
1

Experiences Using Static Analysis
to Find Bugs

Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix,
and William Pugh

Abstract—Static analysis examines code in the absence of input data and without running the code, and can
detect potential security violations (e.g., SQL injection), runtime errors (e.g., dereferencing a null pointer) and logical
inconsistencies (e.g., a conditional test that cannot possibly be true). While there is a rich body of literature on algorithms
and analytical frameworks used by such tools, reports describing experiences with such tools in industry are much harder
to come by.
We describe FindBugs, an open source static analysis tool for Java, and experience using it in production settings.
FindBugs does not push the envelope in terms of the sophistication of its analysis techniques. Rather, it is designed to
evaluate what kinds of defects can be effectively detected with relatively simple techniques and to help us understand
how such tools can be incorporated into the software development process. FindBugs has been downloaded more than
580,000 times and used by many major companies and software projects.
We report on experience running FindBugs against Sun’s JDK implementation, using Findbugs at Google where it has
been used for more than a year and incorporated into their standard development process, and preliminary results from
a survey of FindBugs users.

Index Terms—Static analysis, FindBugs, code quality, bug patterns, software defects, software quality

F

1 INTRODUCTION

SOFTWARE quality is important, but often
imperfect in practice. Many different tech-

niques are used to try to improve software
quality, including testing, code review, and for-
mal specification. FindBugs is an example of a
static analysis tool that looks for coding defects
[1], [2], [3]. These tools evaluate software in the
abstract, without executing them or consider-
ing a specific input.

Rather than trying to prove that the code
fulfills its specification, static analysis tools look
for violations of reasonable or recommended
programming practice. Thus, they look for
places where code might dereference a null
pointer or overflow an array. Tools might also
flag an issue such as a comparison that can’t
possibly be true; while the comparison will not
cause a failure or exception, the existence of
such a comparison may suggest that it might
have resulted from a coding error, leading to
incorrect program behavior. Some tools also

Manuscript received Feb 14th

flag or enforce programming style issues, such
as naming conventions or the use of curly
braces in conditionals and looping structures.

The lint program for C programs [4] is gener-
ally considered to be the first widely used static
analysis tool for defect detection, although by
today’s standards it is rather limited. There
has been a huge amount of work in the area
over the past decade, driven substantially by
concerns over defects that lead to security vul-
nerabilities, such as buffer overflows, format
string vulnerabilities, SQL injection and cross
site scripting. There is a vibrant commercial
industry in advanced (and expensive) static
analysis tools, [5], [6] and a number of compa-
nies have their own proprietary in house tools,
such as Microsoft’s PREfix tool [7] Many com-
mercial tools are very sophisticated, using deep
analysis techniques. Some static analysis tools
can use or depend upon annotations that de-
scribe invariants and other intended properties
of software that can’t be easily inferred, such
as the intended relationship between function
parameters.

2

The FindBugs project started out as an ob-
servation, then an experiment, and has snow-
balled into a widely used tool that has been
downloaded more than a half million times
all over the world and used by many major
companies. The observation was that some Java
programs contained blatant mistakes that could
be found with fairly trivial analysis techniques.
Initial experiments showed that even “produc-
tion quality” software contained such mistakes
and that even experienced developers made
such mistakes. FindBugs has grown over time
with careful attention to mistakes that actually
occur in practice and to the techniques and
features needed to effectively incorporate it
into production software development.

FindBugs now recognizes more than 300 pro-
gramming mistakes and dubious coding id-
ioms that can be identified using simple anal-
ysis techniques. FindBugs also includes some
more sophisticated analysis techniques devised
to help effectively identify certain issues, such
as dereferencing of null pointers, that require
such techniques and occur with enough fre-
quency to warrant their development.

Unlike some other tools designed to provide
security guarantees, FindBugs doesn’t try to
identify all defects of a particular category or
provide confidence that software doesn’t con-
tain a particular kind of defect. Rather, Find-
Bugs is designed to effectively identify “low
hanging fruit” – to cheaply identify defects
with a reasonable confidence that the issues
found are ones that developers will want to
review and remedy.

Many developers use FindBugs on an ad-hoc
basis, and a growing number of projects and
companies are making it part of their standard
build and testing system. Google has incor-
porated FindBugs into their standard testing
and code review process, and has fixed more
than 1,000 issues in their internal code base
identified by FindBugs.

This article will review the types of issues
that are identified by FindBugs, discuss the
techniques used to identify new bug patterns
and to implement detectors for those bug pat-
terns, discuss experiences with use of FindBugs
on Sun’s JDK and on Google’s Java code base,
and provide some preliminary results of sur-

veys and interviews done with FindBugs users.

2 DEFECTS IN REAL CODE

IN order to appreciate static analysis for de-
fect detection, and FindBugs in particular,

it is useful to be familiar with some sample
defects that can be found in real code. All
of the examples given in this section come
from Sun’s JDK 1.6.0 implementation, and are
representative of code seen elsewhere.

One of the most unexpectedly common de-
fects is the infinite recursive loop: a function
that always returns the result of invoking it-
self. This bug detector was originally written
because some freshman students had trouble
understanding how Java constructors worked.
But when we ran the detector against build 13
of Sun’s JDK 1.6, we found 5 cases, including

public String foundType() {
return this.foundType();

}

This code was intended to be a getter method
for the field foundType, but because of the
extra parenthesis, it always recursively calls
itself until the stack overflows. There are a va-
riety of mistakes that lead to infinite recursive
loops, but that can all be found with the same
simple techniques. Google has found and fixed
more than 70 infinite recursive loops in their
codebase, and they occur fairly frequently in
other code bases we’ve examined.

Another common bug pattern is when a
method is invoked and its return value is ig-
nored, despite the fact that it doesn’t make
sense to ignore the return value. An example is
the statement s.toLowerCase() where s is a
String. Since Strings in Java are immutable, the
toLowerCase() method returns a new String,
and has no effect on the string on which it
was invoked. The developer probably intended
to write s = s.toLowerCase(). Another ex-
ample is when a developer creates an exception
but forgets to throw it:

try { ... }
catch (IOException e) {

new SAXException(....);
}

3

FindBugs uses an intraprocedural dataflow
analysis to identify places where a null pointer
could be dereferenced [1], [3]. Although some
defects require examining dozens of lines to
understand, the majority of the issues that
were detected can be understood by examining
only a few lines of code. One common case
is using the wrong relational or boolean op-
eration, as in a test to see if (name != null
|| name.length > 0). The && and || op-
erators are evaluated using short-circuit eval-
uation: the right hand side is evaluated only
if it needs to be evaluated to determine the
value of the expression. In this case, the ex-
pression name.length will only be evaluated
when name is null, leading to a null pointer
exception. The code would be correct if &&
had been used rather than ||. FindBugs also
identifies situations where a value is checked
for null in some places and unconditionally
dereferenced in others. For example, in the
following code, the variable g is checked to see
if it is null, but if it is null the next statement
will always deference it, resulting in a null
pointer exception:

if (g != null)
paintScrollBars(g,colors);

g.dispose();

FindBugs also performs an intraprocedural
type analysis that takes into account informa-
tion from instance of tests, and finds errors
such as checked casts that are guaranteed to
throw a class cast exception, and places where
two objects that are guaranteed to be of un-
related types are compared for equality (e.g.,
where a StringBuffer is compared to a String
or the bug shown in Figure 1).

There are many other bug patterns, some
covering obscure aspects of the Java APIs and
languages. A particular pattern might only find
one issue in several million lines of code, but
collectively they find a significant number of
issues. Examples include checking if a dou-
ble value is equal to Double.NaN (nothing is
equal to Double.NaN, not even Double.NaN)
or performing a bit shift of a 32 bit int value
by a constant value greater than 31.

2.1 Defects Not Found By FindBugs

FindBugs does not look for or report a number
of potential defects that are reported by more
powerful tools [7], [5], [6]. This is motivated by
two desires: to keep the analysis relatively sim-
ple, and to avoid generating too many warn-
ings that do not correspond to true defects.

One such case is finding null pointer deref-
erences that occur only if a particular path
through the program is executed. For example
of such an issue was reported [8] by Reasoning
in Apache Tomcat 4.1.24. The tool warns that
if the body of the first if statement is not exe-
cuted, but the body of the second if statement
is executed, then a null pointer exception will
occur:

HttpServletResponse hres = null;
if (sres instanceof HttpServletResponse)

hres = (HttpServletResponse) sres;

// Check to see if available
if (!(...).getAvailable()) {

hres.sendError(...)

The problem is that the analysis does not
know if that path is feasible. Perhaps it is the
case that the condition in the second statement
can only be true if the condition in the first
statement is true. In some cases, the conditions
may be closely related and some simple the-
orem proving may be able to show whether
the path is feasible or infeasible. But show-
ing that a particular path is feasible can be
much harder, and in general is undecidable.
Rather than worry about whether particular
paths are feasible, FindBugs looks for branches
or statements that if executed, guaranteed that
a null pointer exception will occur. We have
found that almost all of the null pointer issues
we report are either real bugs, or inconsistent
code with branches or statements that can’t be
executed and that wouldn’t pass a code review
if the inconsistency was noticed.

We have also not pursued checks for array
indices being out of bounds. Detecting these
errors requires tracking relations between var-
ious variables (e.g., is i less than the length of
a), and can become arbitrarily complicated. It is
possible that some simply techniques could ac-
curately report some obvious bugs, but we’ve

4

not yet pursued that.

3 NUTS AND BOLTS OF FINDBUGS

F INDBUGS has a plugin architecture, in
which detectors can be defined, each of

which may report several different bug pat-
terns. Rather than use a pattern language for
describing bugs (as done in PMD [9] and Metal
[10]), FindBugs detectors are simply written
in Java, using a variety of techniques. Many
simple detectors use a visitor pattern over the
classfiles and/or the method bytecodes. Detec-
tors have access to information about types,
constant values and special flags, as well as
values stored on the stack or in local variables.
Detectors can also traverse the control flow
graph, using the results of data flow analysis
such as type information, constant values and
nullness. The data flow algorithms all generally
use information from conditional tests, so that
information from instanceof tests and null
tests are incorporated into the analysis results.

FindBugs does not perform interprocedural
context sensitive analysis. However, many de-
tectors make use of global information such
as subtype relationships and which fields are
accessed across the entire application. A few
detectors use interprocedural summary infor-
mation, such as which method parameters are
always dereferenced.

Each bug pattern is grouped into a category
(e.g., correctness, bad practice, performance
and internationalization), and each report of
a bug pattern is assigned a priority of high,
medium or low. The priorities are determined
by heuristics unique to each detector/pattern,
and are not necessarily comparable across bug
patterns. In normal operation, FindBugs does
not report low priority warnings.

Perhaps the most important aspect of Find-
Bugs is how new bug detectors are developed:
by starting with real bugs, and developing
the simplest possible technique that effectively
finds those bugs. This approach often allows us
to go from finding a particular instance of a bug
to implementing a detector that can effectively
find it in a matter of hours. Many bugs are
really very simple; one of the bug patterns
most recently added to FindBugs is when an

int value is cast to a char and the result
is checked to see if it is -1. Since the char
type in Java is unsigned, this check will never
be true. This bug detector was inspired by a
post on http://worsethanfailure.com/,
and within less than an hour this project had
implemented a detector that found 11 such
errors in Eclipse 3.3M6.

FindBugs can be run from the command
line, using Ant or Maven, within Eclipse or
NetBeans, or in a stand alone GUI (Figure
1). The analysis results can be saved in XML,
which can then be further filtered, transformed,
or imported into a database. FindBugs supports
two different mechanisms that enable users
and tools to identify corresponding warnings
from different analysis runs even if line num-
bers and other program artifacts have changed
[2]. This allows tools to determine which issues
are new, and to keep track of audits and human
reviews of an issue.

4 EXPERIENCES WITH AND USAGE OF
FINDBUGS

W E previously reported [11] on an eval-
uation of the issues found by Find-

Bugs in Sun’s JDK 1.6.0 implementation. To
briefly summarize, we looked at each FindBugs
medium or high priority correctness warning
that was present in one build and not reported
in the next build, but the class containing
the warning was still present. Of a total of
53 such warning removals, 37 were due to a
small targeted program change that seemed to
be narrowly focused on remedying the issue
described by the warning. Five were program
changes that changed the code such that Find-
Bugs no longer reported the issue, but aspects
of the underlying issue were not completely
addressed. The remaining 11 warnings disap-
peared due to substantial changes or refactor-
ings that had a larger scope than the removal
of the one defect.

Our previous work also included a manual
evaluation of all of the medium and high pri-
ority correctness warnings in build 105 of (the
official release). We classified the 379 medium
and high priority correctness warnings as fol-
lows:

5

Fig. 1. Screenshot of the FindBugs Swing GUI, reviewing a bug in Sun’s JDK

• 5 were due to bad analysis by FindBugs (in
one case, due to not understanding that a
method call could change a field).

• 160 were in unreachable code or likely to
have little or no functional impact.

• 176 seemed to have functional impact.
• 38 seemed have substantial functional im-

pact: the method containing the warning
would clearly behave in a way substan-
tially at odds with its intended function.

A detailed breakdown of the classification of
the defects associated with each bug pattern are
provided in our previous paper [11]. Clearly,
any such classification is open to interpretation,
and it is likely that other reviewers would
produce slightly different classifications. Also,
our assessment of the functional impact may
differ from the actual end-user perspective. For
example, even if a method is clearly broken, the
method might never be called and might not be
invokable by user code. However, given the lo-
calized nature of many of the bug patterns, we
have some confidence in the general soundness
of our classification.

4.1 Experiences at Google
Google’s use of FindBugs has evolved over the
last two years in three distinct phases. We used
the lessons learned during each phase to plan
and develop the next phase.

The first phase involved automating the run-
ning of FindBugs over all newly checked in
Java source code, and storing the generated
warnings. A simple web interface let develop-
ers check their project for possible bugs and
mark false positives. Our initial database could
not track warnings over different versions, and
as a result the web interface saw little usage.
Developers could not determine which warn-
ings applied to which file versions, or whether
warnings were fresh or stale. When a defect
was fixed, this event was not reported by our
process. Such stale warnings have a greater
negative impact on the developer’s user experi-
ence than a false positive. Successfully injecting
FindBugs into Google’s development process
was not as simple as making all warnings avail-
able outside of an engineer’s normal workflow.

For the second phase, this project imple-
mented a service model where we (David and
John) spent half the time evaluating warnings

6

and reporting those we decided were signifi-
cant defects in Google’s bug tracking systems.
Over the course of six months this project
evaluated several thousand FindBugs warnings
and filed over 1000 bug reports. At first this
effort focused on bug patterns chosen using our
own opinions of the different patterns’ impor-
tance. As we gained experience and feedback
from developers, we prioritized the evaluation
based on our prior empirical results. We ranked
the different patterns using a combination of
the observed false positive rate and the ob-
served fix rate for issues we filed as bugs. Thus,
we spent more time evaluating the warnings
that were more likely to actually get fixed.
This ranking scheme carried over into the third
phase, as we noticed that our service model
would not scale well as Google grew.

It was observed that in many cases, filing
a bug report was more effort than simply
fixing the code. To better scale the operation,
we needed to move the analysis feedback
closer to the development workflow. In the
third and current phase, we take advantage of
Google’s code review policy and tools. Before
code changes are checked in to Google’s source
control system, they must first be reviewed by
another engineer. Different tools are available
to support this review process; one of the
more sophisticated is Mondrian, an internal
web based review tool [12].

Mondrian allows a reviewer to add inline
comments to the code that are visible to
other Mondrian users, including the original
requester. Engineers discuss the code using
these comments, and note completed modifi-
cations. For example, a reviewer might request
in an inline comment, “Please rename this
variable.” In response, the developer would
make the requested change and reply to the
original comment with an inline “Done.” We let
Mondrian users see FindBugs, and other static
analysis, warnings as inline comments from
our automated reviewer, BugBot. We provide
a false positive suppression mechanism, and
allow them to filter the comments displayed
by ‘confidence,’ from highest to lowest. Each
user selects the minimum confidence level he
or she wishes to see, which suppresses all lower
ranked warnings.

This system scales quite well, and we have
seen more than 200 users verify or suppress
thousands of warnings in the last six months.
We still have improvements to make, such as
automatically running FindBugs on each de-
velopment version of a file while it is being
reviewed and before it is checked in. The main
lesson to take away from this experience is that
developers will pay attention to, and fix, Find-
Bugs warnings if they appear as a seamless part
of their workflow. It helps that code reviewers
can also see the warnings and request fixes as
they review the code. Our ranking and false
positive suppression mechanisms are crucial to
keeping the displayed warnings relevant and
valuable, so that users don’t start ignoring the
more recent, important warnings along with
the older, more trivial ones.

4.2 Survey of FindBugs users

Many studies on static analysis tools focus on
their correctness (are the warnings they iden-
tify real problems), their completeness (do they
find all problems in a given category), or their
performance in terms of memory and speed. As
organizations start to integrate these tools into
their software processes, other considerations
need to be made about the interactions between
these tools and the users or processes. Do these
tools slow down the process with unnecessary
warnings, or is the value provided by these
tools (in terms of problems found) worth the
investment in time? What is the best way to in-
tegrate these tools into a given process? Should
all developers interact with the tools or should
quality assurance specialists winnow out less
useful warnings?

There are not many rules of thumb about the
best ways to use static analysis tools. Instead
there are a hodgepodge of methods used by
different software teams. Many users do not
even have a formal process for finding de-
fects using tools—they only occasionally run
the tools and are not consistent in the ways
they respond to warnings. In the end users
may not derive full value from static analysis
tools, and some may discontinue use of these
tools because of an incorrectly perceived lack
of value.

7

The FindBugs team has started a research
project which aims to identify and evaluate tool
features, validate or invalidate assumptions
held by tool vendors, and provide guidance
for individuals and teams wanting to use static
analysis tools effectively. At this early stage in
our research, it is not clear what the problems
are and what questions need to be investigated
in more depth. Hence we are conducting some
surveys and interviews to get qualitative feed-
back from FindBugs users. We want to find out
who our users are, how they use FindBugs,
how they integrate it into their processes, and
what their perception of FindBugs’ effective-
ness is. Beyond surveys and interviews, we
hope to spend time observing users in their
work environments to capture the nuances of
their interactions with this tool.

The following sections detail some observa-
tions from the surveys and interviews.

4.2.1 On FindBugs’ utility and impact

The central challenge for tool creators is to
identify warnings that users are concerned
with. Tools like FindBugs assess each warn-
ing based on its severity (how serious is the
problem in general) and the tool’s confidence
in the analysis. Though, as one user pointed
out, users are really interested in risk—high risk
warnings which are those that may actually
cause the code to fail and expose the organiza-
tion. A risk-based assessment will be different
from organization to organization and from
project to project. Since FindBugs does not have
access to an all-knowing context-specific oracle,
it cannot perfectly serve every user. Our survey
and feedback from users show that FindBugs is
finding many problems users are interested in,
and users are willing to invest the time needed
to review these warnings.

Recall that FindBugs prioritizes its warnings
into high, medium and low priority levels. Our
survey indicates that most users review at least
the high priority warnings in all categories
(Table 1). This is the expected outcome, since
high priority warnings are intended to be the
sorts of problems any user would want to
fix. A surprising number of users also review
lower priority warnings (though the review

TABLE 1
Proportion of users that review at least high

priority warnings for each category (out of 252)

Bad Practice 96% of users
Performance 96%
Correctness 95%
Multithreaded Correctness 93%
Malicious Code Vulnerability 86%
Dodgy 86%
Internationalization 57%

categories vary from user to user). This in-
dicates that while high priority warnings are
relevant to most users, lower priority warnings
may or may not be relevant depending on the
user’s context. Users need to tune FindBugs
to filter out detectors they don’t care about at
lower priority levels.

Many users run FindBugs out of the box
without any tuning—55% of our survey re-
spondents indicated that they do not do any fil-
tering of bug patterns. One user suggested that
FindBugs provide a number of preset configu-
rations that selectively filter out detectors de-
pending on the user’s context. Users working
on web applications have different priorities
from those working on desktop applications;
organizations want to be warned about debug-
ging facilities such as references to JUnit when
the code is about to be released but not while
it is under development [6]. More research
is needed to determine how to cluster users
into different contexts, and which detectors are
most relevant for each context.

The willingness of users to review warnings
and fix issues also depends on some charac-
teristics of their project and organization such
as the time investment they are willing to put
into each review and their tolerance for false
positives. Users analyzing older, more stable
code bases are less likely to change code in
response to a warning than users analyzing re-
cently written code. We suspect that FindBugs
warnings have relatively low review times and
are easy to fix, and that there are few false
positives for those detectors that users care
about. We plan to do more studies to examine
this more closely.

Some users are wary of “tuning code” to

8

FindBugs by modifying the code to remove
even low priority warnings or adding annota-
tions. Some other users willingly make these
modifications, even if they are convinced that
the code in question cannot actually behave
incorrectly. Of course, this is easier to do if the
code is new. Some users do this to increase
their confidence in the quality of their code
(one user commented: “the effort to reformu-
late source code to avoid FindBugs warnings is
time well spent”). Some users who are unaware
of FindBugs’ warning suppression facilities fix
all warnings to ensure that future warnings are
not drowned out by older unresolved issues.
Particularly on issues of style, this kind of
tuning may lead to conflicts between different
tools that users have to resolve. An example is
the use of annotations to aid null pointer deref-
erencing detectors. FindBugs provides a set of
annotations, but so do some other tools. To
prevent a conflict for users, some vendors and
users have come together to propose JSR 305,
a Java Specification Request that standardizes
annotations used to indicate nullness (among
other things) [13], [14].

Another observation is that users may
choose to ignore some warnings because they
have taken steps to mediate the problems using
other facilities. For example, a user indicated
that he ignored warnings associated with web
security because he relied heavily on input val-
idation and white-listing to control program in-
puts. Input validation is a natural way to fight
SQL injection, cross-site scripting and other
security problems. Unfortunately static analy-
sis tools are sometimes unaware of the input
validation processes, and may report warnings
even if effective input validation schemes are
in place.

4.2.2 On organizational policies
Many survey participants do not have formal
policies for using FindBugs (Table 2), and use it
in an ad hoc way (i.e. a developer occasionally
runs it manually). Sometimes there are weeks
between two run of FindBugs, as users are
focused on adding features and fighting the
problems they are aware of. Indeed it appears
that many users had not considered that formal
policies may make their usage of tools more

TABLE 2
Formal policies for using FindBugs

Our developers only occasionally
run FindBugs manually

60% of users

No policy on how soon each Find-
Bugs issue must be human re-
viewed

81%

Running FindBugs is NOT required
by our process, or by management

76%

FindBugs warnings are NOT in-
serted into a separate bug tracking
database

83%

No policy on how to handle warn-
ings designated “Not A Bug”

55%

effective until they took the survey. Most re-
spondents indicated that their organizations do
not enforce any limits on how long warnings
can go unreviewed. This makes it likely that
many reviews may take place closer to the
release date, when the pressure means that
the emphasis is more on suppressing warnings
than fixing code.

A few organizations do have policies ranging
from requiring a FindBugs run as part of a
quality assurance or release process, to break-
ing the central build or disallowing a code
check-in if there are any unresolved FindBugs
warnings. Other policies include automatically
inserting warnings into a bug tracker, having
one or two people that maintain FindBugs and
review warnings, requiring that warnings are
human reviewed within a given time limit or
warning count threshold, integrating FindBugs
into a code review process, running FindBugs
automatically over night and emailing prob-
lems to developers, and using a continuous
build server to display currently active warn-
ings.

Many teams realize the need for a way to
suppress warnings that are not bugs or that
are low impact issues (Table 3). FindBugs fil-
ters were the most common method, followed
by source level suppression using annotations
(such as @SuppressWarnings). As mentioned
above, some users change the code anyway
to make the warning go away. Others use
FindBugs filters, and some have internal scripts
or processes for suppression. Source level sup-
pression (by inserting line level, method level

9

TABLE 3
Handling issues designated “Not A Bug”

Filter out using FindBugs filters 25% of users
Suppress using @SuppressWarnings 17%
Close in a bug tracker or database 5%
No policy 55%

or class level annotations) is also attractive to
some users because the suppression informa-
tion is readily available to anyone who works
on that code in the future. Source level suppres-
sion may be more effective if the annotations
are automatically inserted in response to action
by a reviewer.

In many cases, the person who writes the
code is responsible for reviewing the warning,
deciding if it is relevant, and resolving the
issue. Many organizations place the responsi-
bility for deciding if a warning is a bug in the
hands of a single individual. (Eleven percent of
users said a team does the review, and fourteen
percent indicated that a reviewer can make in-
dependent decisions only for trivial cases.) This
raises questions about whether two different
individuals will see warnings the same way.
We plan to study this effect in FindBugs.

5 CONCLUSION

I T has become fairly clear that static analysis
tools can find important defects in software.

This is particularly important in the realm of
security defects (such as buffer overflows and
SQL injections), since the cost incurred by de-
ploying such a defect can easily run into the
millions. Many of the coding defects found by
FindBugs, such as potentially throwing a null
pointer exception, are less severe in the sense
that fewer of them are likely to have multi-
million dollar costs. Thus, it is particularly
important for this research to look at the cost
effectiveness of using static analysis tools.

Software developers are busy, with many
different tasks and ways of reaching the goal
of swift development of correct and reliable
software. We need to develop procedures and
best practices that make using static analysis
tools more effective than alternative uses of de-
veloper time, such as spending additional time

performing manual code review or writing test
cases.

We believe that we have achieved that goal
with FindBugs, although we have not yet mea-
sured or demonstrated it. Through user sur-
veys, we found that actual use of FindBugs
is more diverse than we had expected, and
that many of the things we believe to be
best practices have yet to be widely adopted.
For example, very few users of FindBugs use
an automatic build system where new issues
are automatically identified and flagged. We
are continuing studies with users and devel-
opment organizations, as it seems clear to
us that development, measurement, validation
and adoption of best practices for static anal-
ysis tools is key to allowing these tools to be
used effectively.

ACKNOWLEDGMENTS

The authors would like to thank Fortify Soft-
ware for sponsoring the FindBugs project, and
thank Google and Sun Microsystems for addi-
tional support.

REFERENCES

[1] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and
tuning a static analysis to find null pointer bugs,” in
PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. New
York, NY, USA: ACM Press, 2005, pp. 13–19.

[2] J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking defect
warnings across versions,” in MSR ’06: Proceedings of the
2006 international workshop on Mining software repositories.
New York, NY, USA: ACM Press, 2006, pp. 133–136.

[3] D. Hovemeyer and W. Pugh, “Finding more null pointer
bugs, but not too many,” in PASTE ’07: Proceedings of the
7th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. New York, NY, USA:
ACM, 2007, pp. 9–14.

[4] I. F. Darwin, Checking C Programs with Lint. O’Reilly,
1988.

[5] S. Hallem, D. Park, and D. Engler, “Uprooting software
defects at the source,” Queue, vol. 1, no. 8, pp. 64–71, 2003.

[6] B. Chess and J. West, Secure Programming with Static
Analysis, 1st ed. Addison-Wesley Professional, Jul. 2007.

[7] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static
analyzer for finding dynamic programming errors,” Softw.
Pract. Exper., vol. 30, no. 7, pp. 775–802, 2000.

[8] Reasoning, Inc., “Reasoning inspection service defect
data report for Tomcat, version 4.1.24,” January 2003,
http://www.reasoning.com/pdf/Tomcat Defect Report.pdf.

[9] T. Copeland, PMD Applied. Centennial Books, November
2005.

10

[10] B. Chelf, D. Engler, and S. Hallem, “How to write system-
specific, static checkers in metal,” in PASTE ’02: Proceed-
ings of the 2002 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. New
York, NY, USA: ACM Press, 2002, pp. 51–60.

[11] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou, “Evaluating static analysis defect warnings on
production software,” in PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering. New York, NY, USA: ACM,
2007, pp. 1–8.

[12] “Mondrian: Code review on the
web,” Dec. 2006. [Online]. Available:
http://video.google.com/videoplay?docid=-
8502904076440714866

[13] D. Hovemeyer and W. Pugh, “Status report on jsr-305:
annotations for software defect detection.” Montreal,
Quebec, Canada: ACM, 2007, pp. 799–800.

[14] “Jsr 305: Annotations for software defect detection.”
[Online]. Available: http://jcp.org/en/jsr/detail?id=305

Nathaniel Ayewah has a B.S. in Computer
Engineering and an M.S. in Computer Sci-
ence from Southern Methodist University.
His research interests include understand-
ing the way users interact with software
tools and using information visualization
to support creativity. He has a diverse re-
search background in which he has ex-
plored testing concurrent software, visual-

izing proofs, using machine learning for speech analysis, visual
temporal queries, web-based data collection, noise reduction in
hearing aids and data mining. Nathaniel is currently a Ph.D.
student of Computer Science at the University of Maryland,
College Park.

David Hovemeyer developed FindBugs as
part of his Ph.D. research the University of
Maryland, College Park, in conjunction with
his thesis advisor William Pugh. He is cur-
rently an Assistant Professor of Computer
Science at York College of Pennsylvania,
where he teaches introductory Computer
Science courses and upper-level courses
in programming languages, software engi-

neering, and operating systems.
Previously, David was a Visiting Assistant Professor of Com-

puter Science at Vassar College (2005–2006), and a Software
Engineer at Cigital (1996–1998). He earned a B.A. in Computer
Science from Earlham College in 1994.

David Morgenthaler received a B.A. in
Geography from the University of Cali-
fornia, Berkeley, an M.S. in Mathematics
from California State University, Hayward,
and a Ph.D. in Computer Science from
the University of California, San Diego. He
has taught Computer Science at the Hong
Kong University of Science and Technol-
ogy, and worked at several Silicon Valley

startups. David is currently a software engineer at Google.

John Penix John Penix is a Senior Soft-
ware Engineer in Google’s Test Engineer-
ing organization, where he tries to detect
more defects than he injects. He is cur-
rently working on the tools that are used to
gather, prioritize and display static analysis
warnings.

From 1998 to 2006, John was a Com-
puter Scientist in the Intelligent Systems

Division of NASA’s Ames Research Center where he con-
tributed to research projects in the areas of software model
checking, deductive program synthesis and collaborative soft-
ware engineering. John currently serves on the Steering Com-
mittee of the IEEE/ACM International Conference on Automated
Software Engineering. John received a Ph.D. in Computer Engi-
neering from the University of Cincinnati.

William Pugh received a B.S. in Computer
Science from Syracuse University and re-
ceived a Ph.D. in Computer Science (with
a minor in Acting) from Cornell University.
He is currently a professor at the University
of Maryland, College Park. William Pugh
is a Packard Fellow, and invented Skip
Lists, a randomized data structure that is
widely taught in undergraduate data struc-

ture courses.
He has also made research contributions in the fields of incre-

mental computation, implementation of functional and object-
oriented languages, the use of partial evaluation for hard real-
time systems, in techniques for analyzing and transforming sci-
entific codes for execution on supercomputers, and in a number
of issues related to the Java programming language, including
the development of JSR 133 - Java Memory Model and Thread
Specification Revision.

Prof. Pugh consulted for Google in 2000 - 2003 on research
that resulted in US Patent 665 8423, on detecting duplicate and
near-duplicate files.

Prof Pugh’s current research focus is on developing tools to
improve software productivity, reliability and education. Current
research projects include FindBugs, a static analysis tool for
Java, and Marmoset, an innovative framework for improving the
learning and feedback cycle for student programming projects

