ 1.0 was omitted, the pro-
gram compiled just fine—that is, the input+ 1.0 causes
the failure [18].

• Applying Delta Debugging on the program states of a pass-
ing run (i.e. without+ 1.0 ) and a failing run (i.e. with+ 1.0 )
returned a cycle in the abstract syntax tree as failure cause [16].

To isolate potential causes in the program code, we applied our
technique to isolate the cause transitions for theGCC failure. Over-
all, our algorithm identified 10 such transitions, listed in Table3.

Again, these transitions summarize how the failure came to be—
as a cause-effect chain from input to failure. The failure cause prop-
agates through theGCCexecution in four major blocks:

1. Initially, the file name (fail.c) is the failure cause—called
with pass.c, the alternate input file without+ 1.0 , the er-
ror does not occur. This argument is finally passed to the
GCC lexer (Transitions 1–3).

2. In the lexical and syntactical analysis (Transitions 4–6), it is
the actual difference in file content which becomes a failure
cause—that is, the characters+ 1.0 .

1 double mult(double z[], int n)
2 {
3 int i, j;
4 i = 0;
5 for (j = 0; j < n; j++) {
6 i = i + j + 1;
7 z[i] = z[i] * (z[0] + 1.0);
8 }
9 return z[n];

10 }

Figure 5: The fail.c program that crashesGCC.



# Location Cause transition to variable
0 〈Start〉 argv[3]
1 toplev.c:4755 name
2 toplev.c:2909 dump base name
3 c-lex.c:187 finput → IO buf base
4 c-lex.c:1213 nextchar
5 c-lex.c:1213 yyssa[41]
6 c-typeck.c:3615 yyssa[42]
7 c-lex.c:1213 last insn →fld[1].rtx

→fld[1].rtx →fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence result[2]
→fld[0].rtvec
→elem[0].rtx →fld[1].rtx
→fld[1].rtx →fld[1].rtx
→fld[1].rtx →fld[1].rtx
→fld[1].rtx →fld[1].rtx
→fld[3].rtx →fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx →fld[0].rtx

Table 3: Cause transitions inGCC

3. The difference in file content becomes a difference in the ab-
stract syntax tree, where+ 1.0 inducesfld[1].rtx to
hold an additional node (fld[1].rtx.code is PLUS) in
the failing run (Transitions 7–8). Thus, the+ in the input has
caused aPLUSnode, created at Transition 8.

4. In Transition 9, the failure cause moves from the additional
PLUSnode to acyclein the abstract syntax tree. We have

x→fld[0].rtx →fld[0].rtx = x

meaning that the node at*x is its own grandchild! This cy-
cle ultimately causes an endless recursion and thus theGCC
crash.

In our earlier work [16], we had also identified the cycle as the ulti-
mate failure cause, and assumed that an experiencedGCCprogram-
mer would be able to distinguish infections from non-infections.
Therefore, an experienced programmer would have immediately
focused on theGCCcycle.

Under the assumption that cause transitions indicate defects, a
programmer less familiar withGCC could start his investigation at
all listed cause transitions—starting with the transitions closest to
the failure. At combine.c:4271, the location of the last transition,
we find a single statement

return x;

This line is not likely to be a defect. Let us take a look at the direct
origin of x , in combine.c:4013–4019, listed in Figure6.

This place is where the infection originates: The call to the func-
tion apply distributive law() is wrong. This function
transforms code using the rule

(MULT (PLUS a b) c)⇒ (PLUS (MULT a c1)(MULT b c2))

Unfortunately, in theapply distributive law() call in Fig-
ure 6, the third and fourth argumentsc1 andc2 share a common
grandchild (the macroXEXP(x, 1) translates into the expression
x→fld[1].rtx ), which leads to the cycle in the abstract syntax
tree. To fix the problem, one should call the function with acopyof
the grandchild—and this is how the error was fixed inGCC2.95.3.

At this point, one may wonder why cause transitions did not sin-
gle out the call toapply distributive law() as a cause

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)

x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

break;

Figure 6: The GCC defect in combine.c

transition. The answer is simple: This piece of code is executed
only during the failing run. Therefore, we have no state to compare
against, and therefore, we cannot narrow down the cause transition
any further. Line 4271, however, has been executed in both runs,
and thus we are able to isolate the failure-inducing state at this lo-
cation.

Overall, to locate the defect, the programmer had to follow just
one backwards dependency from the last isolated cause transition.
In numbers, this translates into just 2 lines out of 338,000 lines
of GCC code. Even if we assume the programmer examines all
9 transitions and all direct dependencies, the effort to locate the
GCCdefect is minimal.

6. COMPLEXITY AND OTHER ISSUES
Finding causes and cause transitions by automated experimentation
can require a large number of test runs:

Searching in space.In the best case, Delta Debugging needs 2s logk
test runs to isolates failure-inducing variables fromk state
differences. The (pathological) worst case isk2

+ 3k; In
practice, though, Delta Debugging is much more logarithmic
than linear.

Searching in time. This is a simple binary search overn program
steps, repeated for each cause transition. Form cause transi-
tions, we thus needm logn runs of Delta Debugging.2

Since applications can have a large number of fine-grained cause
transitions, a practical implementation would simply limit the num-
ber of cause transitions to be sought, or just run as long as the avail-
able execution time permits.

Other practical issues we faced in our implementation, in partic-
ular for theGCCcase study, included:

Accessing state.We currently instrument theGNU debugger (GDB)
to access the state, which is painfully slow: The entireGCC

2Unfortunately, a pure binary search does not always suffice. In a
cause-effect chain, all reported causes must cause all later causes as
well as the failure. This can lead to tricky situations: Assume we
have isolated a causec1 and a later causec2, and these two form a
cause-effect chain, meaning thatc1 causesc2 as well as the failure.
Now, cts isolates a new causec betweenc1 andc2; again,c causes
all later causes (c2) as well as the failure. But doesc1 causec, too?
In casec1 has no effect onc, we have tore-isolate c1 such that the
newc1 causesc as well asc2.



diagnosis takes about 12 hours to compute.3 One can think
of much better ways to access and compare program states
directly.

Capturing accurate states.Capturing and transferring the state
of a C program to another is a tricky business [19]. For in-
stance, we had to implement several heuristics to determine
what type of element a pointer points to, and at how many it
points. When such heuristics fail, the state cannot be trans-
ferred, and we cannot determine a relevant state difference.

Incomparable states.When control flow reaches different points
in r✔ andr✘, the resulting states are not comparable—simply
because the set of local variables is different. To determine
when the control flows ofr✔ and r✘ diverge and converge
requires some effort.

So far, we can isolate causes and cause transitions from programs
whose state is well-defined—that is, typical stand-alone C pro-
grams without much external state or user interaction. We are cur-
rently porting our techniques to languages with managed memory
(such asJAVA and C#) and expect much relief.

7. EVALUATION: THE SIEMENS SUITE
The sample andGCC examples show that cause transitions can
help to locate the failure-inducing defect in a very precise manner.
However, these results do not generalize: They do not necessarily
show an advance beyond the state of the art, nor do they show a
more general usefulness. Therefore, we conducted an evaluation
using a larger number of programs with known defects, which had
already been used to evaluate other defect localization techniques.

7.1 Object of Analysis
Our object of evaluation is theSiemens test suite[7], as modified
by Rothermel and Harrold [13] as well as Renieris and Reiss [12].
This test suite consists of seven C programs with 170 to 560 lines
of code, as well as 132 variations of these seven programs, each
with exactly one manually injected defect. Defects may span mul-
tiple statements or even functions. Several defects are created by
omitting code, or relaxing or tightening control conditions. Each of
the seven program families comes with a test suite that exposes the
defect in each of the faulty versions.

7.2 Earlier Results and Related Work
In the past, the Siemens test suite has been used to determine the
effectiveness of methods that locate defects from alternate test runs.

Coverage. One suggested method to locate defects is to compare
the coverage orspectraof passing and failing test runs. The
idea is that code executed in failing runs only is more likely
to lead to the defect than code that is executed in all runs.
Harrold et al. found that failing runs tend to have unusual
coverage [5]; such information can also be visualized to as-
sist programmers [8]. However, applied to the Siemens suite,
summarizing the coverage of failing runs either by intersec-
tion or union yields no useful results [12].

Slicing. Program slicing[15] yields the set of statements that po-
tentially may have influenced the state at a given statement;
Dynamic slicing[2, 9] does so for a specific run. The Siemens
test suite so far has not been subject to dynamic slicing. A
dynamic backward slice from the program output, though,

3All times measured on a 3 Ghz Pentium PC.

typically containsall executed statements, simply because an
executed statement that does not influence the output would
be an anomaly. In this evaluation, we thus assume that a
dynamic slice is equal to the coverage; in particular, a differ-
ence ordicebetween slices should yield the same results as
the difference between coverage.

Dynamic invariants. Rather than focusing on coverage, one may
also attempt to summarize the properties ofdata as found
in the passing runs. The approach of Ernst et al. [3] deter-
minesdynamic invariantsfrom a number of (passing) runs,
thus summarizing their common properties. The idea is that
failing runs might violate some of these invariants, thus high-
lighting data anomalies that might lead to a defect. However,
the study of Pytlik et al. [11] showed no success of this ap-
proach when being applied to the Siemens suite.

Explicit specification. Predicting a defect location becomes much
easier if a specification of correctinternal behavior is given
(in contrast to a test case, which checks onlyexternalbehav-
ior). This has been explored by Groce [4], who used model
checking for locating defects in a subset of the Siemens suite,
and which produced good results on these subsets. However,
we do not assume the existence of any specifications besides
the test.

Nearest neighbor. The most successful method so far to predict
defects in the Siemens suite is thenearest neighborapproach
by Renieris and Reiss [12]. Rather than attempting to sum-
marize the properties of multiple passing runs, this generic
approach selects the single passing run that isclosest(in cov-
erage, or some other property) to the failing run and focuses
on the differences between these two runs alone. Applied to
coverage in the Siemens test suite, this method showed mod-
erate success to predict defects.

One should note that results obtained from the Siemens test suite do
not generalize to arbitrary programs. It is likely that the methods
described perform much better for other programs with a greater
separation of concerns. In the context of this paper, though, we
use the Siemens test suite as abenchmark:Cause transitions must
prove to be better locators of software defects than the best method
known, which is Renieris and Reiss’ nearest neighbor heuristic.

7.3 Variables and Measures

Independent variables. We manipulated one independent variable:
the used defect locator (Reiss and Renieris’ “NN/Perm” ver-
sus cause transitions “CT”).

Dependent variables.To determine the quality of a defect locator,
Renieris and Reiss have introduced the concept of ascore[12],
indicating the fraction of the code that can be ignored when
searching for a defect.

If the score isS = 0.95 = 95%, then the programmer can
ignore 95% of the code; she has to examine only 5% to locate
the defect. IfS= 0%, the programmer must examineall of
the code—the report is useless. The higher the score, the
better the defect locator.

The score computation [12] can be summarized as follows:

1. We have two versions of a program: A failing versionp✘ and
a passing versionp✔ where the defect has been fixed.
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Figure 7: Distance between predicted and actual defect. To
find the actual defect, which is two dependencies away, the pro-
grammer has to examine up to 16 locations in the code.

2. We construct a program dependence graph (PDG) [6] for p✘,
a graph which contains a node for each statement in the pro-
gram, and edges for data and control dependencies between
these statements.

3. We mark all nodes in thePDG as “defect” if they have been
fixed in p✔.

4. A defect locator, working onp✘, reports a setR= {n1, n2, . . . }

of nodesni in thePDGas being likely defect locations. In the
CT case, we used the location of each occurring cause transi-
tion as such a likely defect; in thePDG, we mark these nodes
as “blamed”.

In the GCC example from Section5, we would blame the
locations listed in Table3.

5. Let k(n, e) be the set of nodes that are reachable fromn
within the distancee. For each blamed noden ∈ R, we deter-
mine the distanced(n) to the nearest defect. Then,k

(
n, d(n)

)
reflects the maximum number of locations in the program
a programmer has to examine, starting withn and increas-
ing the distance until the actual defect is found (Figure7).
Note that ifd(n) = 0 holds, we have a perfect match; only
k(n, 0) = {n} needs to be examined.

Again, in theGCC example from Section5, we would start
with the blamed nodes and find the defect at a distance of 1,
as combine.c:4013–4019 is reachable via one dependency
from the blamed location.

6. From all blamed nodesR, we now determine some nodem ∈
R that is closest to a defect (i.e.,d(m) ≤ d(n) holds for all
n ∈ R), and we determine the set of nodesN that had to be
examined up to that distance:

N =
⋃
n∈R

k
(
n, d(m)

)
The idea is that the programmer does a breadth-first search
across thePDG, starting with the blamed nodes, and increas-
ing the distance until a defect is found.

In theGCCexample,N would include all nodes at a distance
of 1 from the 9 blamed locations.

7. The fewer nodes one must examine when searching for the
defect, the better the quality of the defect locator. Thisscore
can be expressed as a fraction of thePDG:

S= 1−
|N|

|PDG|

7.4 Improved Strategies
A cause transition at a blamed locationb can impact the failure only
in two ways:

• If the state atb is infected, it iscausedby the defect. That
is, the defectd is in the backward slice ofb or b ←∗ d.
(“←” and “→” are backward and forward dependencies in
thePDG, respectively.)

• If the state atb is not infected, it must nonethelesscause
the infection to reach the failure. In this case, there must be
some future locationn at which the infection ofd and the
effect ofb meet (b→∗ n←∗ d).

This knowledge about cause transitions and dependencies can be
exploited by the programmer, using alternate search strategies along
thePDG:

Exploiting relevance. A nodem 6∈ {n | b →i
←

j n} neither can
have caused an infection inb nor meets with the effect ofb to
cause the failure—at least not in the distancei+ j considered
so far. In Figure7, suchirrelevant locations are shown in
grey.

Exploiting infections. Let us assume that a programmer is able
to tell infected from non-infected variables in a report, and
that one of the blamed locationsb is a cause transition from
some non-infected state to an infected state. Then,b←∗ d
must hold for the defectd, and we can use this single cause
transition as starting point.

Both concepts exploited here are unique to cause transitions. Code
coverage does not convey data information, and like violations of
dynamic invariants or other anomalies, it can not be shown to cause
the failure.

7.5 Experiment Setup
We ran our techniques on the 132 variations of the Siemens pro-
grams. Three out of these 132 had to be ruled out (two because their
test suites would not observe any failure, and one due to issues with
input processing). In order to treat program input and program state
uniformly, we altered the programs so that they would read input
from internal variables rather than from external files.

For each variationp✘, we then randomly picked one failing runr✘

as well as the passing runr✔ that would produce a maximum of
cause transitions. (Just as Renieris and Reiss, we thus exploited the
fact that multiple test runs were available.) The runsr✘ andr✔ were
then fed into the defect locator, resulting in a reportR. From p✔,
p✘, and R, we then computed the scoreS of the resulting report,
usingCODESURFERto compute thePDGof p✘.

Table4 shows statistics about the experiments, summarized by
program. “#calls” is the lengths of the traces (in function calls),
“avg(time)” is the average time in seconds for computing the diag-
nosis, “#tests” is the number of executed test runs per diagnosis,
and “#cts” the number of isolated direct cause transitions (i.e., the
number of “blamed” nodes).



Name PDG size #calls avg(time) #tests #cts
print tokens 1448 30–1845 2590.1 1–42 1–5
print tokens2 1420 40–1587 6556.5 5–44 1–6
replace 1252 3–1139 3588.9 1–38 1–3
schedule 1350 2–575 1909.3 4–69 1–6
schedule2 1164 2–1336 7741.2 2–63 1–11
tcas 454 1–14 184.8 4–31 1–4
tot info 728 14–350 521.4 2–41 1–5

Table 4: Properties of sampled programs

7.6 Results and Analysis
The evaluation results are summarized in Table5, as relative distri-
bution of scores per method and test runs. The data for the nearest
neighbor method (“NN/Perm”) is taken from [12]; one can see that
no test run has a score of 100%, meaning the defect is never pin-
pointed. However, 16.51% of all test runs achieve a score of 90%
or better, meaning that the programmer can stop her search at 10%
of the code in 16.51% of all test runs.

The cause transitions method (“CT”), in comparison, pinpoints
the defect in 4.65% of all test runs, and 26.36% of all test runs
achieve a score of 90% or better, meaning an increase of 60%.

Figure8 shows a cumulative plot of the score data in Table5.
It is easy to see that CT outperforms NN/Perm for all scores of
70% and more. (NN/Perm is slightly better for lower scores. This
advantage is mostly irrelevant, though, given that the programmer
has to examine a third of the program or more.)

Using cause transitions, the programmer need not explore irrele-
vant nodes, as discussed in Section7.4. We obtain the results shown
in the “CT/relevant” column in Table5. As shown in Figure8,
this increases the score significantly. The defect can be pinpointed
(score: 100%) in 5.43% of all runs—the best result for any method.
35.66% of all test runs achieve a score of 90% or better, meaning
an increase of 116% over the nearest neighbor method.

If we assume the programmer can tell infected from non-infected
values, as discussed in Section7.4, the score also increases. This is
shown as “CT/infected” in Table5 and Figure8. Exploiting infec-
tions, more than 55% of all runs achieve a score of 75% or better.

In 45% of all test runs, all methods achieved scores of 60% or
lower. We have not yet found a common property of these runs, but
a possible hypothesis is that there are defects whose location sim-
ply cannot be predicted. As an example, consider an uninitialized
global variable: Although the initialization (i.e., the fix) can take
place at almost any place in the program, a good score requires
that the method predict the exact place where the initialization has
been removed—which is impossible for any method. Note, though,
that an uninitialized variable can be isolated as a failure cause and
reported as part of a cause transition—even if the cause transition
itself occurs far away from the defect.

As initially stated, we had multiple passing runs available and
picked the runr✔ that would result in a maximum of cause tran-
sitions. If we do not take advantage of the presence of multiple
passing runs and pick a random passing run instead, cause transi-
tions still outperform NN/Perm.

7.7 Threats to Validity
Like any empirical study, this study has limitations that must be
considered when interpreting its results. As stated initially, results
obtained from the Siemens suite cannot be generalized to arbitrary
programs. In particular, larger programs, or more precisely, pro-
grams with a greater separation of concerns are likely to produce
better localization results, regardless of the method applied; this
view is also supported by theGCCexample in Section5.

To a certain extent, this threat to external validity also applies to
the relative performance of the discussed methods: it is well possi-

Score NN/Perm CT CT/relevant CT/infected
100% 0.00 4.65 5.43 4.55

90–99% 16.51 21.71 30.23 26.36
80–90% 9.17 11.63 6.20 10.91
70–80% 11.93 13.18 6.20 13.64
60–70% 13.76 1.55 9.30 4.55
50–60% 19.27 6.98 10.08 6.36
40–50% 3.67 3.10 3.88 1.82
30–40% 6.42 7.75 10.08 3.64
20–30% 1.83 4.65 3.10 7.27
10–20% 0.00 6.98 10.85 0.00
0–10% 17.43 17.83 4.65 20.91

Table 5: Evaluating defect locators: Cause transitions (CT)
versus nearest neighbor (NN)

 0

 10

 20

 30

 40

 50

 60

 70 80 90 100

%
 o

f t
es

t r
un

s

% of program that need not be examined (’Score’)

Comparison of defect locators

NN/Perm
CT

CT/relevant
CT/infected

Figure 8: Evaluation details. For 30% of all test runs, cause
transitions achieve a score of 90% or higher, narrowing down
the defect to 10% or less of the code.

ble that for specific kinds of programs or defects, alternate methods
perform better than cause transitions. This can be addressed by fur-
ther case studies.

Threats to construct validity concern the appropriateness of our
measures for capturing our dependent variables. The evaluation
setup of Renieris and Reiss assumes an ideal programmer who is
able to distinguish defects from non-defects at each location, and
can do so at the same cost for each location considered. However,
some defects are easier to spot than others, and this difference is
not taken into account. The same applies to the ability of a pro-
grammer to tell infections from non-infections. Ultimatively, the
influence of such factors can only be determined by running stud-
ies with humans.

Threats to internal validity concern our ability to draw conclu-
sions about the connections between our independent and depen-
dent variables. In particular, our implementation could contain er-
rors that affect the outcome. To control for these threats, we en-
sured that the diagnosis tools had no access to the corrected ver-
sions or any derivative thereof. Also, we repeated the CT exper-
iments using Renieris and Reiss’ framework instead of ours and
found similar scores, which validates our evaluation setup,

8. CONCLUSION AND CONSEQUENCES
Cause transitions locate the software defect that causes a given fail-
ure, performing twice as well as any other technique previously
known. The technique requires an automated test, a means to ob-
serve and manipulate the program state, as well as at least one al-
ternate passing test run.

Typically, the technique would be used as an add-on to running



an automated test suite; if a test fails, the tool reports the cause-
effect chain from input to failure, listing the isolated cause tran-
sitions as likely locations to fix. Thus, we not only knowthat a
test has failed, but alsowhyandwhereit failed—in terms of state
and code, with each causality proven by a set of experiments. We
expect such automatic diagnosis tools to reduce debugging efforts
significantly.

Besides general issues of performance or portability, our future
work will concentrate on the following topics:

Hierarchical search. Instead of searching for the exact location of
state transfer, we may start with function calls as comparable
locations. This reduces the number of transfer points and the
length of the execution trace.

Ranking transitions. We expect that the greater the difference be-
tween the involved states and locations is, the more likely a
transition is to be a defect. We want to identify the features of
cause transitions that are most likely correlated with a defect,
and use these features to focus on the most likely defects.

User-side diagnosis.Diagnosis methods may not only be part of
testing environments, but also included in applications and
operating systems, thus providingdiagnosis at the user’s site.
Such diagnoses can then be collected and summarized by the
maintainer.

Statistical causality. In the presence of multiple runs, statistical
correlation between features of program runs and test fail-
ures [10] can be seen as a strong indicator of causality. Dur-
ing the search for causes and transitions, we can focus on
such indicators, joining the predictive power of both statisti-
cal and experimental causality.

A discipline of debugging. Notions like causes and cause transi-
tions can easily be generalized to serve in arbitrary debug-
ging contexts. We are currently compiling atextbook[17]
that shows how debugging can be conducted as systemati-
cally and as all other software engineering disciplines—be it
manually or automated.

For theASKIGOR source code and related work, see

http://www.askigor.org/
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APPENDIX

A. FORMAL DEFINITIONS
In this appendix, we give a formal definition of cause transitions,
using thesample program from Figure1 to illustrate these def-
initions. We first recall the formal definitions of Delta Debug-
ging [18], applied to program states:

Tests. A program runr is a sequence of statesr = [s1, s2, . . . , sn].
Let C be the set of all state differences between program runs.
The testing functiontest : 2C → {✘, ✔, } determines for a
configurationc ⊆ C whether some given failure occurs (✘) or
not (✔) or whether the test is unresolved ().

Applied to thesample program,test(c) would runr✔ up to
the location in question, apply the differencesc ⊆ C, resume
execution, and return✘, if the output contains a zero, and✔,
if not. (It would return if the output is never generated.)

Configurations. Let c✔ andc✘ be configurations withc✔ ⊆ c✘ ⊆

C such thattest(c✔) = ✔ ∧ test(c✘) = ✘. c✔ is the “passing”
configuration (typically,c✔ = ∅ holds) andc✘ is the “failing”
configuration.

In the case ofsample , c✔ andc✘ are state differences with
respect tor✔, and obtained fromr✔ andr✘, respectively.c✔ =

∅ always holds;c✘ would contain differences as listed in Ta-
ble1.

Isolation. TheDelta Debugging algorithm dd(c✔, c✘) isolates the
failure-inducing difference betweenc✔ andc✘. It returns a
pair (c′✔, c′✘) = dd(c✔, c✘) such thatc✔ ⊆ c′✔ ⊆ c′✘ ⊆ c✘,
test(c′✔) = ✔, andtest(c′✘) = ✘ hold and1 = c′✘ \ c′✔ is 1-
minimal—that is, no single difference ofc′✘ can be removed
from c′✘ to make the failure disappear or added toc′✔ to make
the failure occur. The full definition ofdd is found in [18].

In the case of thesample states as listed in Table1, the set
1 = c′✘ \ c′✔ as returned bydd(c✔, c✘) would contain the rel-
evant difference “a[2] = 0”—that is, an actual failure cause.

Not all states are comparable, though. We assume a matching func-
tion matchthat finds matching states:

Matching states. The functionmatch:
(
r✘ → r✔ ∪ {⊥}

)
assigns

each states✘t ∈ r✘ a matching state s✔t ∈ r✔, or ⊥, if no
such match can be found.

Our implementation requires matching states to share a com-
mon calling context, implying an equal set of local variables.

Individual failure causes (= state differences) can be composed into
a cause-effect chain.

Relevant deltas.For eachs✘t ∈ r✘, let a relevant delta1t be a
failure-inducing difference, as determined by Delta Debug-
ging: Lets✔t = match(s✘t ); if match(s✘t ) = ⊥ holds, then
1t = ⊥, too. Otherwise, letc✘t be the difference between
s✔t ands✘t , and letc✔t = ∅. Let (c′✔t , c′✘t ) = dd(c✔t , c✘t );
then1t = c′✔t \ c′✘t is a relevant delta.

Cause-effect chains.A sequence of relevant deltasC = [1t1, 1t2, . . . ]
with ti < ti+1 is called acause-effect chainif each1ti causes
the subsequent1ti+1, 1ti+2, . . . as well as the failure.

TheASKIGOR diagnosis in Figure4 is a cause-effect chain at
the moments in timet1 = 〈Line 35 reached〉,
t2 = 〈Line 18 reached for the 2nd time〉,
t3 = 〈Line 15 reached for the 2nd time〉.

Within a cause-effect chain,cause transitionsoccur:

Cause transitions. Let var(1t ) be the set of variables affected by
a state difference1t ; var(⊥) = ∅ holds. Then, two moments
in time(t1, t2) are called acause transitionif t1 < t2, a cause-
effect chainC with [1t1, 1t2] ⊆ C exists, andvar(1t1) 6=

var(1t2). A cause transition is calleddirect if ¬∃t : t1 < t <

t2.
In theASKIGOR diagnosis in Figure4, moment #1, the invo-
cation ofshell sort() , is a cause transition fromvar(1t1) =

{argc } to var(1t2) = {a[2] }.

To isolate direct cause transitions, we use adivide and conquer
algorithm. The basic idea is to start with the interval(1, |r✘|), re-
flecting the first and last state ofr✘. If a cause transition has oc-
curred, we examine the state at the middle of the interval and check
whether the cause transition has occurred in the first half and/or in
the second half. This is continued until all cause transitions are
narrowed down.

Isolating cause transitions.For a given cause-effect chainC, the
algorithmcts(t1, t2) narrows down the cause transitions be-
tween the moments in timet1 andt2:

cts(t1, t2) =


∅ if var(1t1) = var(1t2)

cts(t1, t) ∪ cts(t, t2) if ∃t : t1 < t < t2{
(t1, t2)

}
otherwise

where [1t1, 1t2] ⊆ C holds.
A run of ctsonsample is discussed in Section4.

Our actual implementation computesC (and in particular,1t ) on
demand. If we isolate a1t between1t1 and1t2, but find that1t
was not caused by1t1, we recompute1t1 such that the cause-effect
chain property is preserved.
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