
Assisting Developers of Big Data Analytics
Applications When Deploying on Hadoop Clouds

Weiyi Shang†, Zhen Ming Jiang†, Hadi Hemmati†, Bram Adams‡, Ahmed E. Hassan†, Patrick Martin§
†Software Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s University, Kingston, Canada
‡Département de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Montréal, Québec, Canada

§Database Systems Laboratory, School of Computing, Queen’s University, Kingston, Canada
{swy, zmjiang,hhemmati, martin, ahmed}@cs.queensu.ca, bram.adams@polymtl.ca

Abstract—Big data analytics is the process of examining large
amounts of data (big data) in an effort to uncover hidden patterns
or unknown correlations. Big Data Analytics Applications (BDA
Apps) are a new type of software applications, which analyze big
data using massive parallel processing frameworks (e.g., Hadoop).
Developers of such applications typically develop them using a
small sample of data in a pseudo-cloud environment. Afterwards,
they deploy the applications in a large-scale cloud environment
with considerably more processing power and larger input data
(reminiscent of the mainframe days). Working with BDA App
developers in industry over the past three years, we noticed
that the runtime analysis and debugging of such applications in
the deployment phase cannot be easily addressed by traditional
monitoring and debugging approaches.

In this paper, as a first step in assisting developers of BDA
Apps for cloud deployments, we propose a lightweight approach
for uncovering differences between pseudo and large-scale cloud
deployments. Our approach makes use of the readily-available yet
rarely used execution logs from these platforms. Our approach
abstracts the execution logs, recovers the execution sequences,
and compares the sequences between the pseudo and cloud
deployments. Through a case study on three representative
Hadoop-based BDA Apps, we show that our approach can
rapidly direct the attention of BDA App developers to the major
differences between the two deployments. Knowledge of such
differences is essential in verifying BDA Apps when analyzing
big data in the cloud. Using injected deployment faults, we show
that our approach not only significantly reduces the deployment
verification effort, but also provides very few false positives when
identifying deployment failures.

Index Terms—Big-Data Analytics Application, Cloud Comput-
ing, Monitoring and Debugging, Log Analysis, Hadoop

I. INTRODUCTION

Big Data Analytics Applications (BDA Apps) are a new
category of software applications that leverage large-scale
data, which is typically too large to fit in memory or even on
one hard drive, to uncover actionable knowledge using large-
scale parallel-processing infrastructures [1]. The big data can
come from sources such as runtime information about traffic,
tweets during the Olympic games, stock market updates, usage
information of an online game [2], or the data from any other
rapidly growing data-intensive software system. For instance,
EBAY 1 has deployed BDA Apps to optimize the search of
products by analyzing over 5 PBs data using more than 4,000
CPU cores [3].

1www.ebay.com last checked Feburary 2013.

Over the past three years we have been working closely with
BDA App developers in industry. We noted and found that
developing BDA Apps brings many new challenges compared
to traditional programming and testing practices. Among all
challenges in different phases of BDA App development,
the deployment phase introduces unique challenges related to
verifying and debugging the BDA executions, as BDA App
developers want to know if their BDA App will function
correctly once deployed. Similar observations were recently
noted in an interview of 16 professional BDA App developers
at Microsoft [1].

In practice, the deployment of BDA Apps in the cloud
follows these three steps: 1) developers implement and test
the BDA App in a small or pseudo cloud (using virtual or
physical machines) environment using a small data sample,
2) developers deploy the application on a larger cloud with
a considerably larger data set and processing power to test
the application in a real-life setting, and 3) developers verify
the execution of the application to make sure all data are
processed and all jobs are successful. The traditional approach
for deployment verification is to simply search for known
error keywords related to unusual executions. However, such
verification approaches are very ineffective in large cloud
deployments. For instance, a common basic approach for
identifying deployment problems is searching for “killed” jobs
in the generated execution logs (the output of the internal in-
strumentation) of the underlying platform hosting the deployed
application [4]. However, a simple keyword search would lead
to false positive results since a platform such as Hadoop
may intervene in the execution of a job, kill it and restart
it elsewhere to achieve better performance, or it might start
and kill speculative jobs [4]. Considering the large amount
of data and logs, such false positives rapidly overwhelm the
developer of BDA Apps.

In this paper, we propose an approach for verifying the
runtime execution of BDA Apps after deployment. The ap-
proach abstracts the platform’s execution logs from both the
small (pseudo) and large scale cloud deployments, groups
the related abstracted log lines into execution sequences for
both deployments, then examines and reports the differences
between the two sets of execution sequences. Ideally, these two
sets should be identical for a successful deployment. However,
due to framework configurations and data size differences, the

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

402

underlying platform may execute the applications differently.
Among the delta sets of execution sequences between these
two sets, we filter out sequences that are due to well-known
platform-related (in our case study Hadoop) differences. The
remaining sets of sequences are potential deployment fail-
ures/anomalies that should be reported and carefully examined.

We have implemented our approach as a prototype tool and
performed a case study on three representative Hadoop [4]
BDA Apps. The choice of Hadoop is due to it being one of
the most used platforms for Big Data Analytics in industry
today. However, our general idea of using the underlying
platform’s logs as a means for BDA App monitoring in the
cloud, is easily extensible to other platforms, such as Microsoft
Dryad [5]. The case study results show that our log abstraction
and clustering into execution sequences not only significantly
reduces the amount of logs (by between 86% to 97%) that
should be verified, but it also provides much higher precision
for identifying deployment failures/anomalies compared to
a traditional keyword search approach (commonly used in
practice today). In addition, practitioners who have used our
approach in practice have noted that the reporting of the
abstracted execution sequences, rather than raw log lines, pro-
vides a summarized context that dramatically improves their
efficiency in identifying and investigating failure/anomaly.

The rest of this paper is organized as follows. We present
a motivating example in Section II. We present Hadoop,
the platform that we studied in Section III. We present our
approach to summarize logs into execution log sequences
in Section IV. We present the setup for our case studies
in Sections V. We present the results of our case study in
Section VI. We discuss other features of our approach in
Section VII and discuss the limitations of our approach in
Section VIII. We present prior work related to our approach
in Section IX. Finally, we conclude the paper in Section X.

II. A MOTIVATING EXAMPLE

We now present a hypothetical but realistic motivating
example to better explain the challenges of deploying BDA
Apps in a cloud environment.

Assume developer Ian developed a BDA App that analyzes
the user information from a large-scale social network. Ian
has thoroughly tested the App on an in-house small-scale
cloud environment with a small sample of testing data. Before
officially releasing the App, Ian needs to deploy the App in
a large-scale cloud environment and run the App with real-
life large-scale data. After the test run of the App in the real
cloud setup, Ian needs to verify whether the App behaves as
expected or not, in the testing environment.

Ian followed a traditional approach to examine the be-
haviour of the App in the cloud environment. He leveraged
the logs from the underlying platform (e.g., Hadoop) to find
whether there are any problematic log lines. After download-
ing all the logs from the cloud environment, Ian found that
the logs are of enormous size because the cloud environment
contains thousands of nodes and the processed real-life data
is in PB scale, which makes the manual inspection of the logs

impossible. Therefore, Ian performed a simple keyword search
on the logs. The keywords are based on his own experience
of developing BDA Apps. However, the keyword search still
returns thousands of problematic log lines. By manually ex-
ploring the problematic log lines, Ian found that a large portion
of the log lines do not indicate any problematic executions
(i.e., false positives). For example, the run-time scheduler of
the underlying platform often kills remote processes and re-
starts them locally to achieve better performance. However,
such kill operations lead to seemingly problematic logs that are
retrieved by his keyword search. Moreover, for each log line,
Ian must trace through the log files across multiple nodes to
gain some context about the generated log files (and in many
instances he discovers that such log lines are expected and
are not problematic ones). In short, identifying deployment
problems of the BDA App is excessively difficult and time
consuming. Moreover, this difficulty increases considerably as
the size of the analyzed data grows and the size of the cloud
increases.

From the above example, we observe that verifying the
deployment of BDA Apps in a cloud environment with large-
scale data is challenging. Although today, developers primarily
use grep [6] to locate possible troublesome instrumentation
logs, uncovering the related context of the troublesome logs
is still challenging with enormously large data (as noted in
recent interviews of BDA App developers [1]).

In the following sections, we present our approach, which
summarizes the large amount of platform logs and presents
them in tables where developers can easily note troublesome
events and where they are able to easily view such events in the
context of their execution (since the table shows summarized
execution sequences).

III. LARGE-SCALE DATA ANALYSIS PLATFORMS: HADOOP

Hadoop is one of the most widely used platforms for
the development of BDA Apps in practice today. We briefly
present the programming model of Hadoop, then present the
Hadoop logs that we use in our case studies.

A. The MapReduce Programming Model

Hadoop is an open-source distributed platform [4] that is
supported by Yahoo! and is used by Amazon, AOL and a
number of other companies. To achieve parallel execution,
Hadoop implements a programming model named MapRe-
duce. This programming model is implemented by many other
cloud platforms as well [5], [7].

MapReduce [8] is a distributed divide-and-conquer pro-
gramming model that consists of two phases: a massively
parallel “Map” phase, followed by an aggregating “Reduce”
phase. The input data of MapReduce is broken down into
a list of key/value pairs. Mappers (processes assigned to
the “Map” phase) accept the incoming pairs, process them
in parallel and generate intermediate key/value pairs. All
intermediate pairs having the same key are then passed to
a specific Reducer (process assigned to the “Reduce” phase).
Each Reducer performs computations to reduce the data to one

403

single key/value pair. The output of all Reducers is the final
result of a MapReduce run.

To illustrate MapReduce, we consider an example MapRe-
duce process that counts the frequency of word lengths in
a book. Mappers take each single word from the book and
generate a key/value pair of the form “word length/dummy
value”. For example, a Mapper generates a key/value pair
of “5/hello” from the input word “hello”. Afterwards, the
key/value pairs with the same key are grouped and sent to
Reducers. Each Reducer receives the list of all key/values pairs
for a particular word length and hence can simply output the
size of this list. If a reducer receives a list with key “5”, for
example, it will count the number of all the words with length
“5”. If the size is n, it generates an output pair “5/n” which
means there are n words with length “5” in the book.

B. Components of Hadoop

Hadoop has three types of execution components. Each
component has logging enabled in it. Such platform logging
tracks the operation of the platform itself (i.e., how the
platform is orchestrating the MapReduce processing). Today,
such logging is enabled in all deployed Hadoop clusters and it
provides a glimpse into the inner working mechanism of the
platform itself. Such inner working mechanism is impacted by
any problems in the cloud on which the platform is executing.
The three execution components and a brief example of the
logs generated by them are as follows:
• Job. A Hadoop program consists of one or multiple

MapReduce steps running as a pipeline. Each MapReduce
step is a Job in Hadoop. A JobTracker is a process ini-
tialized by the Hadoop platform to track the status of the
Jobs. The information tracked by the JobTracker includes
the overall information of the Job (e.g., input data size)
and the high-level information of the execution of the
Job. The high-level information of the Job’s execution
corresponds to the executions of Map and Reduce. For
example, a Job log may say that “the Job is split into 100
Map Tasks” and “Map TaskId=id is finished at time t1”.

• Task. The execution of a Job is divided into multiple
Tasks based on the MapReduce programming model.
Therefore, a Task can be either a Map Task that cor-
responds to the Map in the MapReduce programming
model, or a Reduce Task. The Hadoop platform groups
a set of Map or Reduce executions together to create
a Task. Therefore, each Task contains more than one
execution of Map or Reduce. Similar to the JobTracker,
the TaskTracker monitors the execution of a Task. For
example, a Task log may say “received commit of Task
Id=id”.

• Attempt. To support fault tolerance, the Hadoop platform
allows each Task to have multiple trials of execution.
Each execution is an Attempt. Typically, only when an
Attempt of a Task has failed, another Attempt of the same
Task will start. This restart process continues until the
Task is successfully completed or the number of failed
Attempts is larger than a threshold. However, there are

exceptions, such as “speculative execution”, which we
discuss later in this paper. The attempt is also monitored
by the TaskTracker and the detailed execution information
of the Attempt, such as “Reading data for Map task with
TaskID=id”, is recorded in the Attempt logs.

The Job, Task and Attempt logs form the source of infor-
mation used by our approach. We use the former kinds of
logs instead of application-level logs since such logs provide
information about the inner working of the platform itself,
and not the application, which is assumed to be correctly
implemented for our purposes. In particular, the platform logs
provide us with information about any deployment problems.

IV. APPROACH

The basic idea behind our approach is to cluster the platform
logs to improve their comprehensibility, and to help understand
and flag differences in the run-time behaviour.

As mentioned before, our approach is based on the analysis
of platform logs of BDA Apps. These logs are generated by
the statements embedded by the platform developers because
they consider the information to be particularly important.
Containing rich knowledge, but not fully explored, platform
logs typically consist of the major system activities and their
associated contexts (e.g., operation ids). The log is a valuable
resource for studying the run-time behaviour of a software
system, since they are generated by the internal instrumen-
tations and are readily available. However, previous research
shows that logs are continuously changing and evolving [9].
Therefore, ad hoc approaches based on keyword search may
not always work. Thus we propose an approach that does not
rely on particular phrases or format of logs. Figure 1 shows
an overview of our approach.

Our approach compares the run-time behaviour of the
underlying platform of BDA Apps in testing environment with
a small testing data sample to the cloud environment with
large-scale data. To overcome the enormous amount of logs
generated by a BDA platform and to provide useful context for
the developers looking at our results, we recover the execution
sequences of the logs.

A. Execution Sequence Recovery

In this step, we recover sequences of the execution logs.
The log sequence clustering includes three phases.

1) Log Abstraction: Log files typically do not follow strict
formats, but instead contain significant unstructured data. For
example, log lines may contain the task type, the execution
time stamp and a free form – making it hard to extract any
structured information from them. In addition to being in free
form, log lines contain static and dynamic information. The
static information is specific to each particular event while the
dynamic values of the logs describe the event context. We use
a technique proposed by Jiang et al. [10] to abstract logs. This
technique is designed to be generalizable as it does not rely
on any log formats. Using the technique, we first identify the
static and dynamic values of the logs based on a small sample
of logs. Then we apply the identified static and dynamic parts

404

Execution
Logs

Log
Linking

Log
Abstraction

Simplifying
Sequences

Execution
sequence

report

Testing run
with

small data

 Run with
large data
in cloud

Execution Sequence Recovery

Execution
sequence

delta

Execution
Logs

Log
Linking

Log
Abstraction

Simplifying
Sequences

Execution
sequence

report

Execution Sequence Recovery

Fig. 1. Overview of our approach.

Log
abstraction

Log linking

Simplify sequences

(a) Example of log lines, consists
of execution time stamps, task
types and task identifiers.

(b) Execution events, consists of normalized execution
time stamps, task types and normalized task identifiers.

(c) Execution log sequences, representing a sequence of
system executions with the same TaskID

(d) Final execution sequences after simplifying sequences.
The final sequences are without repetition and permutation.

Figure 1: Process of our problem detection approach.

Figure 2: An example of our approach.

The log abstraction phase abstracts log lines into execu-
tion events. In this phase, we choose dynamic values, such
as “$id”, to link the log lines into a sequence. The linking is
based on the heuristic on the name of the dynamic values.
For our example, TaskID will be used for event linking since
TaskID contains string “ID”. Therefore, line 1 and line 3 in
the input data in Figure 2-a can be linked together since
they contain the same TaskID.

Figure 2-c shows the result sequence after abstracting the
logs and linking them into sequences using the TaskID val-
ues. In the event linking result in Figure 2-c, Events E1, E2,
E3, E5 and E6 are linked together (note that event E3 has
been executed twice) and Event E1, E2, E4, E6 are linked
together since the same TaskID values are shared.

3.3.2 Eliminating repetitions
There can be event repetitions in the existing sequences

caused by loops. For example, for sequences about reading
data from a remote node, there would be repeated events
about keeping fetching the data. Similar log sequences that
include di�erent times of the same events are considered
di�erent sequences, although they indicate the same sys-
tem behaviour in essence. These repeated events need to be
suppressed to ease the analysis. We use regular expression
techniques to detect and suppress the repetitions. For the
example shown in Figure 2, the sequence “E1 E2 E3 E3 E5
E6”, our technique would detect the repetition of E3 and
suppress this sequence into “E1 E2 E3 E5 E6”.

Table 1: Example of log lines
Log line
1 time=1, Task=Trying to launch, TaskID=01A
2 time=2, Task=Trying to launch, TaskID=077
3 time=3, Task=JVM, TaskID=01A
4 time=4, Task=Reduce, TaskID=01A
5 time=5, Task=JVM, TaskID=077
6 time=6, Task=Reduce, TaskID=01A
7 time=7, Task=Reduce, TaskID=01A
8 time=8, Task=Progress, TaskID=077
9 time=9, Task=Done, TaskID=077

10 time=10, Task=Commit Pending, TaskID=01A
11 time=11, Task=Done, TaskID=01A

After eliminating looping, the final log sequences are shown
in Figure 2-d.

Table 3: Execution sequence
TaskID Event sequence
01A E1, E2, E3, E3, E3, E5, E6
077 E1, E2, E4, E6

3.4 Failure detection
Intuitively, if any failure exists, the cloud computing plat-

Table 2: Execution events
Event Event template #
E1 time=$t, Task=Trying to launch, TaskID=$id 1,2
E2 time=$t, Task=JVM, TaskID=$id 3,5
E3 time=$t, Task=Reduce, TaskID=$id 4,6,7
E4 time=$t, Task=Progress, TaskID=$id 8
E5 time=$t, Task=Commit Pending, TaskID=$id 10
E6 time=$t, Task=Done, TaskID=$id 9,11

Table 4: Execution sequence after eliminating loop-
ing

TaskID Event sequence
01A E1, E2, E3, E5, E6
077 E1, E2, E4, E6

form would generate extra logs. The extra logs contain
event sequences indicating the process of error message and
fault recovery. Therefore, di�erent event sequences, which
reflect di�erent system behaviours, should be recovered be-
tween di�erent runs of an application with and without fail-
ures. Several approaches that identify the di�erent event
sequences in logs can be used to identify system failures.

3.4.1 Sequence counts variance
Sequence counts variance (SCV) is the Coe⌅cient of Vari-

ance of the number of sequences among multiple runs of the
same application. It is defined as the ratio of the standard
deviation ⇥ to the mean µ :

SCV =
⇥

µ
(1)

Intuitively, the bigger the variance is, higher the proba-
bility that a failure exists. Before running an application
periodically on a cloud computing platform, a certain num-
ber of runs of the program without problems are required
to setup a baseline of the SCV. After deploying the pro-
gram, any SCV among the number of consecutive runs that
is larger than the baseline would be considered a warning of
failure.

For example, if we setup our baseline based on three failure-
free runs and recover 8, 9 and 10 log sequences respectively,
the baseline SCV would be 0.111. If a following run gen-
erates 10 log sequences, we would calculate the SCV based
on the number 9, 10 and 10 (number 9 and the first num-
ber 10 are from the previous two runs). The SCV would
be 0.060, which is smaller than the baseline (0.111), and
would indicate that the new run is failure-free. If another
run has failure and generates 15 log sequence, the SCV cal-
culated by the number 10, 10 and 15 would be 0.247, which
is larger than the baseline. An alert would be sent to the
administrator for further inspection.

3.4.2 Sequence distribution
Di�erent runs of an application with and without failures

intuitively have di�erent sequence distributions. Therefore,
statistical methods to detect di�erent distributions can be
used for automatic failure detection. In practice, we have
baseline runs for each application without failure, and we
carry out an unpaired, 2-sided t-test (Mann-Whitney) be-
tween the two runs to setup a baseline p-value. The lower

the p-value, the higher probability that the new run has
failure. Therefore, every new run will be tested with the
previous failure-free run to calculate the p-value. A p-value
that is larger than the baseline would indicate failures.

For example, we start two failure-free baseline run with
the sequences distribution of “4, 2, 2” and “4, 3, 2”. The
p-value of the t-test would be 0.8137. If another run has
the sequence distribution of “5, 2, 2”, we perform a t-test
between “5, 2, 2” and “4, 3, 2” (the sequence distribution
of the previous failure-free run). The p-value is 1, which is
larger than the baseline (0.8137), and the new run is consid-
ered failure-free. If next run with recovered failure has the
sequence distribution of “6, 5, 2, 2”, the calculated p-value
would be 0.6533, which is smaller than the baseline. There-
fore, the administrator would receive an alert.

In the following two sections, we present our three case stud-
ies on a widely used cloud computing platform, and detect
three injected problems with the approach presented in this
section.

4. CASE STUDY SETUP
We present the cloud computing platform that we chose,

the subject programs, the experimental environment and the
input data.

4.1 Cloud computing platform: Hadoop
This sub-section introduces Hadoop, a widely used cloud

computing platform that we choose for our case studies. We
briefly present the programming model, and the Hadoop log
that we use in our case studies.

4.1.1 Programming model
Hadoop is an open-source cloud computing platform [30]

that is supported by Yahoo! and is used by Amazon, AOL
and a number of other companies as their cloud computing
platform. To achieve parallel execution, Hadoop implements
a programming model named MapReduce.

MapReduce is a distributed divide-and-conquer program-
ming model. The programming model consists of two phases:
a massively parallel“Map”phase, followed by an aggregating
“Reduce” phase. The input data for MapReduce is broken
down into a list of key/value pairs. Mappers (processes as-
signed to the “Map” phase) accept the incoming pairs, pro-
cess them in parallel and generate intermediate key/value
pairs. All intermediate pairs having the same key are then
passed to a specific Reducer (process assigned to the “Re-
duce” phase). Each Reducer performs computations to re-
duce the data to one single key/value pair. The output of
all Reducers is the final result of a MapReduce run.

To illustrate MapReduce, we consider an example MapRe-
duce process which counts the frequency of word lengths in

Figure 1: Process of our problem detection approach.

Figure 2: An example of our approach.

The log abstraction phase abstracts log lines into execu-
tion events. In this phase, we choose dynamic values, such
as “$id”, to link the log lines into a sequence. The linking is
based on the heuristic on the name of the dynamic values.
For our example, TaskID will be used for event linking since
TaskID contains string “ID”. Therefore, line 1 and line 3 in
the input data in Figure 2-a can be linked together since
they contain the same TaskID.

Figure 2-c shows the result sequence after abstracting the
logs and linking them into sequences using the TaskID val-
ues. In the event linking result in Figure 2-c, Events E1, E2,
E3, E5 and E6 are linked together (note that event E3 has
been executed twice) and Event E1, E2, E4, E6 are linked
together since the same TaskID values are shared.

3.3.2 Eliminating repetitions
There can be event repetitions in the existing sequences

caused by loops. For example, for sequences about reading
data from a remote node, there would be repeated events
about keeping fetching the data. Similar log sequences that
include di�erent times of the same events are considered
di�erent sequences, although they indicate the same sys-
tem behaviour in essence. These repeated events need to be
suppressed to ease the analysis. We use regular expression
techniques to detect and suppress the repetitions. For the
example shown in Figure 2, the sequence “E1 E2 E3 E3 E5
E6”, our technique would detect the repetition of E3 and
suppress this sequence into “E1 E2 E3 E5 E6”.

Table 1: Example of log lines
Log line
1 time=1, Task=Trying to launch, TaskID=01A
2 time=2, Task=Trying to launch, TaskID=077
3 time=3, Task=JVM, TaskID=01A
4 time=4, Task=Reduce, TaskID=01A
5 time=5, Task=JVM, TaskID=077
6 time=6, Task=Reduce, TaskID=01A
7 time=7, Task=Reduce, TaskID=01A
8 time=8, Task=Progress, TaskID=077
9 time=9, Task=Done, TaskID=077

10 time=10, Task=Commit Pending, TaskID=01A
11 time=11, Task=Done, TaskID=01A

After eliminating looping, the final log sequences are shown
in Figure 2-d.

Table 3: Execution sequence
TaskID Event sequence
01A E1, E2, E3, E3, E3, E5, E6
077 E1, E2, E4, E6

3.4 Failure detection
Intuitively, if any failure exists, the cloud computing plat-

Table 2: Execution events
Event Event template #
E1 time=$t, Task=Trying to launch, TaskID=$id 1,2
E2 time=$t, Task=JVM, TaskID=$id 3,5
E3 time=$t, Task=Reduce, TaskID=$id 4,6,7
E4 time=$t, Task=Progress, TaskID=$id 8
E5 time=$t, Task=Commit Pending, TaskID=$id 10
E6 time=$t, Task=Done, TaskID=$id 9,11

Table 4: Execution sequence after eliminating loop-
ing

TaskID Event sequence
01A E1, E2, E3, E5, E6
077 E1, E2, E4, E6

form would generate extra logs. The extra logs contain
event sequences indicating the process of error message and
fault recovery. Therefore, di�erent event sequences, which
reflect di�erent system behaviours, should be recovered be-
tween di�erent runs of an application with and without fail-
ures. Several approaches that identify the di�erent event
sequences in logs can be used to identify system failures.

3.4.1 Sequence counts variance
Sequence counts variance (SCV) is the Coe⌅cient of Vari-

ance of the number of sequences among multiple runs of the
same application. It is defined as the ratio of the standard
deviation ⇥ to the mean µ :

SCV =
⇥

µ
(1)

Intuitively, the bigger the variance is, higher the proba-
bility that a failure exists. Before running an application
periodically on a cloud computing platform, a certain num-
ber of runs of the program without problems are required
to setup a baseline of the SCV. After deploying the pro-
gram, any SCV among the number of consecutive runs that
is larger than the baseline would be considered a warning of
failure.

For example, if we setup our baseline based on three failure-
free runs and recover 8, 9 and 10 log sequences respectively,
the baseline SCV would be 0.111. If a following run gen-
erates 10 log sequences, we would calculate the SCV based
on the number 9, 10 and 10 (number 9 and the first num-
ber 10 are from the previous two runs). The SCV would
be 0.060, which is smaller than the baseline (0.111), and
would indicate that the new run is failure-free. If another
run has failure and generates 15 log sequence, the SCV cal-
culated by the number 10, 10 and 15 would be 0.247, which
is larger than the baseline. An alert would be sent to the
administrator for further inspection.

3.4.2 Sequence distribution
Di�erent runs of an application with and without failures

intuitively have di�erent sequence distributions. Therefore,
statistical methods to detect di�erent distributions can be
used for automatic failure detection. In practice, we have
baseline runs for each application without failure, and we
carry out an unpaired, 2-sided t-test (Mann-Whitney) be-
tween the two runs to setup a baseline p-value. The lower

the p-value, the higher probability that the new run has
failure. Therefore, every new run will be tested with the
previous failure-free run to calculate the p-value. A p-value
that is larger than the baseline would indicate failures.

For example, we start two failure-free baseline run with
the sequences distribution of “4, 2, 2” and “4, 3, 2”. The
p-value of the t-test would be 0.8137. If another run has
the sequence distribution of “5, 2, 2”, we perform a t-test
between “5, 2, 2” and “4, 3, 2” (the sequence distribution
of the previous failure-free run). The p-value is 1, which is
larger than the baseline (0.8137), and the new run is consid-
ered failure-free. If next run with recovered failure has the
sequence distribution of “6, 5, 2, 2”, the calculated p-value
would be 0.6533, which is smaller than the baseline. There-
fore, the administrator would receive an alert.

In the following two sections, we present our three case stud-
ies on a widely used cloud computing platform, and detect
three injected problems with the approach presented in this
section.

4. CASE STUDY SETUP
We present the cloud computing platform that we chose,

the subject programs, the experimental environment and the
input data.

4.1 Cloud computing platform: Hadoop
This sub-section introduces Hadoop, a widely used cloud

computing platform that we choose for our case studies. We
briefly present the programming model, and the Hadoop log
that we use in our case studies.

4.1.1 Programming model
Hadoop is an open-source cloud computing platform [30]

that is supported by Yahoo! and is used by Amazon, AOL
and a number of other companies as their cloud computing
platform. To achieve parallel execution, Hadoop implements
a programming model named MapReduce.

MapReduce is a distributed divide-and-conquer program-
ming model. The programming model consists of two phases:
a massively parallel“Map”phase, followed by an aggregating
“Reduce” phase. The input data for MapReduce is broken
down into a list of key/value pairs. Mappers (processes as-
signed to the “Map” phase) accept the incoming pairs, pro-
cess them in parallel and generate intermediate key/value
pairs. All intermediate pairs having the same key are then
passed to a specific Reducer (process assigned to the “Re-
duce” phase). Each Reducer performs computations to re-
duce the data to one single key/value pair. The output of
all Reducers is the final result of a MapReduce run.

To illustrate MapReduce, we consider an example MapRe-
duce process which counts the frequency of word lengths in

Fig. 2. An example of our approach for summarizing the run-time behaviour of BDA Apps.

on full logs to abstract the logs. Figure 2 shows an example
of a log file with 11 log lines and how we process it. Each log
line contains the execution time stamp, the task type, and the
task ID. The log lines are abstracted into six different system
events, as shown in Figure 2-b. The “$id” and “$t” identifiers
indicate two dynamic values.

2) Log Linking: This phase uses dynamic values, such as
“$id”, to link log lines into a sequence. The linking heuristic is
based on the dynamic values. In our example, TaskID is used
for log linking since TaskID represents some kind of session
“ID”. Therefore, line 1 and line 3 in the input data in Figure 2-
a can be linked together since they contain the same TaskID.
Similar to log abstraction, we also identify the linkage among
a few IDs based on a small sample of data, then apply the
linking on full data.

Figure 2-c shows the resulting sequences after abstracting
the logs and linking them into sequences using the TaskID
values. Events E1, E2, E3, E5 and E6 are linked together (note

that event E3 has been executed three times) and events E1,
E2, E4, E6 are linked together since the same TaskID values
are shared, among them.

3) Simplifying Sequences: An example of repetition is
sequence caused by loops. For example, for sequences about
reading data from a remote node, there would be repeated
events about fetching the data. Without this step, similar log
sequences that include different occurrences of the same event
are considered different sequences, although they indicate the
same system behaviour in essence. These repeated events need
to be suppressed to improve the readability of the generated
summaries. Therefore, we use regular expression techniques to
detect and suppress the repetitions. For the example shown in
Figure 2, our technique detects the repetition of E3 in the
sequence “E1, E2, E3, E3, E3, E5, E6”, and reduces this
sequence to “E1, E2, E3, E5, E6”.

The second step of simplifying sequences is dealing with
permutations of sequences. The reason why permutations oc-

405

cur is that sometimes the events execute asynchronously on the
distributed computing platforms, although the corresponding
sequences result in the same system behaviour. We group the
permutations of a sequence together to simplify the sequences.
For example, if we recovered two sequences “E1, E2, E3, E4”
and “E1, E3, E2, E4”, we would group these two sequences
together in this step.

After simplifying sequences, we obtain the final log se-
quences in Figure 2-d.

B. Generating Reports

We generate a log sequence report in HTML format. Fig-
ure 3 shows an example report. The report consists of two
parts: an overview of the number of execution log sequences
and a list of sample log lines. To ease the comparison of
different reports, each event is represented by the same unique
number across the reports. An exemplar sequence from the
analyzed logs is shown in each row of the report to provide
developers an actual example with a realistic context.

V. CASE STUDY

In this section, we present the design of the case study that
we performed to evaluate our approach.

A. Subject Applications

We use three BDA Apps as subjects for our study. Two out
of the three applications are chosen to be representative of
industrial BDA Apps. In addition, to avoid potential bias from
the development of the applications, we chose one application
that is developed from scratch and another application that is
re-engineered by migrating a set of Perl scripts to the Hadoop
platform. In addition, to ease the replication of our approach
by others, we chose a third application from Hadoop’s official
example package. The overview of the three BDA Apps is
shown in Table I.
• WordCount. WordCount is an application that is released

with Hadoop as one of the examples of MapReduce
programming. The WordCount application analyzes the
input files and counts the number of occurrences of each
word in the input files.

• PageRank. PageRank [11] is a program used by the
Google Internet search engine for rating Web pages. We
implemented the PageRank algorithm on Hadoop.

• JACK. JACK is an industrial application that uses data
mining techniques to identify problems in load tests [12].
This tool is used in practice on a daily basis. We migrated
JACK to the Hadoop platform.

Note that none of the three above BDA Apps have their
own logs and the logs that our approach uses are the plat-
form (Hadoop) logs generated during the execution of these
applications.

B. The Experiment’s Environment Setting

As input data for WordCount and JACK, we use two groups
of execution log files of a large enterprise application. The
input data for the PageRank application, however, comes from

TABLE I
OVERVIEW OF THE THREE SUBJECT BDA APPS.

WordCount PageRank JACK
Source Hadoop: Google: RIM:

Official Developed Migrated
Example from scratch from Perl

Domain File Social Log
processing network analysis

Injected Machine Missing supporting Lack of
problem failure library disk space

TABLE II
OVERVIEW OF THE BDA APP’S INPUT DATA SIZE.

WordCount & PageRank
JACK

Large Data 3.69GB 1.08GB
Small Data 597MB 10.7MB

two social-network datasets from the Stanford Large Network
Dataset Collection2. Table II summarizes the overall size of
the input data for the studied applications.

To have a proof of concept experiment setting, we per-
formed our experiments on an in-house small cloud (a cluster
with 40 cores across five machines). Each machine has Intel
Xeon E5540 (2.53GHz) with 8 cores, 12 GB memory, a
Gigabit network adaptor and SATA hard drives. The operating
system of the machines is Ubuntu 9.10.

VI. CASE STUDY RESULTS

In this section, we present our research questions, and the
results of our case study. For each research question, we
present the motivation of the question, our approach to answer
the question, and the results.

A. RQ1: How Much Effort Reduction Does Our Approach
Provide, When Verifying the Deployment of BDA APPs in the
Cloud?

Motivation
Developers often use simple text search techniques to

identify troublesome events when deploying BDA Apps. For
example, keywords such as “kill” and “fail” are often used
to find problematic tasks in Hadoop. Due to the decision
by underlying platform (e.g. algorithms that Hadoop uses for
assigning tasks to machines), a problematic event might be
caused by some other reasons than an actual deployment fail-
ure. Two commonly seen examples of such reasons on Hadoop
platform are “Task exceptions” and “Speculative execution”:
• Task exceptions. When there is an exception during the

execution of a Hadoop task, the task will be killed and
restarted on another cloud node. Therefore, a keyword
search for “kill” on the log lines would flag such Hadoop
decisions as a sign of failure, even though this is supposed
to be transparent from the developer.

• Speculative execution. The overall performance of a
Hadoop Job may slow down because of some slow-
running tasks. To optimize the performance, Hadoop

2http://snap.stanford.edu/data/ last check Aug, 2012.

406

Total 5 grouped sequences
Count Grouped Sequence

105 8, 10, 7, 0, 5, 3, 2, 1

22 8, 10, 7, 0, 5, 6, 3, 2, 1

21 10, 0, 5, 3, 2, 1

2 8, 10, 7, 0, 4, 5, 2, 6, 3, 1

1 8, 10, 4, 0, 7, 5, 3, 2, 1

show	 sample	
sequences	

Total 5 grouped sequences
Count Grouped Sequence

105

8, 10, 7, 0, 5, 3, 2, 1
Sample Sequence8#8#8#10#7#0#5#3#2#1

8
2011-06-26 15:36:53,460 INFO org.apache.hadoop.mapred.JobInProgress:
tip:task_201106261526_0001_m_000047 has split on node:/default-
rack/sail215.cs.queensu.ca

8
2011-06-26 15:36:53,460 INFO org.apache.hadoop.mapred.JobInProgress:
tip:task_201106261526_0001_m_000047 has split on node:/default-
rack/sail217.cs.queensu.ca

8
2011-06-26 15:36:53,460 INFO org.apache.hadoop.mapred.JobInProgress:
tip:task_201106261526_0001_m_000047 has split on node:/default-
rack/sail213.cs.queensu.ca

10
2011-06-26 15:37:29,100 INFO org.apache.hadoop.mapred.JobTracker: Adding task
'attempt_201106261526_0001_m_000047_0' to tip task_201106261526_0001_m_000047,
for tracker 'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227'

7 2011-06-26 15:37:29,100 INFO org.apache.hadoop.mapred.JobInProgress: Choosing data-
local task task_201106261526_0001_m_000047

0
2011-06-26 15:37:29,101 DEBUG org.apache.hadoop.mapred.JobTracker:
tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227 -> LaunchTask:
attempt_201106261526_0001_m_000047_0

5
2011-06-26 15:38:10,657 INFO org.apache.hadoop.mapred.JobInProgress: Task
'attempt_201106261526_0001_m_000047_0' has completed
task_201106261526_0001_m_000047 successfully.

3
2011-06-26 15:51:54,749 DEBUG org.apache.hadoop.mapred.JobTracker: Marked
'attempt_201106261526_0001_m_000047_0' from
'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227'

2 2011-06-26 15:51:55,758 DEBUG org.apache.hadoop.mapred.JobTracker: Removing task
'attempt_201106261526_0001_m_000047_0'

1
2011-06-26 15:51:55,758 INFO org.apache.hadoop.mapred.JobTracker: Removed completed
task 'attempt_201106261526_0001_m_000047_0' from
'tracker_sail215.cs.queensu.ca:localhost/127.0.0.1:48227'

22 8, 10, 7, 0, 5, 6, 3, 2, 1

21 10, 0, 5, 3, 2, 1

2 8, 10, 7, 0, 4, 5, 2, 6, 3, 1

1 8, 10, 4, 0, 7, 5, 3, 2, 1

Fig. 3. An example of our log sequences report.

replicates the unfinished tasks on idle machines. When
one of the replicated tasks, or the original task, is finished,
Hadoop commits the results from the task and kills other
replicas. This mechanism is similar to the Backup Task
in Google’s MapReduce platform [8]. The replication
and killing are decided at run-time and are not signs of
deployment failures. However, again, a keyword search
would flag them as a problem to be verified.

Therefore, a simple text search for such keywords may result
in a very large set of irrelevant log lines for manual verifi-
cation. In this research question, we investigate whether our
approach saves any effort in the cloud deployment verification
process.
Approach

To evaluate our approach in terms of effort reduction, we
use the amount of log lines that must be examined as a
basic approximation of the amount of effort. We first use
the traditional (most-often-used in practice today (e.g., [1]))
approach of searching for keywords in the raw log lines as
a baseline of comparison. The keywords that we use in this
experiment are common basic keywords (“kill”, “error”, “fail”,
“exception” and “died”) that are usually a sign of failure in a
log line. We applied this search on all three BDA Apps. We
measure the number of log lines with these keywords as the
baseline effort.

To apply our approach for deployment verification, we
first recover execution sequences of the three BDA Apps,
when deployed on a cloud environment. We then compare
the two sets of log sequences (small-scale environment and
large cloud) and identify the delta set (the execution sequences

TABLE III
EFFORT REQUIRED TO VERIFY THE CLOUD DEPLOYMENT USING OUR

APPROACH VERSUS THE TRADITIONAL KEYWORD SEARCH.

Using our approach Using keyword search
execution # unique #log line

sequences log events with keyword
WordCount 19 64 467

PageRank 55 83 1,739
JACK 20 67 726

TABLE IV
REPEATED EXECUTION SEQUENCES BETWEEN RUNNING THE BDA APPS

ONCE, TWICE AND THREE TIMES.

once and twice (%) twice and three times (%)
WordCount 98.4 99.1

PageRank 95.0 95.1
JACK 99.5 99.8

without exact match). The last step involves searching for the
same keywords as the traditional approach to measure the
number of execution sequences and log events that are required
to examine.
Results

The results from Table III show that with our approach the
number of execution log sequences (and their corresponding
number of log events) to verify is 19(64), 55(83), and 20(67)
for WordCount, PageRank, and JACK respectively. However,
the number of raw log lines to verify after the keyword
search, i.e., the traditional approach, is 467, 1739, and 726 for
WordCount, PageRank, and JACK respectively. Therefore, our
approach provides 86%, 95%, and 97% effort reduction over

407

TABLE V
NUMBER OF LOG LINES GENERATED BY RUNNING BDA APPS ONCE,

TWICE AND THREE TIMES.

once twice three times
WordCount 78 K 309 K 393 K

PageRank 109 K 217 K 474 K
JACK 237 K 419 K 666 K

the traditional approach, ignoring the fact that verifying a log
line may require more effort than verifying a log event. Indeed,
verifying a log line requires checking the other log lines to get
a context of the failure, whereas the log events are already
shown in the context (i.e., the execution sequences). Also,
notice that our approach does not incur any instrumentation
overhead since the platform logs are already available.

Another interesting point is that when the input data grows,
several new execution sequences and log lines appear. That
is due to the fact that the behaviour is not present with
the smaller runs. However, when moving to bigger runs, the
execution sequences will not increase dramatically. The reason
is that most of the runs, in the abstract level, are identical.
Therefore, the size of the final sequences to verify will show
very minor increases. However, the log lines to be verified
using traditional approach always increase proportional to
the data. Table IV shows the number of repeated execution
sequences when running the same BDA App once, twice, and
three times. In Table V, we report the number of log lines to be
verified using the traditional approach for the same BDA App
executions. The large portion of repeated execution sequences
in the number of execution sequences vs. the rapid growth in
the number of log lines emphasizes the effectiveness of our
approach in terms of effort reduction during verification of the
deployment of a BDA App in the cloud.�
�

�
�

Our approach reduces the verification effort by be-
tween 86% to 97% when verifying the cloud deploy-
ment of BDA Apps.

B. RQ2: How Precise and Informative is Our Approach When
Verifying Cloud Deployments?

Motivation
As discussed in RQ1, a flagged sequence (using our ap-

proach) or a flagged log line (using the traditional approach),
might be caused by some other reasons than an actual de-
ployment failure. We consider such flagged sequences or log
events, e.g., those that are related to “ Task exception” and
“Speculative execution”, as false positive results that affect
the precision of the approaches. Therefore, in this question,
we compare the two approaches in terms of precision. We
also discuss how our approach facilitates the verification of
the flagged execution sequences.
Approach

In this research question, we categorize the flagged logs/ex-
ecution sequences by the traditional/our approach into two
classes: actual failures (true positives) and platform-related

events (false positives). To get the instances of the actual
failure, we intentionally injected three different failures, which
are commonly observed by BDA App developers [13], into
our experimental environment, during the execution of the
three subject programs. These three failures are all encountered
often in our real-life experience of using Hadoop in the large
industrial clouds. The three injected failures are as follows:

1) Machine failure. Machine failure is one of the common
system errors in distributed computing. To inject this
failure, we manually turn off one machine in the cluster.

2) Missing supporting library. A cluster administrator
may decide to expand the size of the cluster. However,
the new machines in the cluster may miss supporting
libraries or the versions of the supporting libraries may
be outdated. We inject this failure by removing one
required library of the analysis.

3) Lack of disk space. Disks often run out of space while
a BDA App is running on the platform due to the large
amount of generated intermediate data. We manually fill
up one of the machine’s disks to inject this failure.

Next, we manually analyzed the log sequences in the HTML
reports and identified any false positive instances.
Results

Table VI summarizes the number of false positives, total
number of flagged sequences/log lines, and the precision of
both approaches. The precision of our approach is 21, 38, and
10% for WordCount, PageRank, and JACK respectively. The
range of the number of false positive sequences to verify is 15
to 34 sequences (16-49 log events). However, the precision of
the traditional approach is 7, 84, and 10% for WordCount,
PageRank, and JACK respectively, while the range of the
number of false positive log lines to verify is 432 to 650
log lines. A more detailed analysis of the results shows
that the only case where the precision of our approach is
outperformed by traditional approach is with JACK BDA App
where one single exception is appearing in almost every log
line. Though the traditional approach is of higher precision,
however, the same exception produces 1,467 log lines that
must be examined each by hand to determine their context and
decided whether they are problematic or not. Unfortunately,
since a keyword approach does not provide any abstraction all
log lines would need to be examined carefully, even though
they all are instances of the same abstract problem.

Note that the recall for both approaches is 100%, since all
instances of log lines and execution sequences related to the
failures are identified by the keyword search. However, there
are cases that deployment failure might not be possible to
catch by a keyword search. For example, a temporary network
congestion may cause the pending queue to be very long, but
logs may record that the pending queue is too long without
making use of an “error” like string in the log line. In some
cases, a node in the cloud may even fail without recording any
error message [14]. In such situations, our approach is even
superior, since the traditional approach simply would not work
(as no “error” log lines are produced) and the developer would
miss such problems all together unless he or she examines

408

TABLE VI
NUMBER OF FALSE POSITIVES, TRUE POSITIVES, AND THE PRECISION OF BOTH OUR APPROACH AND THE TRADITIONAL KEYWORD SEARCH.

Using our approach Using keyword search
false positive true positive precision false positive true positive precision

WordCount 15 4 21% 432 35 7%
PageRank 34 21 38% 272 1467 84%

JACK 18 2 10% 650 76 10%

each log line. However, our recovered execution sequences
still would work, since it only depends on finding the delta
set of sequences when switching from the small to large cloud.

Another interesting aspect of our approach, which was the
initial motivation of this work, is the extra information (context
of a log line) that our approach provides for deployment
verification. Even after all the reduction that is performed
by the keyword search approach, 467 to 1,739 log lines
should be verified manually. As discussed earlier, there are
false positives in the flagged log lines. Distinguishing them
from true positives requires knowledge about the context of
each line (otherwise both categories contain the failure-related
keyword). Our approach provides such context by grouping
the log events in one execution sequence, which speeds up
the understanding and verification of the event.�

�

�

�

The precision of our approach for assisting deploy-
ment verification of BDA Apps in the cloud is compa-
rable with the precision of the traditional approach.
However, our approach provides additional context
information (execution sequences) that is essential
in speeding up the manual investigation of flagged
problems.

VII. DISCUSSION

In this section, we discuss other possible features of our
approach. In particular, one feature is to support developers
to understand the runtime differences when migrating BDA
Apps from one platform to another.

To find the most optimal and economical platform for
BDA Apps, a BDA App may need to be migrated from
one Big Data Analytics platform to another [1]. This type
of redeployments requires similar verifications as discussed in
the research questions. Therefore, developers need an approach
to help them in identifying any run-time behaviour change,
caused by the migration. Identifying the differences between
the execution of the BDA App in the two environments help
verifying the new deployment and flag any potential failure or
anomalies.

To assess the ability of our approach for identifying the
potential redeployment problems in the cloud, we migrated
the PageRank program from Hadoop to Pig platform. Pig [15]
is a Hadoop-based [4] platform designed for analysis of
massive amounts of data. To reduce the effort of coding
in the MapReduce paradigm, Pig provides a high-level data
processing language called Pig Latin [15]. Using Pig Latin,
developers can improve their productivity by focusing on the

process of data analysis instead of writing the boiler-plating
MapReduce coding [16].

We ran PageRank three times on Hadoop and three times
on Pig. After examining the sequence reports we could note
the following differences between both platforms:
1. Hadoop-based PageRank Has More MapReduce Steps than
Pig-based PageRank

In our implementation, the Hadoop-based PageRank con-
sists of four MapReduce steps, while the Pig-based PageRank
has eight lines of Pig scripts (each line is one step in the
pipeline of the data analysis). However, in the real-life execu-
tion, the Pig platform groups the eight steps of data process
into three MapReduce steps. Since the Hadoop platform does
not have such a feature of grouping MapReduce steps, the
execution of Hadoop-based PageRank has four MapReduce
steps, as it is written.
2. Hadoop-based PageRank Has More Tasks than Pig-based
PageRank

We examine the distribution of sequences in both im-
plementations of PageRank. The results show that the total
number of log sequences from the Hadoop-based PageRank
is much larger than the Pig-based PageRank. For example,
one run of the Hadoop-based PageRank generates, in total,
over 700 execution log sequences in the Task log, while this
number by the Pig-based PageRank is less than 30. This result
indicates that the Pig-based PageRank splits the execution into
a significantly smaller number of tasks than the Hadoop-based
one. The reason is that based on the Hadoop instructions [4],
the number of Map Tasks should be set to a relatively large
number. Therefore, in our case study, the number of Map Tasks
is configured to 200. However, Pig optimizes the platform
configurations at run-time and reduces the number of Map
Tasks to a smaller number to get better performance.

Identifying such differences would be extremely difficult by
only looking at the raw log lines. Thus our approach not only
assists developers of BDA Apps with the first deployment in
the cloud but also helps them with any redeployment. We do
note that our approach only works when the new platform is
a derivative of the older platform (e.g., in the case of Pig,
it provides a high-level abstraction to create programs that
eventually still run on MapReduce. Hence we can compare
the eventual MapReduce execution for the Pig program against
the old MapReduce execution).

VIII. LIMITATIONS AND THREATS TO VALIDITY

We present the limitations and threats to validity for our
approach in this section.

409

A. External Validity

As a proof of concept, we illustrate the use of our approach
to address the challenges encountered in our experience. How-
ever, there are still other challenges of developing and testing
BDA Apps, such as choosing an architecture that optimizes for
cost and performance [1]. Our approach may not be able to
address other challenges. Additional case studies are needed to
better understand the strengths and limitations of our approach.

We only demonstrate the use of our approach on Hadoop,
one of the most widely adopted underlying frameworks for
BDA Apps, with three injected failures. In practice, we have
tried our approach on several commercial BDA Apps on
other underlying platforms. The only effort for adapting our
approach to other platforms of BDA Apps is to determine
the parameters for abstracting and linking the platform logs.
Additional studies on other open source and commercial
platforms with other types of failures are needed to study the
generalizability of our approach.

All our experiments are carried out on a small-scale private
experimental cluster, which mimics the large cloud with 40
cores. However, a typical environment for BDA Apps has
more than 1,000 cores, such as Amazon EC2 [17]. The logs of
such large-scale clouds do lead to considerably more logs and
more sequences. From our experiences using our approach
in practice on such large clouds, we have found that our
approach performs even better than grep since the abstraction
and sequencing leads to a drastic reduction in the amount of
data. Such observation was noted in our case study as well.
One interesting note is to support such large clouds we needed
to re-implement our own approach to run in a cloud setting
using the Hadoop platform (since we needed to process a very
large amount of logs and summarize them into a small number
of event sequences). Since our log linking is designed to be
localized, for example, linking Hadoop task logs only needs
the logs from one task, our approach is parallelizable with
minimal effort.

B. Construct Validity

We use abstracted execution logs to perform log clustering
and to learn the runtime behaviour. However, the execution
logs may not contain all the information of the runtime
behaviour. Other types of dynamic information, such as execu-
tion tracing, may have more details about the execution of the
BDA Apps. We use the execution logs rather than other more
detailed dynamic information in this work, because execution
logs are readily available and are widely used in practice
(leading to no performance overhead). We leverage the logs
from the underlying platform of the BDA Apps (e.g., Hadoop)
instead of the logs from the Apps themselves. The purpose of
this work is not to identify the bugs in the BDA Apps but
rather assist in reducing the effort in deploying BDA Apps
in a cloud environment. Therefore, the platform logs provide
more and better information than application logs.

Identifying the re-occurrences of sub-sequences can also be
used in our approach to reduce the event sequences, similar
to our method of eliminating repetitions in Section IV. In

our experience, we performed sub-sequence detection on the
recovered event sequences and found that it did not suppress
execution log sequences as good as our repetition elimination
approach. In addition, the process of sub-sequence detection
is very time consuming and slows down the overall analysis.
Therefore, we did not use the sub-sequence detection in
practice. For other BDA Apps and other distributed platforms,
sub-sequence detection may be effective in reducing the log
sequences.

IX. RELATED WORK

In this section, we discuss the related work in two areas.

A. Dynamic Software Understanding

Fischer et al. [18] instrument the source code and produce
different kinds of visualizations to track and to understand
the evolution of software at the module level. Kothari et
al. [19] propose a technique to evaluate the efficiency of
software feature development by studying the evolution of
call graphs generated by execution traces. Röthlisberger et
al. [20] implement an IDE called Hermion, which captures
run-time information from an application under development.
The run-time information is used to understand the navigation
and browsing of source code in an IDE.

Recent work by Beschastnikh et al. [21] designed an
automated tool that infers execution models from logs. The
models can be used by developers to verify and diagnose bugs.
Our techniques aim to provide context of logs when deploying
BDA Apps in cloud.

In addition, Cornelissen et al. [22] perform a systematic
survey of using dynamic analysis to assist in program un-
derstanding and comprehension. FIELD is a development
environment created by Reiss et al. [23] that contains the
features to dynamically understand the execution of a program.
However, the environment is rather designed for traditional
application development, and not for the cloud deployment of
BDA Apps.

B. Hadoop Log Analysis

Hadoop typically runs on large-scale clusters of machines
with hundreds or even thousands of nodes. As a result, large
amounts of log data are generated by Hadoop. To collect and
analyze the large amounts of log data from Hadoop, Boulon et
al. built Chukwa [24]. This framework monitors Hadoop clus-
ters in real-time and stores the log data in Hadoop’s distributed
file system (HDFS). By leveraging Hadoop’s infrastructure,
Chukwa can scale to thousands of nodes in both collection
and analysis. However, Chukwa focuses more on collecting
logs without the ability to perform complex analysis.

Tan et al. introduced SALSA, an approach to automatically
analyze Hadoop logs to construct state-machine views of the
platform’s execution [25]. The derived state-machines are used
to trace the data-flow and control-flow executions. SALSA
computes the histograms of the durations of each state and uses
these histograms to estimate the Probability Density Functions
(PDFs) of the distributions of the durations. SALSA uses

410

the difference between the PDFs across machines to detect
anomalies. Tan et al. also compare the duration of a state
in a particular node with its past PDF to determine if the
duration exceeds a determined threshold and can be flagged
as an anomaly.

Another related work to this paper is the approach of Xu
et al. in [26], which uses the source code to understand the
structure of the logs. They create features based on the constant
and variable parts of the log messages and apply the Principal
Component Analysis (PCA) to detect the abnormal behaviour.

All the above approaches are all designed for system
administrators in managing their large clusters. Our approach,
on the other hand, aims to assist developers in comparing the
deployed system on such large clusters against the develop-
ment cloud.

X. CONCLUSION

Developers of BDA Apps typically first develop their appli-
cation with a small sample of data in a pseudo cloud, then
deploy the application in a large scale cloud environment.
However, the larger data and more complex environments
lead to unexpected executions of the underlying platform.
Such unexpected executions and their context cannot be easily
uncovered by traditional approaches.

In this paper, we propose an approach to uncover the
different behaviour of the underlying platforms for BDA Apps
between runs with small testing data and large real-life data
in a cloud environment. To evaluate our approach, we perform
a case study on Hadoop, a widely used platform, with three
BDA Apps. The case study results show the strength of our
approach in two aspects:

1) Our approach drastically reduces the verification effort
by 86-97% when verifying the deployment of BDA
Apps in the cloud.

2) The precision of our approach is comparable with the
traditional keyword search approach. However, the prob-
lematic logs reported by our approach are much fewer
than using keyword search, which makes it possible to
manually explore the problematic logs.

In addition, our approach provides additional context informa-
tion (execution sequences). Based on the context information,
developers can explore the execution sequences of the logs to
rapidly understand the cause of problematic log lines.

REFERENCES

[1] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” interactions, vol. 19, no. 3, pp. 50–59, May 2012.

[2] N. Wingfield, “Virtual product, real profits: Players spend on zynga’s
games, but quality turns some off,” Wall Street Journal.

[3] “Ebay is powered by hadoop,” http://wiki.apache.org/hadoop/PoweredBy.
[4] T. White, Hadoop: The Definitive Guide. Oreilly & Associates Inc,

2009.
[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007.

[6] S. Sorkin, “Large-scale, unstructured data retreival and analysis using
splunk,” Technical paper, Splunk Inc, 2009.

[7] P. Mundkur, V. Tuulos, and J. Flatow, “Disco: a computing platform
for large-scale data analytics,” in Erlang ’11: Proc. of the 10th ACM
SIGPLAN workshop on Erlang. New York, NY, USA: ACM, 2011, pp.
84–89.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, January
2008.

[9] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. Godfrey, M. Nasser,
and P. Flora, “An Exploratory Study of the Evolution of Communicated
Information about the Execution of Large Software Systems,” in WCRE
’11: Proceedings of the 18th Working Conference on Reverse Engineer-
ing, Lero, Limerick, Ireland, October 2011.

[10] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” J. Softw.
Maint. Evol., vol. 20, no. 4, pp. 249–267, 2008.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999.

[12] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in ICSM ’08: Proc. of 24th IEEE
International Conference on Software Maintenance. Beijing, China:
IEEE, 2008, pp. 307–316.

[13] “America’s most wanted - a metric to detect persistently faulty ma-
chines in hadoop,” http://hadoopblog.blogspot.com/2010/06/americas-
most-wanted-metric-to-detect.html.

[14] D. Cotroneo, S. Orlando, and S. Russo, “Failure classification and
analysis of the java virtual machine,” in Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems, ser. ICDCS
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 17–.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in SIGMOD ’08: Proc.
of the 2008 ACM SIGMOD international conference on Management of
data. New York, NY, USA: ACM, 2008, pp. 1099–1110.

[16] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Building a high-
level dataflow system on top of Map-Reduce: the Pig experience,” Proc.
VLDB Endow., vol. 2, no. 2, pp. 1414–1425, 2009.

[17] “Amazon ec2,” https://aws.amazon.com/ec2/.
[18] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind, “System evolution

tracking through execution trace analysis,” in IWPC ’05: Proceedings of
the 13th International Workshop on Program Comprehension. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 237–246.

[19] J. Kothari, D. Bespalov, S. Mancoridis, and A. Shokoufandeh, “On
evaluating the efficiency of software feature development using alge-
braic manifolds,” in ICSM ’08: International Conference on Software
Maintenance, 2008, pp. 7–16.

[20] D. Röthlisberger, O. Greevy, and O. Nierstrasz, “Exploiting Runtime
Information in the IDE,” in ICPC ’08: Proceedings of the 2008 The 16th
IEEE International Conference on Program Comprehension. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 63–72.

[21] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in ESEC/FSE ’11: Proc. of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of
software engineering. New York, NY, USA: ACM, 2011, pp. 267–277.

[22] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Trans. Softw. Eng., vol. 35, pp. 684–702,
September 2009.

[23] S. Reiss, The Field programming environment: A friendly integrated
environment for learning and development. Springer, 1995, vol. 298.

[24] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa, a large-scale monitoring system,” in CCA ’08: Proc. of the
first workshop on Cloud Computing and its Applications, 2008, pp. 1–5.

[25] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Salsa:
analyzing logs as state machines,” in WASL’08: Proceedings of the First
USENIX conference on Analysis of system logs. Berkeley, CA, USA:
USENIX Association, 2008, pp. 6–6.

[26] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP ’09:
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. New York, NY, USA: ACM, 2009, pp. 117–132.

411

