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ABSTRACT

Which is the defect that causes a software failure? By comparing
the program states of a failing and a passing run, we can iden-
tify the state differenceshat cause the failure. However, these
state differences can occur all over the program run. Therefore,
we focusin spaceon those variables and values that are relevant
for the failure, andn time on those moments wheause tran-
sitions occur—moments where new relevant variables begin be-
ing failure causes: “Initially, variablargc was3; therefore, at
shell _sort() , variablea[2] wasO, and therefore, the pro-
gram failed.” In our evaluation, cause transitions locate the failure-
inducing defect twice as well as the best methods known so far.

Keywords: Automated debugging, program analysis, adaptive test-
ing, tracing

1. INTRODUCTION

Some program fails. How did this happen? In principle, a failure is
created by alefectin the code, which creates a faultiofection',

in the program state which then propagates until it becomes an ob-
servablefailure. Tracing back the infection chain from failure to
defect is a hard task, because programmers must both

e search in space&cross a program state to find the infected
variable(s)—often among thousands—, and

e search in timeover millions of such program states to find
the moment in time when the infection began—that is, the
moment the defect was executed.

We want to ease this search as much as possible. In earlier W&rk [
we have shown how teearch in space-by focusing on those vari-
ables that actuallgausethe failure. The idea is to focus on the
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systematically narrow these initial differences down to a small set
of variables: “ThesCcCfailure occurs if and only ifld[0].rtx ,

the second child of think  node, points to its parent’—a cycle in
the abstract syntax tree. That is, variathd§0].rtx is afailure
cause if fld[0].rtx is altered such that it no longer induces a
cycle, the failure no longer occurs.

Unfortunately, finding causes in state is not enough. From input
to failure, a program passes through thousands of states. In these,
we can always isolate differences that cause the failure in one run
and not in the other—simply because identical inputs and states
would result in identical outcomes. Which are the moments in time
we should focus upon?

In this paper, we show how teearch in time-by focusing on
cause transitionsmoments in time where some variable ceases to
be a failure cause and another variable begins. listheexample,
such a cause transition is the moment where an earlier vanable
caused the cycle to be created. From this moment o longer
has an effect on the failure, but the cycle has; the statement which
created the cycle is likely the defect we are looking for.

A cause transition is where a cause originates—that is, it points
to program codethat causes the transition and hence the failure.
Thus, a cause transition is a candidate for a code correction—and
cause transitions can be isolated automatically, just like causes in
the program state. But cause transitions are not only good locations
for fixes—they actually locatthe defects that cause the failute.
fact, we show that cause transitions are significantly better locators
of defects than any other methods previously known.

This paper is organized as follows: We illustrate our techniques
with a short example (Sectid). We then recall our earlier work on
isolating failure causes from program states—that is, searching in
space (SectioB). Sectiond shows how to find cause transitions—
that is, searching in time. Sectidnhdemonstrates how the tech-
nique scales, creating a diagnosis for @@&C compiler. Sectiorb

differencebetween the program states of a run where the failure in iscsses complexity and other practical issues. Our evaluation in
question occurs, and the states of a run where the failure does notgection7 demonstrates the general effectiveness of our approach,

occur. Using an automatic strategy called Delta Debugging, we can

1The term “infection” was coined inlf]; we prefer it over “fault”

comparing against related work. Secti®closes with conclusion
and consequences; an appendix summarizes formal definitions.

because it applies exclusively to program state, and because it im-

plies the idea of propagation.
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2. A SAMPLE FAILURE

Figure 1 shows our ongoing example. ldeally, teample pro-
gram sorts its arguments numerically and prints the sorted list, as
in this run ¢g):

$ sample 9 8 7
789
$ -

With certain argumentsample fails (runrp):
$ sample 11 14



% * sample.c -- Sample C program to be debugged */ var Value Var [ Value
i i nrg |inr
i z@nclude <stdio.h> arge Z_”D g‘rD i |3 = |2 J
include <stdlib.h>
5 argV0] | "./sample" " /sample" a0] |9 11
6 static void shell_sort(int a[], int size) arg&% "9" "%i" ZE%% g %)4
7 { arg "g8" "14"
8 int i, j; arg3] | "7" 0x0 (NULL) | |a[3] | 1961|1961
13 inth =4 i’ 1073834752 | 1073834752| | &[0] | 9 11
1 ol Ly j 1074077312| 1074077312 |a[1] |8 |14
12 } while (h <= size); h 1961 1961 appi7 o
13 do { size 4 3 a'[3] | 1961 1961
14 h /= 3;
15 for (i = h; i < size; i++) . .
16 { Table 1: State differences between; and r. One of these dif-
g int v = afi; ferences causesampleto fail.
for  =i;j>h&& afj - hl >v; j-=h)

%g i !a:mj): aj - hl: failure. In thesample program, for instance, we can examine the
21 af] = v; call of shell _sort() in Line 35 and find thaa[2] being zero
%g } . causes the failure of..
24 ) b while (h 1= 1) The variablea[2] is a cause, but not infected. Actually, the value
25 of a[2] should not influence the outcome at all,a$should have
26 int main(int argc, char *argv[]) only two elements. Variabla[2] doesaffect the outcome, though.
20 { o Therefore, it must be some other infection that m affect
28 int i=0
29 int *a = NULL; the outcome, and this can only bi&ze the number of arguments
30 to be sorted. To correct the defect, Line 35 should be changed to
g% fa = ‘(igt *?malloc((argc 1) * sizeof(int)); shell _sort(a, argc - 1) .

or (i = 0; i <argc - 1; i++) . . .
33 afi] = atoi(argvli + 1]); IBut how do we kfnow thfl;\t we should sea:]chhellt Line 35in thelflrst
34 place? In terms of causality, Line 35 is a highly interesting place.
gg shell_sort(a, argc); Up to Line 35, variableargc causes the failure (because changing
37 for (i= 0 i < argc - 1; i+4) argc, andargc only, determines whether the failure occurs). From
38 ~ printf("%d ", a[i]); Line 35 on, it isa[2] that causes the failure. Thémuse transition
‘3“9) printf("\n"); from argcto a[2] means that the new cauaf?] originatedright at
41 free(a); Line 35. Line 35 is thus a likely candidate for fixing the program.
42 return O; Two more such cause transitions occur witslirell _sort() —
43 1} from a[2] to v in Line 17 and fromw to a[0] in Line 21. Taken

Figure 1: The buggy sampleprogram. This program sorts its
arguments—that is, mostly.

together, these locations are central for explaining how the failure
came to be—but they are aléailure causespecause if they had

been executed differently, the failure-causing state would not have
011 come to be. This is the key question of this paper: To which ex-
$ _ tent are such cause transitions not only failure causes, but actual
defects?

Although the output is properly sorted, one of the arguments has

been replaced by another number: in runthe argumeni4 has

been replaced b@. The presence d is afailure, which implies

that there is some bug (olefecy in the program code. When the ~ Letus first rec_all our earlier worklp] on isolating causes in pro-

defect is executed, it makes the state faultyi(dected. As the gram state. Given some moment in time, we can extract program

execution progresses, this infection causes further infections, until States from bothy andrp, andcomparethese two states. (Techni-

the infection becomes visible as the failure. cally, this is achieved by instrumenting an ordinary debugger such
To find the defect, we must trace back thigection chain: For asGDB.) Tablel lists thesample program states, as well as the

each infection/, we must find the earlier infectionthat causes’ differences, as obtained from both andrp when Line 9 was

as well as the failure (or find that there is no earlier infection, in reached. § andi occur inshell _sort()  and inmain() ; the

which case we found the defect). This requires two proofs: shell _sort() instances are denotedasandi’.)
Formally, this set of 12 differences is a failure cause: If we

change the state of; to the state irrg, we obtain the original
failure. However, of all differences, only some mayrbkevantfor

the failure—that is, it may suffice to change onlsabsetof the
variables to make the failure occur. For a precise diagnosis, we are
interested in obtaining a subset of relevant variables that is as small
In the absence of a detailed specification, we cannot determineas possible.

whether a program state is infected or not. (Furthermore, a specifi- Delta Debugging 18] is a general procedure to obtain such a
cation that covers every aspect of each program state as it occursmall subset. Given a set of differences (such as the differences be-
during the run is unlikely to exist.) However, we can focus on tween the program states in Figune Delta Debugging determines
causes. In earlier work [L6], summarized in Sectio, we have a relevant subsein which each remaining difference is relevant
shown how tesearch causes in spac&he basic idea is to identify ~ for the failure to occur. To do so, Delta Debugging systematically
the state difference between andrg at some momentintimeand  and automaticallytestssubsets and narrows down the difference
to narrow down that difference to a relevant subset that causes thedepending on the test outcome, as sketched in Figui®verall,

3. SEARCHING IN SPACE

o To prove thatl and|’ areinfected,we must show that they
violate the specification.

o To prove thatl causes |, we must show that the effett
does not occur if the causedoes not occur.



Passing state Failing state

Mixed state

v

Test outcome ?

Figure 2: Narrowing down state differences. By assessing
whether a mixed state results in a passing{), a failing (0), or
an unresolved @) outcome, Delta Debugging isolates a relevant
difference.

Delta Debugging behaves very much like a binary search.
Applied on the differences in Tabtg Delta Debugging would
result in a first test that

e runsrg up to Line 9,

e applieshalf of the differences omp—that is, it setsargc,
argV1], argM2], arg\3], size andi to the values fromnp—,

and

e resumes execution and determines the outcome.

This test results in the same output as the original run; that is,
the six differences applied were not relevant for the failure. With
this experiment, Delta Debugging has narrowed down the failure-
inducing difference to the remaining six differences. Repeating the
search on this subset eventually reveals one single varialdg,
whose zero value is failure-inducing: If, im;, we seta[2] from
7 to 0, the output i® 8 9—the failure occurs. We can thus con-
clude that the zero being printed is causedf]—which we can
confirm further by changin@[2] in rg from 0 to 7, and obtain-
ing the outpuf7 11. Thus, in Line 9,a[2] being zero causes the
sample failure.

The idea of determining causes by experimenting with mixed
program states (rather than by analyzing the program or its run, for

Passing run Causes Failing run
. . . Program
' ’ ) states
§ Cause
shell_sort(afl,argc); ___ :  transition
& from argc
a[2]=0 to a[2]

—
)

time

Figure 3: A cause transition. For each program step, we can
narrow down variables that cause the failure. When these vari-
ables change, we have a cause transition—a potential defect.

How do we locate such transitions? The process is sketched in
Figure3: before the call tehell _sort() , Delta Debugging iso-
latesargc as a failure cause. Afterwards]2] is the failure cause.

In order to find the moment of that cause transition, we apply Delta
Debugging in the middle of the interval. Then we repeat the pro-
cess for the two sub-intervals, effectively narrowing down the tran-
sitions until we find onlydirect transitions from one moment to

the next. These direct transitions are associated with the statement
executed at this point, resulting in Line 35, thieell _sort()

call.

The actual algorithm which finds direct cause transitions from
two runs is namedts for cause transitionsit is formally defined
in the Appendix. To understand hasts works, we illustrate it on
thesample program.

Table 2 summarizes the execution ofs The runsrg andrg
execute a sequence of 54 and 38 statements, respectively; Column 1
shows the sequence number of the executed statement, Column 2
contains line number and code. Not every line is executed in both

instance) may seem strange at first. Yet, the technique has beenyns, though; coverage is indicated by in ther andr columns,
shown to produce useful diagnoses for programs as large as theegpectively.

GNU compiler GCCO); it has also been implemented in theK-
IGOR public debugging servef]. As detailed in [L6], scaling up

the general idea, as sketched here, requires capturing and compar-

ing program states asemory graph§19]. Also, Delta Debugging
must do more than simple binary search; it needs to cope with in-
terferences of multiple failure-inducing elements as well as with
unresolved test outcomesq).

4. SEARCHING IN TIME

When debugging, we are ultimately looking for tdefect that
causes the failureThis impliessearching in timdor the moment
the defect has been executed and originated the infection chain.

In the absence of a correct program, we cannot tell whether a
piece of code is a defect. What we can tell, though, is whether a
piece of code is the origin of a cause-effect chain that leads to the
failure. Such origins are can be tied variables. Assume there
is a point where a variabl@ ceases to be a failure cause, and a
variable B begins. (These variables are isolated using Delta De-
bugging, as sketched in Secti@) Such acause transitiorfrom
A to B is an origin of B as a failure cause. A cause transition
thus is a good place tbreakthe cause-effect chain and to fix the
program—and since a cause transition may be a good fix, it may
also indicate the actual defect.

1. To find an interval of matches to start with, we determine
relevant variables at the first matching point and the last point
where the failure has not occurred.

. At the first executed line of both runs (Step 1), the value of
variableargc can be determined to be relevant for the failure.
Obtaining the relevant variables at the last executed line be-
fore printing zero (Step 44) yieldg0], which contains zero.
So, there was a cause transition betwaggt in step 1 and
a[0] in Step 44, sinca[0] did not exist in Step largc is
no longer relevant in Step 44, even though it holds the same
value as in the beginning.

. To narrow down this cause transitianissearches a matching
point between Steps 1 and 44. Our implementation prefers
function calls to other statements, so we end up in Step 11.
Applying Delta Debugging now isolat@$?] as relevant. Thus,
we have a transition frorargc to a[2], and a transition from
a[2]to a[0]. Again, these transitions must be narrowed down.

. At Step 26, agaima[2] is isolated, so there is no need to
search between Steps 11 and 26. Between Steps 26 and 44
lies Step 35, where is relevant, refining the cause transition
from a[2] to a[0] into two cause transitions to and from



Step Line Code ro rg Vars  ctsstep
1 28 it i=o; e e argc=3 2
é 32 for(i=0;i<argc-1;i++) o ] arg c=3 11
7 33 ali]=atoi(argv[i+1]); o °
8 32 for(i=0;i<argc-1;i++) [ ) [ arg c=3 12
9 33 afij=atoi(argv[i+1]); ° ?

10 32 for(i=0;i<argc-1;i++) [ ] 7

11 35 shell_sort(a,argc); ) ° a[2] =0 3
26 20 ) . e a[2]=0 4
27 21 afj]=v; L]

28 15 for(i=hii<size;i++) ° e a[2]=0 9
29 17 int v=alil; e e a2]=0 10
30 18 for=ij>=h&aal... ° ° v=0 8
35 20 ifit=j) ° ° v=0 5
36 21 afjl=v; [ ) [ v=0 7
37 15 for(i=h;i<size;i++) ° e a[0]=0 6
44 37 for(i=0;i<argc-1;i++) ° ° a[O] =0 1
45 38 printf(*ved * afi]); ° .

Table 2: Locating direct cause transitions

5. Continuing the process, we find three direct cause transitions,

highlighting how the failure came to be. In Tali?e Col-
umn "Vars” shows the relevant variables, and Colurots”

step” shows the order of search points where relevant states

were isolated. Direct cause transitions are shown by dividing
lines.

6. Note the cause transition between Steps 8 and 11: the exe-
cution traces have no matching points in between, thus the
transition cannot be exactly located at one executed line of

code. Settingirgcto the value of the failing run alone causes
the control flow of the resumed run to change, being different
from both original runs. Our implementation thus locates the

beginning of the cause transition at the earlier matched point.

Overall, we obtain cause transitions frargcto a[2] in Lines 32—
35 (Steps 8-11), froma[2] to v in Line 17 (Step 29), and from
v to a[0] in Line 21 (Step 36). All of these locations are potential
places to fix such that the cause-effect chain is broken.
Thectsalgorithm has been implemented as part ofABEIGOR
public debugging server. The cause transitions&mnple and the
involved variables are reported as a cause-effect chain (Ffure

5. CASE STUDY: THE GCC FAILURE

Thesample program is a relatively small program, such that the

guestion may arise whether the approach is feasible for larger pro-

B Asklgor - Automated Debugging Service

NN
E] - n . . I hrtp:/ fwww.askigor.org/

Al results N
‘-_i/ gor Status 2004-08-12 10:30:54 |+ (Gol)

Igor has finished debugging your program.

5(Q- Coogle

This is what happens in your program when it is invoked as "sample 11 14". (More

1

info...)

Execution reaches line 35 of sample.c in main.
Since argc was 3,
local variable a[2] is now @.

Execution reaches line 18 of sample.c in ;hell_sart for the 2nd time.
Since a[2] was @,
local variable v is now @.

2

Execution reaches line 15 of sample.c in ;hellisort for the 2nd time.
Since v was 0,
local variable a[@] is now @.

Execution ends.

Since a[@] was @,

the cutput now contains "@".
The program fails.

Need more details? Select the effects you want to focus upon and (‘re-debug i)
Plain wrong? Please check the failure symptoms as determined by Igor.
Any questions? See the Askigor Forum!

(More info...)

Figure 4: ASKIGOR with a diagnosis for sample

In earlier work, we had used this example twice to determine failure
causes:

e Applying Delta Debugging on the input (i.e. the cddéd.c),
it turned out that if the code 1.0 was omitted, the pro-
gram compiled just fine—that is, the inptit 1.0 causes
the failure [L8].

o Applying Delta Debugging on the program states of a pass-
ing run (i.e. without- 1.0 ) and a failing run (i.e. witk 1.0 )
returned a cycle in the abstract syntax tree as failure caéke [

To isolate potential causes in the program code, we applied our

technique to isolate the cause transitions forglkae failure. Over-

all, our algorithm identified 10 such transitions, listed in Table
Again, these transitions summarize how the failure came to be—

as a cause-effect chain from input to failure. The failure cause prop-

agates through theCcC execution in four major blocks:

1. Initially, the file name fail.c) is the failure cause—called
with pass.¢ the alternate input file without 1.0 , the er-
ror does not occur. This argument is finally passed to the
GCClexer (Transitions 1-3).

2. In the lexical and syntactical analysis (Transitions 4—6), it is
the actual difference in file content which becomes a failure
cause—that is, the characters1.0 .

grams, too. To explore scaleability, we applied the technique tol ~ double mult(double z[], int n)
locate a failure cause in tl@NU compiler GCC). g int i
Consider théail.c program in Figuré. This program is interest- i = O.J’
ing in one aspect: It causes tB&IU C compiler GCC) to crash—at 5 for (J =0 j< n, i++) {
least, when using version 2.95.2 on Intel-Linux with optimization 6 =0+ o+ 1
enabled: 27; z[|] = z[i] * (z[O] + 1.0);
$ gcc O fail.c 9 return z[n];
gcc: Internal compiler error: 10 }

program ccl got fatal signal 11
$

Figure 5: The fail.c program that crashesGCC.



i iti 1 case MULT:

#__Location Cause transition to variable /* If we have (mult (plus A B) C), apply the distributive

0 (Stary argv([3] law and then the inverse distributive law to see if

1 toplev.c:4755 name things simplify. This occurs mostly in addresses,

2 toplev.c:2909  dump_base _name often when unrolling loops. */

3 c-lex.c:187 finput —_10 _buf _base if (GET_CODE (XEXP (x, 0)) == PLUS)

4  c-lex.c:1213 nextchar

5 c-lex.c:1213 yyssa[41] x = apply_distributive_law

6 c-typeck.c:3615 yyssa[42] (gen_binary (P"Lgih_n;ﬁ]d;’y (MULT, mode,

7 c-lex.c:1213 last _insn —fld[1].rtx XEXP (XEXP (x, 0), 0),
—fld[1].rtx —fld[3].rtx gen.binary (MULT moﬁEXP x 1)),
—fld[1].rtx.code - YEXP (XEXP (x. 0). 1

8 c-decl.c:1213  sequence _result[2] (XEXP Ex 1%));)’
—fld[0].rtvec , —
—elem[0]rtx  —fid[1].rtx e GOPE (9 1= MULD)
—fld[1].rtx —fld[1].rtx '
—fld[1].rtx —fld[1].rtx break;
—fld[1].rtx —fld[1].rtx
—fld[3].rtx —fld[1].rtx.code . ) ) .

9 combine.c:4271 x—fld[0].rtx —fld[0].rtx Figure 6: The GCC defect in combine.c

Table 3: Cause transitions inGCC transition. The answer is simple: This piece of code is executed

only during the failing run. Therefore, we have no state to compare
3. The difference in file content becomes a difference in the ab- against, and therefore, we cannot narrow down the cause transition

stract syntax tree, where 1.0 inducesfld[1].rtx to any further. Line 4271, however, has been executed in both runs,
hold an additional nodel¢[1].rtx.code is PLUS in and thus we are able to isolate the failure-inducing state at this lo-
the failing run (Transitions 7-8). Thus, than the input has cation.

caused #LUSnode, created at Transition 8. Overall, to locate the defect, the programmer had to follow just

one backwards dependency from the last isolated cause transition.
4. In Transition 9, the failure cause moves from the additional |n numbers, this translates into just 2 lines out of 338,000 lines
PLUSnode to ecyclein the abstract syntax tree. We have of GCC code. Even if we assume the programmer examines all
x—fld[0].rtx —fid[0].rtx —x 9 transitioqs an_d_all direct dependencies, the effort to locate the
GCcCdefect is minimal.
meaning that the node & is its own grandchild! This cy-

cle ultimately causes an endless recursion and thus @ 6. COMPLEXITY AND OTHER ISSUES

crash. Finding causes and cause transitions by automated experimentation

In our earlier work L], we had also identified the cycle as the ulti-  C@N require a large number of test runs:

mate failure cause, and assumed that an experieicegrogram-  Searching in space.In the best case, Delta Debugging neesiog k

mer would be able to distinguish infections from non-infections. test runs to isolats failure-inducing variables frork state

Therefore, an experienced programmer would have immediately differences. The (pathological) worst casekfs+ 3k: In

focused on th&CCcycle. practice, though, Delta Debugging is much more logarithmic
Under the assumption that cause transitions indicate defects, a than linear.

programmer less familiar witBCC could start his investigation at o o ) )
all listed cause transitions—starting with the transitions closest to Searching in time. This is a simple binary search oveiprogram

the failure. At combine.c:4271, the location of the last transition, steps, repeated for each cause transition.nfFoause transi-
we find a single statement tions, we thus neethlogn runs of Delta Debugging.
return x: Since applications can have a large number of fine-grained cause

transitions, a practical implementation would simply limit the num-
This line is not likely to be a defect. Let us take a look at the direct ber of cause transitions to be sought, or just run as long as the avail-

origin of X, in combine.c:4013-4019, listed in Figuse able execution time permits.
This place is where the infection originates: The call to the func-  Other practical issues we faced in our implementation, in partic-
tion apply _distributive Jlaw() is wrong. This function ular for theGCC case study, included:

transforms code using the rule ) )
Accessing state We currently instrument theNU debugger&DB)

(MULT (PLUS a b) ¢) = (PLUS (MULT a ¢)(MULT b c)) to access the state, which is painfully slow: The entigc

Unfortunately, in thepply _distributive law() callin Fig- 2Unfortunately, a pure binary search does not always suffice. In a
ure 6, the third and fourth argumentg andc, share a common cause-effect chain, all reported causes must cause all later causes as
grandchild (the macr8EXP(x, 1) translates into the expression Well as the failure. This can lead to tricky situations: Assume we

x —fld[1].rtx ), which leads to the cycle in the abstract syntax have isolated a causg and a later cause,, and these two form a

. ; : cause-effect chain, meaning tltatcauses, as well as the failure.
tree. To fix the problem., one should call the fun.ctlonlwmnayof Now, ctsisolates a new causebetweerc; andcy; again,c causes
the grandchild—and this is how the error was fixe@ibC 2.95.3. all later causesch) as well as the failure. But does causec, t00?

At this point, one may wonder why cause transitions did not sin- |n casec; has no effect or, we have tae-isolate q such that the
gle out the call toapply _distributive _law() as a cause newc; causeg as well asc,.




diagnosis takes about 12 hours to comrin@ne can think
of much better ways to access and compare program states
directly.

typically containsall executed statements, simply because an
executed statement that does not influence the output would
be an anomaly. In this evaluation, we thus assume that a
dynamic slice is equal to the coverage; in particular, a differ-
ence ordice between slices should yield the same results as
the difference between coverage.

Capturing accurate states. Capturing and transferring the state
of a C program to another is a tricky busine$s][ For in-
stance, we had to implement several heuristics to determine
what type of element a pointer points to, and at how many it Dynamic invariants. Rather than focusing on coverage, one may
points. When such heuristics fail, the state cannot be trans- also attempt to summarize the propertiesdafa as found
ferred, and we cannot determine a relevant state difference. in the passing runs. The approach of Ernst et3@|deter-

minesdynamic invariantdrom a number of (passing) runs,

thus summarizing their common properties. The idea is that
failing runs might violate some of these invariants, thus high-
lighting data anomalies that might lead to a defect. However,
the study of Pytlik et al. J1] showed no success of this ap-
proach when being applied to the Siemens suite.

Incomparable states. When control flow reaches different points
in rg andrp, the resulting states are not comparable—simply
because the set of local variables is different. To determine
when the control flows of; andrg diverge and converge
requires some effort.

So far, we can isolate causes and cause transitions from programsxplicit specification. Predicting a defect location becomes much
whose state is well-defined—that is, typical stand-alone C pro- easier if a specification of correittternal behavior is given
grams without much external state or user interaction. We are cur- (in contrast to a test case, which checks aiernalbehav-
rently porting our technigues to languages with managed memory ior). This has been explored by Groeg,[who used model
(such aslAvA and C#) and expect much relief. checking for locating defects in a subset of the Siemens suite,
and which produced good results on these subsets. However,
we do not assume the existence of any specifications besides
the test.

7. EVALUATION: THE SIEMENS SUITE
The sample and GCC examples show that cause transitions can

help to locate the failure-inducing defect in a very precise manner. Nearest neighbor. The most successful method so far to predict

However, these results do not generalize: They do not necessarily defects in the Siemens suite is thearest neighboapproach
show an advance beyond the state of the art, nor do they show a by Renieris and Reis<J]. Rather than attempting to sum-

more general usefulness. Therefore, we conducted an evaluation marize the properties of multiple passing runs, this generic

using a larger number of programs with known defects, which had approach selects the single passing run thelbises{(in cov-
already been used to evaluate other defect localization techniques. erage, or some other property) to the failing run and focuses

71 Object of Analysis on the differences between these two runs alone. Applied to

coverage in the Siemens test suite, this method showed mod-
Our object of evaluation is thBiemens test suif¢], as modified erate success to predict defects.
by Rothermel and HarroldLp] as well as Renieris and Reiss].
This test suite consists of seven C programs with 170 to 560 lines One should note that results obtained from the Siemens test suite do
of code, as well as 132 variations of these seven programs, eachot generalize to arbitrary programs. It is likely that the methods
with exactly one manually injected defect. Defects may span mul- described perform much better for other programs with a greater
tiple statements or even functions. Several defects are created byseparation of concerns. In the context of this paper, though, we
omitting code, or relaxing or tightening control conditions. Each of use the Siemens test suite aseachmark:Cause transitions must
the seven program families comes with a test suite that exposes theprove to be better locators of software defects than the best method
defect in each of the faulty versions. known, which is Renieris and Reiss’ nearest neighbor heuristic.

7.2 Earlier Results and Related Work 7.3 Variables and Measures

In the past, the Siemens test suite has been used to determine the
effectiveness of methods that locate defects from alternate test runsindependent variables. We manipulated one independent variable:
the used defect locator (Reiss and Renieris’ “NN/Perm” ver-

Coverage. One suggested method to locate defects is to compare sus cause transitions “CT”).

the coverage ospectraof passing and failing test runs. The
idea is that code executed in failing runs only is more likely Dependent variables. To determine the quality of a defect locator,
to lead to the defect than code that is executed in all runs. Renieris and Reiss have introduced the concepsobee[17],

Harrold et al. found that failing runs tend to have unusual
coverage J]; such information can also be visualized to as-
sist programmers3]. However, applied to the Siemens suite,

summarizing the coverage of failing runs either by intersec-
tion or union yields no useful result$].

Slicing. Program slicing[15] yields the set of statements that po-

tentially may have influenced the state at a given statement;
Dynamic slicind 2, 9] does so for a specific run. The Siemens

indicating the fraction of the code that can be ignored when
searching for a defect.

If the score isS = 0.95 = 95%, then the programmer can
ignore 95% of the code; she has to examine only 5% to locate
the defect. IfS = 0%, the programmer must examiak of

the code—the report is useless. The higher the score, the
better the defect locator.

test suite so far has not been subject to dynamic slicing. A The score computatiorif] can be summarized as follows:

dynamic backward slice from the program output, though,

3All times measured on a 3 Ghz Pentium PC.

1. We have two versions of a program: A failing versipnand

a passing versiopg where the defect has been fixed.



Actual defect Irrelevant locations

Predicted defect

Figure 7: Distance between predicted and actual defect. To
find the actual defect, which is two dependencies away, the pro-
grammer has to examine up to 16 locations in the code.

2. We construct a program dependence graidg) [6] for pg,

7. The fewer nodes one must examine when searching for the
defect, the better the quality of the defect locator. Huigre
can be expressed as a fraction of HIEG:
[N

|PDG|

7.4 Improved Strategies

A cause transition at a blamed locationan impact the failure only
in two ways:

o If the state ab is infected, it iscausedby the defect. That
is, the defecd is in the backward slice db or b «* d.
(*<«" and “—" are backward and forward dependencies in
thePDG, respectively.)

o If the state atb is not infected, it must nonethelesause
the infection to reach the failure. In this case, there must be
some future locatiom at which the infection ofl and the
effect ofb meet p —* n «* d).

This knowledge about cause transitions and dependencies can be

a graph which contains a node for each statement in the pro- €xPloited by the programmer, using alternate search strategies along
gram, and edges for data and control dependencies betweer{n€PDG

these statements.

3. We mark all nodes in theDG as “defect” if they have been
fixed in pg.

4. Adefectlocator, working oy, reportsaseR = {nq, ny, ...}

of nodes; inthePDGas being likely defect locations. In the
CT case, we used the location of each occurring cause transi-

tion as such a likely defect; in tHeRDG, we mark these nodes
as “blamed”.

In the GCC example from Sectiod, we would blame the
locations listed in Tabl&.

5. Let k(n, e) be the set of nodes that are reachable from
within the distance. For each blamed nodec R, we deter-
mine the distance(n) to the nearest defect. The(n, d(n))

Exploiting relevance. A nodem ¢ {n| b —'<«J n} neither can
have caused an infectionlimor meets with the effect dfto
cause the failure—at least not in the distan¢g considered
so far. In Figure?7, suchirrelevant locations are shown in

grey.

Exploiting infections. Let us assume that a programmer is able
to tell infected from non-infected variables in a report, and
that one of the blamed locatiohss a cause transition from
some non-infected state to an infected state. Thea;* d
must hold for the defeal, and we can use this single cause
transition as starting point.

Both concepts exploited here are unique to cause transitions. Code

reflects the maximum number of locations in the program Coverage does not convey data information, and like violations of

a programmer has to examine, starting witland increas-
ing the distance until the actual defect is found (Figdye

Note that ifd(n) = 0 holds, we have a perfect match; only

k(n, 0) = {n} needs to be examined.
Again, in theGCC example from SectioB, we would start

with the blamed nodes and find the defect at a distance of
as combine.c:4013—-4019 is reachable via one dependency:.

from the blamed location.

6. From all blamed nodeR, we now determine some nodec
R that is closest to a defect (i.el(m) < d(n) holds for all
n € R), and we determine the set of noddghat had to be
examined up to that distance:

N = U k(n, d(m))

neR

The idea is that the programmer does a breadth-first search
across theDG, starting with the blamed nodes, and increas-

ing the distance until a defect is found.

In theGCCexample N would include all nodes at a distance

of 1 from the 9 blamed locations.

dynamic invariants or other anomalies, it can not be shown to cause
the failure.

7.5 Experiment Setup

We ran our techniques on the 132 variations of the Siemens pro-

1 grams. Three out of these 132 had to be ruled out (two because their

test suites would not observe any failure, and one due to issues with
input processing). In order to treat program input and program state
uniformly, we altered the programs so that they would read input
from internal variables rather than from external files.

For each variatiopp, we then randomly picked one failing ron
as well as the passing run that would produce a maximum of
cause transitions. (Just as Renieris and Reiss, we thus exploited the
fact that multiple test runs were available.) The runandrg were
then fed into the defect locator, resulting in a repRrtFrom pg,
po, and R, we then computed the sco&of the resulting report,
usingCODESURFERO compute théDG of pg.

Table4 shows statistics about the experiments, summarized by
program. “#calls” is the lengths of the traces (in function calls),
“avgtime)” is the average time in seconds for computing the diag-
nosis, “#tests” is the number of executed test runs per diagnosis,
and “#cts” the number of isolated direct cause transitions (i.e., the
number of “blamed” nodes).



Name PDG size #calls avgtime) #tests #cts Score  NN/Perm CT CTirelevant CTl/infected

print.tokens 1448  30-1845 2500.1 1-42 1-5 100% 0.00 4.65 5.43 455
print_tokens2 1420 40-1587 6556.5 5-44 1-6 90-99% 16,51 21.71 30.23 26.36
replace 1252  3-1139 3588.9 1-38 1-3 80-90% 9.17 11.63 6.20 10.91
schedule 1350 2575 1909.3 469 1-6 70-80% 11.93 13.18 6.20 13.64
schedule2 1164  2-1336 77412 2-63 1-11 60-70% 13.76 155 9.30 4.55
tcas 454  1-14 1848 4-31 1-4 50-60% 19.27  6.98 10.08 6.36
tot.info 728 14-350 521.4 2-41 1-5 40-50% 3.67 3.10 3.88 1.82
Table 4: Properties of sampled programs 30-40% 642 7.75 10.08 364

20-30% 1.83 465 3.10 7.27

] 10-20% 0.00 6.98 10.85 0.00

7.6 Results and Analysis 0-10% 17.43 17.83 4.65 20.91

The evaluation results are summarized in Tahlas relative distri-
bution of scores per method and test runs. The data for the neares
neighbor method (“NN/Perm”) is taken frorti]]; one can see that

no test run has a score of 100%, meaning the defect is never pin- Comparison of defect locators

60

pointed. However, 16.51% of all test runs achieve a score of 90% NNperm —)'(—
or better, meaning that the programmer can stop her search at 10% CThrelevant -¥-+
of the code in 16.51% of all test runs. %0 crantected
The cause transitions method (“CT"), in comparison, pinpoints
the defect in 4.65% of all test runs, and 26.36% of all test runs o
achieve a score of 90% or better, meaning an increase of 60%.
Figure 8 shows a cumulative plot of the score data in Tahle
It is easy to see that CT outperforms NN/Perm for all scores of
70% and more. (NN/Perm is slightly better for lower scores. This 2
advantage is mostly irrelevant, though, given that the programmer
has to examine a third of the program or more.)
Using cause transitions, the programmer need not explore irrele-
vant nodes, as discussed in Secfioh We obtain the results shown
in the “CT/relevant” column in Tabl®. As shown in Figures, 100 % 80 70
this increases the score significantly. The defect can be pinpointed % of program that need not be examined ('Score’)
(score: 100%) in 5.43% of all runs—the best result for any method. ) )
35.66% of all test runs achieve a score of 90% or better, meaning Figure 8: Evaluation details. For 30% of all test runs, cause
an increase of 116% over the nearest neighbor method. transitions achieve a score of 90% or higher, narrowing down
If we assume the programmer can tell infected from non-infected the defect to 10% or less of the code.
values, as discussed in Sectibd, the score also increases. This is
shown as “CT/infected” in TablB and Figure8. Exploiting infec-
tions, more than 55% of all runs achieve a score of 75% or better.

0, i 0,
Iovlvr;:r45V\723 ﬁ;ﬁg :ﬁ)stt g}iuﬁg ?gg;ﬁgﬁ)gcﬁfvgf sgfotLeessgergs/o bourt Threats to construct validity concern the appropriateness of our
: y property ' measures for capturing our dependent variables. The evaluation

a possible hypothe_s,ls is that there are defects_whose Ioc_ap_on_ S"m'setup of Renieris and Reiss assumes an ideal programmer who is
ply cannot be predicted. As an example, consider an uninitialized

lobal variable: Although the initialization (i.e., the fix) can take able to distinguish defects from non-defects at each location, and
9 : gn T .~ _can do so at the same cost for each location considered. However,
place at almost any place in the program, a good score requires

that the method predict the exact place where the initialization has some defects are easier to spot than others, and this difference is
been removed—which is impossible for any method. Note, though not taken into account. The same applies to the ability of a pro-
o ; . B ' ' grammer to tell infections from non-infections. Ultimatively, the
that an uninitialized variable can be isolated as a failure cause and; g, once of such factors can only be determined by running stud-
reported as part of a cause transition—even if the cause transmoni es with humans
itself occurs far away from the defect. :

As initially stated. we had multiole passing runs available and Threats to internal validity concern our ability to draw conclu-
. y ' piep 9 sions about the connections between our independent and depen-
picked the rurry that would result in a maximum of cause tran-

sitions. If we do not take advantage of the presence of multiple dent variables. In particular, our implementation could contain er-
passiné runs and pick a random passing run instead, cause transi[ors that affect the outgome. To control for these threats, we en-
tions still outperform NN/Perm ’ s_ured that the dl_agn_05|s tools had no access to the corrected ver-
' sions or any derivative thereof. Also, we repeated the CT exper-
7.7 Threats to Validity iments using Renieris and Reiss’ framework instead of ours and

found similar scores, which validates our evaluation setup,

{J’ able 5: Evaluating defect locators: Cause transitions (CT)
versus nearest neighbor (NN)

o

30

% of test runs

ble that for specific kinds of programs or defects, alternate methods
perform better than cause transitions. This can be addressed by fur-
ther case studies.

Like any empirical study, this study has limitations that must be
considered when interpreting its results. As stated initially, results
obtained from the Sierrrw)ens guite cannot be generalized tc))/ arbitrary8- CONCLUSION AND CONSEQU ENCES
programs. In particular, larger programs, or more precisely, pro- Cause transitions locate the software defect that causes a given fail-
grams with a greater separation of concerns are likely to produce ure, performing twice as well as any other technique previously
better localization results, regardless of the method applied; this known. The technique requires an automated test, a means to ob-
view is also supported by theCCexample in Sectiob. serve and manipulate the program state, as well as at least one al-
To a certain extent, this threat to external validity also applies to ternate passing test run.
the relative performance of the discussed methods: it is well possi-  Typically, the technique would be used as an add-on to running
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APPENDIX
A. FORMAL DEFINITIONS

In this appendix, we give a formal definition of cause transitions,
using thesample program from Figurel to illustrate these def-
initions. We first recall the formal definitions of Delta Debug-
ging [18], applied to program states:

Tests. A program rurr is a sequence of states= [s1, S, . . ., Sn].
LetC be the set of all state differences between program runs.
The testing functiortest : 2€ {0, O, ?} determines for a
configurationc € C whether some given failure occurs)(or
not (O) or whether the test is unresolve®) (

Applied to thesample program.testc) would runrg up to
the location in question, apply the differenaes C, resume
execution, and returf, if the output contains a zero, ant
if not. (It would return? if the output is never generated.)

Configurations. Letcy andcg be configurations witle; € ¢ C
C such thatesticy) = O A tesicy) = . ¢y is the “passing”
configuration (typicallyc; = ¢ holds) andt; is the “failing”
configuration.
In the case oBample , c; andcy are state differences with
respect to, and obtained fromy andr g, respectivelycy =
¢ always holdsg; would contain differences as listed in Ta-
ble 1.

Isolation. TheDelta Debugging algorithm d@g, cp) isolates the
failure-inducing difference betweesy, andcy. It returns a
pair (¢}, cf;) = dd(cq, cn) such thatc; € ¢, < ¢} C cp,
tes{(c,) = O, andtestc)) = O hold andA = ¢/, \ ¢ is 1-
minimal—that is, no single difference af, can be removed
from ¢/, to make the failure disappear or addeatoto make
the failure occur. The full definition ald is found in [L8].

In the case of theample states as listed in Tablk the set

A = c¢/)\ ¢f, as returned byd(cy, ¢;) would contain the rel-
evant difference d[2] = 0"—that is, an actual failure cause.

Cause transitions. Let var(At) be the set of variables affected by
a state differencd; var(L) = ¢ holds. Then, two moments
intime (t1, tp) are called @ause transitioiif t; < to, a cause-
effect chainC with [A¢, At,] € C exists, andvar(At;) #
var(Ag,). A cause transition is calledirectif -3t : t) <t <
to.

In the ASKIGOR diagnosis in Figurd, moment #1, the invo-
cation ofshell _sort() ,isa cause transition fromar(Ay,) =
{argc } tovar(Ag,) = {a[2] }.

To isolate direct cause transitions, we usdidde and conquer
algorithm. The basic idea is to start with the inter¢al|rp)), re-
flecting the first and last state of. If a cause transition has oc-
curred, we examine the state at the middle of the interval and check
whether the cause transition has occurred in the first half and/or in
the second half. This is continued until all cause transitions are
narrowed down.

Isolating cause transitions. For a given cause-effect chat the
algorithmcts(ty, to) narrows down the cause transitions be-
tween the moments in tintg andty:

%] if var(At,) = var(At,)
Ct(ty, tp) = Jctty, t)Uctst, tp) ifdt:ty <t <ty
{t1. )} otherwise

where Ay, At,] € C holds.
A run of ctsonsample is discussed in Sectioh

Our actual implementation comput€s(and in particularAt) on
demand. If we isolate &; betweenAy, andAg,, but find thatA¢
was not caused by, , we recompute\, such that the cause-effect
chain property is preserved.

Not all states are comparable, though. We assume a matching func-

tion matchthat finds matching states:

Matching states. The functionmatch: (rg —>rgu {J_}) assigns
each statesm; € rg amatching state s € rg, or L, if no
such match can be found.

Our implementation requires matching states to share a com-
mon calling context, implying an equal set of local variables.

Individual failure causes (= state differences) can be composed into
a cause-effect chain.

Relevant deltas. For eachsg; € rp, let arelevant deltaAt be a
failure-inducing difference, as determined by Delta Debug-
ging: Letsy; = matchsyt); if match(soy) = L holds, then
At = 1, too. Otherwise, letp; be the difference between
syt andsyy, and letcoy = ¢. Let (clj;, ¢fy) = dd(cat, cot);
thenA¢ = ¢/, \ ¢/; is a relevant delta.

Cause-effect chains.A sequence of relevant delt@s= [Ay,, Ay, ..
withtj < tj11 is called ecause-effect chaiifieachAy causes
the subsequenty, ,, Ay, ... as well as the failure.

The ASKIGOR diagnosis in Figurd is a cause-effect chain at
the moments in timg = (Line 35 reached

to = (Line 18 reached for the 2nd tirhe

t3 = (Line 15 reached for the 2nd tirhe

]

Within a cause-effect chaicause transitionsccur:
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