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Abstract
Profilers help developers to find and fix performance prob-
lems. But do they find performance bugs – performance
problems that real users actually notice?

In this paper we argue that – especially in the case of
interactive applications – traditional profilers find irrelevant
problems but fail to find relevant bugs.

We then introduce lag hunting, an approach that identi-
fies perceptible performance bugs by monitoring the behav-
ior of applications deployed in the wild. The approach trans-
parently produces a list of performance issues, and for each
issue provides the developer with information that helps in
finding the cause of the problem.

We evaluate our approach with an experiment where we
monitor an application used by 24 users for 1958 hours over
the course of 3-months. We characterize the resulting 881 is-
sues, and we find and fix the causes of a set of representative
examples.

Categories and Subject Descriptors C [Performance of
Systems]: Measurement techniques; D [Software Engineer-
ing]: Metrics—Performance measures

General Terms Performance, Measurement, Human Fac-
tors

Keywords Profiling, Latency bug, Perceptible performance

1. Introduction
Many if not most software applications interact with human
users. The performance of such applications is defined by
the users’ perception. As research in human-computer inter-
action has shown, the key determinant of perceptible perfor-
mance is the system’s lag in handling user events [5, 6, 24,
25]. Thus, to understand the performance of such applica-
tions, developers have to focus on perceptible lag.
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Figure 1. Perceptible Bug Hidden in Hotness Profile

However, when developers try to understand the perfor-
mance of their applications, they use profilers to identify and
optimize hot code. Figure 1 visualizes the output of a tradi-
tional code hotness profiler in the form of a calling context
tree rendered as a sunburst diagram1. The center of the dia-
gram represents the root of the tree (the application’s main
method). The tree grows inside out. Each calling context is
represented by a ring segment. The angle of a ring segment
is proportional to the hotness of the corresponding calling
context. The tree in Figure 1 consists of 224344 calling con-
texts and represents the production use of a real-world Java
application (Eclipse).
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Figure 2. Developer vs. User-Centric View of Performance

Following a traditional performance tuning approach, a
developer will focus on the hottest regions (the ring seg-
ments with the widest angles) of the calling context tree. In
this paper we argue that this is the wrong approach for inter-
active applications. As Figure 2 shows, code hotness profiles

1 We use sunburst diagrams, also known as “calling context ring charts” [1],
because they scale to the large calling context trees of real-world programs.
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produced by traditional profilers do not properly reflect the
perceptible performance of applications. The left part of the
figure represents a traditional hotness profile, a developer-
centric view of performance, showing the three hottest meth-
ods (methods that spent most CPU cycles). The right part
represents a trace of the corresponding program execution.
The trace shows a significant number of idle-time intervals
(where the computer was waiting for user input). We use the
term “episode” to denote the intervals of computational ac-
tivity in-between idle intervals. More importantly, the trace
shows that some (hot) methods were executed often but each
invocation completed quickly, while other (cold) methods
were executed rarely but an invocation might have taken a
long time. This example highlights that perceptible perfor-
mance problems are not necessarily caused by the hottest
methods in a traditional profile.

The real-world hotness profile in Figure 1 confirms this
point: the calling context tree contains a node corresponding
to a method that repeatedly (30 times) exhibited an excep-
tionally long (at least 1.5 seconds) latency. However, that
context (the EditEventManager.mouseUp method indicated
with the arrow) is barely visible in the tree, because the in-
vocations of this method make up less than 1% of the appli-
cation’s execution time. A developer looking at this profile
would never have considered tuning that method to improve
performance. Instead, he probably would have focused on
hot methods that are frequently called but do not necessarily
contribute to perceptible lag.

1.1 Measuring latency instead of hotness
In this paper we introduce an approach that automatically
catches perceptible performance bugs such as the one hidden
in Figure 1. We do this by focusing on the latency instead of
the hotness of methods.

At first sight, measuring latency may seem simple: just
capture time-stamps for method calls and returns. Unfortu-
nately, for real-world applications, the instrumentation and
data collection overhead for such an approach significantly
slows down the application. This is the reason why com-
mercial profilers use call-stack sampling instead of tracking
method calls and returns. Moreover, the large overhead per-
turbs the time measurements and casts doubt on the validity
of the measurement results.

A central goal of our approach is thus the ability to mea-
sure latency and to gather actionable information about the
reason for long latency method calls, while keeping the over-
head minimal.

1.2 Catching bugs in the wild
Performance problems are highly dependent on the context
in which an application runs. Their manifestation depends
on (1) the underlying platform, (2) the specific configuration
of the application, and the (3) size and structure of the inputs
the application processes. For example, applications may run
on computers with different clock frequencies, numbers of

cores, amounts of memory, and different amounts of concur-
rent activity. Users may configure applications by installing
a variety of plug-ins, some of them might not even be known
to the application developer (e.g. they may install a spell-
checking plug-in into an editor, and that plug-in may per-
form unanticipated costly operations when getting notified
about certain changes in the document). Or users may use
an application to process inputs that are unexpectedly sized
(e.g. they may browse a folder containing tens of thousands
of files, they may use a web server to serve mostly multi-
gigabyte files, or they may want to edit an MP3 file that
contains 10 hours of audio). Without knowing the exact us-
age scenarios of widely deployed applications, developers
are unable to conduct representative performance tests in the
lab.

Thus, the second goal of our approach is the ability to
directly detect performance problems in the deployed appli-
cations.

1.3 Contributions
In this paper we propose Lag Hunting. Our approach tar-
gets widely-deployed applications by gathering runtime in-
formation in the field. It targets interactive applications by
focusing on perceptible lag. Without any user involvement,
it produces a list of performance issues by combining data
gathered from the different deployments. Moreover, it auto-
matically produces an actionable [20] report for each issue
that helps in identifying and fixing the issue’s cause.

mouseUp()

wait ()

removeAll()

Figure 3. Perceptible Bug in Lag Hunting Profile

Figure 3 shows the calling context tree that is part of the
report our approach produces for the performance bug that
is barely visible in Figure 1. Unlike the calling context tree
derived from a traditional sampling profiler, our tree only
represents the behavior that is related to the given bug, and
it shows all the method calls that contributed to the long
latency of the problematic mouseUp method.

We demonstrate the practicality of our approach by im-
plementing it in LagHunter, our performance bug detector
for Java GUI applications. In a three-month experiment we
deployed LagHunter to find performance issues in one of
the most complex interactive Java applications, the Eclipse
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Figure 4. Lag Hunting

IDE. In that experiment, LagHunter identified 881 perfor-
mance issues. We characterized these issues and we per-
formed three case studies to find and fix the performance
bugs for representative issues.

The remainder of this paper is structured as follows:
Section 2 introduces the Lag Hunting approach. Section 3
presents LagHunter, our tool for lag hunting in Java GUI
applications. Section 4 characterizes the performance is-
sues LagHunter identified in Eclipse. Section 5 evaluates
our approach with three case studies. Section 6 discusses the
limitations of our approach and our evaluation, Section 7
presents related work, and Section 8 concludes.

2. Approach
Figure 4 provides an overview of our approach. Applica-
tions are deployed with an agent that collects performance
information about each session. At the end of a session, the
agent sends a session report to an analysis engine running on
a central server. The server collects, combines, and analyzes
the session reports to determine a list of performance issues.
To the developers, the analysis engine appears like a tradi-
tional bug repository. The only difference is that the “bug
reports” are generated automatically, without any initiative
from the users, that all equivalent reports have been com-
bined into a single issue, that related issues are automatically
linked together, and that issues contain rich information that
points towards the cause of the bug.

2.1 What data to collect?
Perceptible performance problems manifest themselves as
long latency application responses. A complete trace of each
call and return of all methods of an application would allow
us to measure the latency of each individual method call, and
to determine all the callees of each method and their contri-
butions to the method’s latency. However, such an approach
would slow down the program by orders of magnitude and
thus could not be used with deployed applications. The chal-
lenge of any practical latency bug detection approach is to
reduce this overhead while still collecting the information
necessary to find and fix bugs. Moreover, the information
needs to be collected in a way to enable a tool to effectively
aggregate a large number of session reports, each containing
possibly many occurrences of long-latency behavior, into a
short list of relevant performance issues.

call
stack

trace of landmark method calls and returns

call return

thread idle

sequence of randomly spaced, infrequent call stack samples
time

Figure 5. Session Report

Figure 5 shows part of the execution of an interactive ap-
plication. The x-axis represents time. The three flash sym-
bols represent three incoming user requests (events) that
need to be handled by the application. The call stack, shown
in light-grey, grows from bottom to top. Each rectangle on
the stack corresponds to a method activation. In our ap-
proach, the agent collects two kinds of information. First,
it captures calls and returns from so-called landmark meth-
ods (black rectangles). This landmark trace contains the tim-
ing information necessary to measure lag. Second, it cap-
tures rare, randomly spaced call stack samples of the run-
ning threads. Each stack sample contains the complete call-
ing context of the thread at the time the sample was taken.
This sequence of stack samples provides information about
what the thread was doing throughout a long-latency land-
mark method invocation.

Figure 5 shows information for only one thread. We do
collect the same information for all threads. However, for
many interactive applications, most threads are blocked most
of the time. Moreover, for most current GUI toolkits, only
one thread, the event dispatch thread, is allowed to interact
with the user (process user input and update the GUI). For
many applications, if the user is not interacting with the
application, the GUI thread becomes idle, waiting for new
user requests2. The figure shows such an idle interval in the
center. While the thread is idle, no landmark method is on
the stack, and we thus do not need any call stack samples3.

2.2 Landmark methods represent performance issues
The most crucial parameter in our approach is the choice of
landmark methods. Landmark methods serve a double pur-
pose. First, their calls and returns represent the points where
we measure latency. Second, each landmark method rep-
resents a potential performance issue. The lag hunting ap-
proach produces a list of potential performance issues that
is identical to the list of landmark methods that incurred a

2 For some applications, such as video players or games, the GUI thread
receives periodic requests from a timer, which cause it to update the GUI
from time to time.
3 In a practical implementation of our approach, such as LagHunter, it can
be beneficial to always sample the call stack and to drop the samples
taken whenever the thread is idle, because the low sampling rates of our
approach only cause negligible sampling overhead, but there is a cost of
communicating the start and end of idle intervals to the call stack sampler.
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non-negligible latency (e.g., at least one invocation of that
method took more than 3 ms). Each method in that list is
annotated with a rich set of information that includes its in-
vocation latency distribution. A landmark method becomes
a real performance issue, if a developer deems its latency
distribution to be severe (e.g., over 100 ms on average).

A chosen set of landmarks should fulfill three properties:
First, they need to cover most of the execution of the pro-
gram. Given that we only measure the latency of landmarks,
we will be unaware of any long activity happening outside
a landmark. Second, they need to be called during the han-
dling of an individual user event. We want to exploit the hu-
man perceptibility threshold (of roughly 100 ms) for deter-
mining whether a landmark method took too long, and thus
such a method needs to correspond to a major activity that is
part of handling a user event. A method executed in a back-
ground thread may take much longer than 100 ms, but it will
not affect the responsiveness of the application, if the GUI
thread continues to handle user events. Moreover, a top-level
method of the GUI thread (e.g. the main method of the ap-
plication represented by the bottom rectangle in Figure 5),
may have a very long “latency”, but it is not responsible for
delaying the handling of individual user events. Third, land-
marks should be called infrequently. Tracing landmarks that
are called large numbers of times for each user event would
significantly increase the overhead.

2.3 Landmark selection strategies
We now describe how to select good landmarks. While our
approach focuses on interactive applications, just by chang-
ing the set of landmarks, many of these ideas would also
apply to the analysis of transaction-oriented server applica-
tions.

Event dispatch method. One possible landmark method
is the single GUI toolkit method that dispatches user events.
This method will cover the entire event handling latency.
However, when using this method as the only landmark, the
analysis will result in a list with this method as a single
issue. This means that many different causes of long latency
will be combined together into a single report, which makes
finding and fixing the causes more difficult. Even though
the event dispatch method is not very useful when used
in isolation, it is helpful in combination with other, more
specific, landmarks. Any left-over issue not appearing in the
more specific landmarks (methods transitively called by the
dispatch method) will be attributed to the dispatch method.

Event-type specific methods. A more specific set of
landmarks could be methods corresponding to the different
kinds of low-level user actions (mouse move, mouse click,
key press). However, these methods are still too general. A
mouse click will be handled differently in many different
situations. Having a single issue that combines information
about mouse clicks in multiple contexts is often not specific
enough.

Commands. Ideally, the landmarks correspond to the
different commands a user can perform in an application.
If the application follows the command design pattern [9]
and follows a standard implementation idiom, it is possible
to automatically identify all such landmarks.

Observers. Even an individual command may consist
of a diverse set of separate activities. Commonly, a com-
mand changes the state of the application’s model. In appli-
cations following the observer pattern [9], the model (syn-
chronously) notifies any registered observers of its changes.
Any of these observers may perform potentially expensive
activities as a result. If the application follows a standard
idiom for implementing the observer pattern, it is possible
to automatically identify all observer notifications as land-
marks.

Component boundaries. In framework-based applica-
tions, any call between different plug-ins could be treated
as a landmark. This would allow the separation of issues be-
tween plug-ins. However, the publicly callable API of plug-
ins in frameworks like Eclipse is so fine grained, that the
overhead for this kind of landmarks might be too large.

Application-specific landmarks. If application develop-
ers suspect certain kinds of methods to have a long latency,
they may explicitly denote them as landmarks to trigger the
creation of specific issues.

2.4 Data collection
Given a specification of the set of landmark methods, the
agent deployed with the application dynamically instru-
ments the application to track all their invocations and re-
turns. Moreover, the agent contains code that periodically
samples the call stacks of all the threads of the application.
It also collects information about the platform, the applica-
tion version, and installed plug-ins. At the end of a session,
the agent combines the information into a session report and
uploads it to the analysis server.

2.5 Analysis
For each session report, the analysis engine extracts all land-
mark invocations from the landmark trace. For each land-
mark invocation, it computes the inclusive latency (landmark
end time - landmark start time) and the exclusive latency (in-
clusive latency - time spent in nested landmarks), and it up-
dates the statistics of the corresponding issue. The repository
contains, for each issue, information about the distribution
of its latencies, the number of occurrences, and the sessions
in which it occurred. Moreover, to help in identifying the
cause of the latency of a given landmark, the repository con-
tains a calling context tree related to that landmark. This tree
is built from the subset of stack samples that occurred dur-
ing that landmark (excluding samples that occurred during
nested landmarks). The tree is weighted, that is, each calling
context is annotated with the number of samples in which it
occurred.
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2.6 Connecting issues
Based on the information about individual issues, the anal-
ysis engine then establishes connections between related is-
sues. It does that by computing the similarities between the
issues’ calling context trees. Two different issues (e.g. two
different commands) may trigger the same cause of long la-
tency. If that is the case, their calling context tree will be
similar. If a developer investigates a performance issue, the
connections to similar issues can provide two key benefits:
it can simplify the search for the cause (by providing more
information about the contexts in which it occurs), and it can
help to prioritize the issue (given that a fix of the issue may
also fix the related issues).

2.7 Call pruning
Given an issue, its calling context tree, latency distribution,
and the list of related issues allow a developer to form hy-
potheses about the reason for the long latency. To test those
hypotheses, developers would usually change the program
and rerun it to confirm that the change indeed reduced the
perceptible latency.

Our approach partially automates this step. We do this
by re-executing the application while automatically omitting
various parts of the expensive computation. In particular,
we omit calls to hot methods in the calling context tree.
Note that we do not omit the calls to the landmark method,
but calls to hot methods that are (transitively) called by the
landmark method. Note that pruning a method call does not
usually correspond to a fix. It often leads to crashes or an
incorrectly working application. However, it is effective in
locating and confirming the cause of long latency behavior.

2.8 Discussion
The key idea behind our approach is to gather a large num-
ber of session reports and to convert them into a small set
of issues familiar to the developer. In this way, the devel-
oper gains insight about the behavior of a landmark in many
different execution contexts. Note that we do not require de-
velopers to explicitly specify landmark methods. All but the
last class of landmarks we outline can be detected automat-
ically. Moreover, commands and observers represent an in-
finite number of landmarks: the agent automatically recog-
nizes any commands or observers as a landmark. The fact
that we only trace a set of relatively infrequently executed
landmarks keeps the performance impact of data collection
low. Moreover, the fact that many users provide session re-
ports enables a low call stack sampling rate with minimal
overhead.

3. Implementation
LagHunter is a lag hunting tool targeting Java GUI applica-
tions. The LagHunter agent consists of a Java agent and a
JVMTI agent that are shipped together with the application.
The application does not have to be changed, the agents are

activated using command line arguments to the Java virtual
machine. The Java agent dynamically rewrites the loaded
classes using ASM [22] to instrument all landmark method
calls and returns. It is also responsible for removing method
calls during call pruning. The JVMTI agent is written in na-
tive code and loaded into the Java virtual machine. It is re-
sponsible for call stack sampling. Moreover, it also traces
the virtual machine’s garbage collection activity. At the shut-
down of the virtual machine, the JVMTI agent gathers the
landmark trace, the stack sample sequence, and the garbage
collection trace, compresses them, and ships them to the
analysis server. If the upload fails, it keeps them on disk and
tries to send them the next time the application shuts down.

3.1 Landmarks
LagHunter supports several types of landmarks: the event
dispatch method, observers, paint methods, and native calls.
The event dispatch method is easy to identify, it corresponds
to a specific method in the SWT or Swing GUI toolkits (we
support both). Using the event dispatch method as a land-
mark ensures that we capture all episodes incurring long la-
tency. We instrument all invocations of observer notification
methods that follow Java’s EventListener idiom. This kind
of landmark is easy to detect automatically and usually pro-
vides a meaningful level of abstraction. The paint method
landmark correspond to any paint() method in a subclass
of java.awt.Component. It tracks graphics rendering activ-
ity in Swing applications (SWT uses the observer pattern
for painting). Especially in visually rich applications, graph-
ics rendering can be expensive and paint method landmarks
represent abstractions meaningful to a developer. Finally, we
instrument all calls sites to native methods. They represent
cross-language calls to native code via JNI, and thus may
be responsible for long-latency input or output operations.
While the kinds of landmarks supported by LagHunter are
targeted specifically at interactive applications, LagHunter
could be extended with further landmark types, e.g., to sup-
port event-based server applications.

3.2 Overhead and perturbation
Dynamic binary instrumentation takes time, and classes are
loaded throughout the application run, so our Java agent’s
instrumentation activity might perturb its own timing mea-
surements. To make our implementation practical, our agent
uses a variety of optimizations, among them a persistent in-
strumentation cache that stores instrumented classes to avoid
re-instrumentation in subsequent application runs.

Most method calls complete quickly. This is true even for
landmark methods. If we built a complete landmark trace,
with every call and return, the session reports would grow
unreasonably large. Moreover, the constant tracing and I/O
activity would also perturb our latency measurements. We
thus filter out short landmarks online. Our filter maintains
a shadow stack of active landmark methods. A call to a
landmark method pushes a new element on the stack. A
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return from a landmark method pops the top-most element.
It drops it if the latency was below a desired threshold, and
it writes it to the trace otherwise. Using this trace filtering
approach, we can reduce the trace size by several orders of
magnitude without losing relevant information.

Evaluation. To evaluate the overhead and perturbation
caused by our agent we conducted controlled experiments
on three different platforms. Three different users had to
perform predefined tasks in two different large interactive
applications, Eclipse and NetBeans, which we ran on top of
our agent.

We first used the data collected by the JVMTI agent to
verify that the Java agent did not cause excessive overhead.
The stack samples collected in our initial experiment showed
that we spent a significant amount of time in our trace filter-
ing code, and the garbage collection trace showed an abnor-
mally large number of garbage collections. We studied our
trace filtering implementation and realized that we were trig-
gering object allocations every time we processed an event.
We eliminated these allocations and reran the experiments.

To evaluate the startup overhead due to our agent, we
measured the startup time of the original applications (aver-
age across three platforms; Eclipse: 1.1 s, NetBeans: 2.85 s),
the startup time of the application with our agent, but with-
out the persistent instrumentation cache (Eclipse: 3.44 s,
NetBeans: 7.28 s), and the startup time of the application
with our agent, using the persistent instrumentation cache
(Eclipse: 1.58 s, NetBeans: 3.2 s). All startup times represent
the duration from launching the Java virtual machine until
the dispatch of the first GUI event. The above results show
that the persistent instrumentation cache is effective in re-
ducing the startup time of the application with the LagHunter
agent to values close to those of the original application.

We also measured the cost of stack sampling. The me-
dian time to take a stack sample varies between 0.5 ms and
2.23 ms. This is a small fraction of the perceptible latency of
100 ms, and thus is negligible with a low-enough sampling
rate. Finally, we measured the effect of the filter threshold on
trace size: a threshold of 3 ms reduces trace size by a factor
of over 100. This shows that trace filtering is essential in re-
ducing the size of the session reports shipped from the users
to the central repository.

We have deployed our agent with three different applica-
tions (BlueJ4, Informa5, and Eclipse) which the students in
our undergraduate programming class have been using ex-
tensively during their normal course work, and the only feed-
back we received was that the applications did not shut down
immediately. This is to be expected, because we process and
upload the session report when the application quits.

4 http://bluej.org
5 http://informaclicker.org

3.3 Analysis
Our repository collects all session reports as well as the gen-
erated issue information. We automatically run the analysis
every night to update the issues with newly received infor-
mation. We have developed a small web interface to access
our issue repository. This allows us to rank issues according
to various criteria, and to look at the reports for each specific
issue. Those reports contain visualizations of latency distri-
butions and interactive visualizations of the calling context
tree. We render the calling context trees, which can contain
hundreds or thousands of nodes, with the calling context ring
chart visualization of the Trevis [1] interactive tree visual-
ization and analysis framework. When establishing connec-
tions between related issues, we use Trevis’ weighted mul-
tiset node distance metric to compute the similarity between
calling context trees.

4. Issue Characterization
In this section we characterize the repository of the 1108 ses-
sion reports we gathered during a three-month experiment.
Our experiment involved 24 users working for a total of 1958
hours with Eclipse, one of the largest interactive Java appli-
cations. We configured LagHunter to take a call stack sample
every 500 ms on average, and to drop all samples taken dur-
ing idle time intervals.

4.1 Parameters
LagHunter’s analysis engine detected 881 issues in the given
reports. Table 1 characterizes five key parameters of this set
of issues. For each parameter it shows the mean, first quar-
tile, median, second quartile, 90-th percentile, and maximum
value. The first parameter, the average exclusive latency, rep-
resents the severity of a given issue: the longer its latency,
the more aggravating the issue. The next three parameters
describe how prevalent a given issue is. From the perspec-
tive of a developer, the need to fix an issue increases when
it is encountered by many users, occurs in many sessions,
and occurs many times. The last parameter, the number of
collected call stacks, is indicative of the chance of fixing the
issue. The more call stack samples available about a given
issue, the more information a developer has about the poten-
tial cause of the long latency.

Avg Q1 Med Q3 p90 Max
Avg.Excl.[ms] 320 4 11 31 119 38251
Users 5 1 2 8 19 24
Sessions 49 1 3 14 115 1069
Occurrence 896 2 6 48 449 338622
Stacks 65 0 0 3 42 28613

Table 1. Univariate characterization

The average exclusive time of an issue varies between
less than a millisecond and over 38 seconds. However, 90%
of these issues take less than 119 ms. This shows that most
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“issues” are benign. They can easily be filtered out in the
web-based front-end to our repository. Note that we capture
information about benign issues on purpose6. This allows us
to see whether a given landmark always had a long latency,
or whether its long latency invocations were exceptional.
The number of users who encounter an issue, the number of
sessions in which an issue appears, and the number of overall
occurrences of an issue follow equally skewed distributions.
Only a small minority of issues are prevalent, which means
that developer effort can be focused on fixing a small num-
ber of high-impact performance bugs. The table also shows
that the stack sample distribution is equally slanted: half of
the issues receive no stack samples, and 10% of the issues
receive 42 or more stack samples.

4.2 Landmark location
Most of the reported landmarks correspond to listener no-
tifications. In which parts of Eclipse are those listeners lo-
cated? First, we noticed that a significant fraction of them
(275 of 881) are located outside the standard Eclipse classes.
Many of those are inside optional or 3rd party plug-ins, but
some are also in the class libraries, and a few are in dynami-
cally generated proxy classes. The majority of the 606 land-
marks in the standard Eclipse distribution are located in a
few dominating plug-ins. Figure 6 shows the top-15 of these
plug-ins. The dominant plug-in (with 111 landmarks) im-
plements the Eclipse workbench user-interface. Moreover,
given that the users in our experiment were developing soft-
ware in Java, it is not surprising to notice many landmarks
in the Java Development Tools (JDT) user interface (84) and
the JFace text editor (76) plug-ins.

Notice that the above distribution does not quantify the
latency encountered at these landmarks. It just summarizes
the landmarks that LagHunter instrumented, which were ex-
ecuted, and where the latency was at least 3 ms, so they
ended up in at least one session report. Moreover, the dis-
tribution does not specify where the causes of long latency
were located, but it focuses on the locations where long la-
tency can be measured.

4.3 How prevalent are long-latency issues?
Figure 7 shows a bubble plot of issue occurrence vs. average
exclusive latency. Both scales are logarithmic. Each bubble
corresponds to an issue. The size of the bubble is propor-
tional to number of users who encountered the issue.

Most issues are clustered below 100 ms. Eclipse is a
mature product that has been extensively tuned for perfor-
mance, and the Eclipse team, explicitly or implicitly, must
have cared about the 100 ms perceptibility threshold. No-
tice, however, that the y-axis corresponds to the exclusive
latency of an issue, which means that the application’s re-

6 To limit trace size and overhead, LagHunter’s online filtering approach
does eliminate “very short” landmark method invocations (in the configu-
ration used for this experiment, invocations with an inclusive time of less
than 3 ms).
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Figure 7. Number of users encountering an issue

sponse time may have been significantly larger due to nested
landmarks. Moreover, the axis represents the issue’s average
latency, and thus some individual occurrences of an issue
might have taken significantly longer.

Issues with few occurrences are encountered by a small
number of users. The same is the case for some of the
long latency issues. We found that some of these issues
correspond to rare user operations (e.g. project creation),
while others correspond to activity in non-standard plug-ins
(e.g. Android) installed only by a small set of users.

4.4 Availability of stack samples
Figure 8 has the same axes as Figure 7, but the bubble
size is proportional to number of collected stack samples.
This figure confirms that issues that occur often or exhibit
a long latency have a higher chance of being encountered
by the JVMTI stack sampler. These are precisely the issues
developers want to fix, and thus our approach automatically
produces the information where it is needed most, and omits
it where it is irrelevant.
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Figure 9. Severity of issues (x/y), and benefit of fix (size)

5. Case Studies
In this section we describe case studies resolving three of the
881 reported issues. We picked three interesting issues that
occurred frequently and had a non-negligible latency.

Figure 9 shows all issues in the repository and highlights
the three case study issues. In this figure, the x-axis rep-
resents the total number of episode occurrences containing
the issue. The y axis shows the average inclusive time of
episodes containing the issue. The circle size represents the
fraction of inclusive episode time due to the issue.

Like in Figure 7 and 8, each circle represents an issue.
However, unlike in those prior figures, the x and y axes both
represent the episodes. This corresponds to a user’s view of
performance: users are not interested in the exclusive time of
issues, but they primarily perceive the inclusive time of com-
plete episodes. The x/y space of Figure 9 thus represents the
user’s perspective (the severity as perceived by the user). The
x-axis represents how often a user is annoyed, and the y-axis
represents how much a user is annoyed each time. The third
dimension, the size, represents the developer’s perspective:
a developer could say “I know this circle represents a fre-
quent (x) and big (y) annoyance for the user, but how much

can I reduce this annoyance if I fix this issue?” The size of
the circle represents the answer to that question. A circle of
50% size (like the three circles representing our three case
studies) means that by fixing that issue, the latency of the
episodes that contain that issue can be reduced by 50% on
average.

Figure 9 shows that there is a relatively small number of
issues a developer would want to explore. The most promis-
ing issues are those that occur frequently (to the right), lead
to long latency episodes (to the top), and can significantly
reduce the containing episodes’ latency when fixed (large
circle). The three issues we picked lie more or less on the
frontier of Figure 9, which means that they incurred signifi-
cant latency or a significant number of occurrences.

5.1 Methodology
In each case study we followed the same methodology:

Identify. The web front-end to our LagHunter repository
shows a table of all known issues. We pick an issue and
study the information provided in its report, which in-
cludes the landmark method name, the latency distribu-
tion, the number of sessions, users, and occurrences, and
the number of call stack samples. Moreover, each issue
with at least one call stack sample contains a calling con-
text tree.

Reproduce. Given the information in the issue report, we
try to reproduce the problem on our own computer.
The landmark name and the calling context tree help
greatly in this step. We reproduce each issue to confirm
its presence and to understand how to trigger it. During
reproduction, we run the application together with the
LagHunter agent, collecting a session report for analysis.
Analyzing such an individual report helps us to under-
stand an issue in isolation.

Prune. Before fixing the bug, we try to speed up the applica-
tion by pruning the issue’s calling context tree. We rerun
the application, and we instruct the LagHunter agent to
prune calls for that issue. This way, we do not have to
edit the source code and rebuild the application, but we
can just rerun it with an extra option to let the agent do
the work.

Resolve. To fix the bug, we change the source code manu-
ally to decrease latency. This is the most challenging step.
We need to keep the expected functionality while reduc-
ing execution time. This may require the use of caching
of prior computations, or the strengthening of conditions
to eliminate computation that is not absolutely essen-
tial. It may also require turning costly computations or
synchronous input/output operations into asynchronous
background activities that do not block the user interface
thread. Due to the complexity of some of these fixes and
our limited experience with the Eclipse code base, in the
following case studies we sometimes eliminate or sim-
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Avg. Excl. Latency [ms]
Landmark Identified Reproduced Fixed
mouseDoubleClick 999 149 4
verifyText 16 458 13
keyPressed 46 30 <3

Table 2. Resolved issues

plify a particularly costly application feature instead of
providing an optimized alternative implementation.

Verify. To verify the fix, we again rerun the application on
top of the agent. We repeat the same interaction we per-
formed during reproduction. We should already notice,
even before looking at the collected session report, the
absence of any perceptible latency, and the analysis of the
session report should confirm that the latency fell below
the perceptibility threshold.

5.2 Issues under study
Table 2 lists the three issues we fix in the following case
studies. The first column shows the name of the landmark
method (we omit the class name for brevity). The second
column shows the average exclusive latency as identified by
LagHunter. The third column shows the same metric, but ob-
tained during the reproduction step. The last column shows
the latency after applying our fix. The small exclusive la-
tency of only 16 ms for the second issue may be striking.
However, this value is an average, and a significant number
of this issue’s occurrences were perceptibly long. More gen-
erally, the table shows a significant difference between the
latencies identified in the field and the latencies observed
during the reproduction in the lab. The goal of a reproduc-
tion in the lab is to confirm the presence of a problem, and
to gather initial hypotheses about the causes. A reproduction
in the lab thus is not necessarily a faithful reproduction of
all of a user’s activity. Moreover, it takes place in a different
environment, with a potentially different application config-
uration, and thus necessarily leads to measurement results
that can differ significantly from the average observed in the
field. The important aspect of Table 2 is the drastic reduc-
tion in latency between the reproduced and the fixed mea-
surements. Moreover, in the real-world use of our approach,
the ultimate measure of success will be the reduction of the
latencies observed in the field, after the deployment of the
fixed version of the application.

The following three subsections describe each case study
in detail.

5.3 Maximize and Restore
Sorting issues by their average time, one of the top ranked
issues was the mouseDoubleClick method in the Abstract-
TabFolder class. It occurred 355 times and took 999 ms on
average. Its latency distribution shows a wide range of laten-
cies starting from 46 ms up to more than 10 seconds.

Reproduciton. Eclipse implements a multi-page text ed-
itor. Maximizing or restoring the active page tab is followed
by an animation. This action is reported as perceptible. To
reproduce, we open a document from a workspace and per-
form the maximize and restore actions with a double-click
on the document tab.

smartUnzoom()

smartZoom()

mouseDoubleClick()

Figure 10. Maximize and restore

Pruning and Resolution. The calling context tree of this
issue is shown in the ring chart [1] of Figure 10. The root
of the tree (the main method) is represented by the center,
and the branches grow towards the outside. Each calling
context is represented by a ring segment. A segment’s angle
corresponds to the number of times the given calling context
was sampled. The chart points out two equally “heavy”
branches: smartZoom and smartUnzoom. It shows that the
double-click executed both of these methods. One solution
is to remove animations to simplify the zoom and unzoom
actions. We eliminate lag by cutting the animation from the
source code. A redesign of the solution for the animation to
make it faster would require deeper changes.

Validation. We reran Eclipse on our agent and repeated
the experiment performing double-clicks on the page tabs.
The latency decreased to only 4 ms, as shown in Table 2.

5.4 Rename Refactoring
Sorting issues by their total exclusive latency, one of the top
ranked issues is the verifyText method in the TextViewer
class. It occurred 22335 times and appeared in 446 sessions.

Reproduction. A user of Eclipse can perform an in-
place rename refactoring. The name is directly editable in
the text editor. Every key typed during such a refactoring is
immediately applied to all occurrences of that identifier in
the open text editor. Each key pressed causes a percetible
lag. This behavior was easily reproducible on our computer.

Pruning. Figure 11 shows the calling context tree of this
issue. The black ring segments towards the leaves of the tree
represent the root cause of the problem. They correspond to
calls to the packPopup method of the RenameInformation-
Popup class. As the most sampled method in this issue, it
consumed most of the time. Its class implements a tooltip-
style popup that appears below the identifier while in rename
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Figure 11. Rename refactoring
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Figure 12. Scrolling

rafactoring mode. The popup has a special shape of a call-
out. The packPopup method recomputes the shape of the
non-rectangular popup after each key press. We used call
pruning to eliminate the expensive method calls. This sig-
nificantly reduced the latency, however, the popup window
did not appear anymore.

Resolution. To fix the bug, we cached the results after the
first packPopup invocation, which avoided the unnecessary
computations.

Validation. After fixing this bug, in-place refactoring
became much faster. The perceptible lag disappeared, and
the measured average latency was reduced to 13 ms.

5.5 Scrolling
The 100 ms perceptibility threshold applies to individual
user requests. However, movies need to be rendered at a
rate of roughly 25 frames per second to appear smoothly.
The same applies to animations, such as the scrolling of a
document. Thus, in these instances, the latency should be
below 40 ms to be imperceptible.

When sorting the issues by occurrences, the keyPressed
method in the ViewportGuard class appears near the top
of the list, with more than 343000 occurrences. It is called
every time a key is pressed in the text editor. It took 46 ms
on average.

Reproduction. The calling context tree in Figure 12
shows that most of the time in this issue is spent redraw-

ing three components: LineNumberRuler, AnnotationRuler,
and ConflictAnnotationRuler. Knowing about the landmark
method and these three classes points us towards the action
the user must have performed: scrolling the viewport of the
source code editor. To reproduce this issue we open a long
Java source file that can’t fit on the screen. We hold down
the arrow key to scroll. We notice that the scrolling is not as
smooth as it could be. The bigger the opened project and the
more views we open, the bigger the latency becomes.

Pruning. We used call pruning to eliminate the notifica-
tions of the various rulers, which decreased the latency to
3 ms.

Resolution. As a resolution, we decided to prevent the
redraw of the rulers only when the up or down arrow keys
are pressed (but to allow repaints for all other keys). This
avoids redraws while scrolling, but it permits redraws in all
other situations.

Validation. We reran the fixed Eclipse and validated the
reduced latency when scrolling.

Discussion. The calling context tree in Figure 12 shows
three rulers that react to key presses. However, the calling
context tree of the reproduced issue contained only redraw
invocations for two of those ruler classes. The reason for this
is that the ConflictAnnotationRuler class is not part of any
standard Eclipse plugin. Sometimes, such additional plug-
ins installed by users may significantly reduce the respon-
siveness of an application. Without the help of LagHunter,
developers would not be able to discover such issues.

5.6 Linking issues by similarity
When fixing the issues in the above case studies, we re-
alized that by fixing one of the issues, some other issues
disappeared, too. For example, by solving the keyPressed
(scrolling) issue, we also solved one of the most dominant
issues: the largest bubble (with most call stack samples) in
Figure 8. This realization lead to the idea of linking issues
by the similarity of their calling context trees.

Now that we have implemented issue-linking, LagHunter
reports, for each issue, a small set of the most similar issues.
This idea is similar to a recommender system: “if you are in-
terested in issue X, you may also want to have a look at issue
Y”. To compare two issues, we measure the weighted mul-
tiset node distance [1] between their calling context trees.
Moreover, instead of presenting the related issues in a flat
list ordered by similarity, we visualize them in the form of a
dendrogram, using hierarchical agglomerative clustering to
cluster issues by similarity. This approach compares each is-
sue to each other issue and forms a hierarchy of clusters. The
dendrogram represents this hierarchy of clusters as a tree.
The leafs of the tree correspond to issues, and the internal
nodes of the tree correspond to clusters. The root node of the
tree corresponds to the single cluster containing all issues.
Figure 13 shows the clusters of related issues LagHunter
produced for the above three case studies (top to bottom).
The x-axis on the dendrograms shows the dissimilarity: 0
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Figure 13. Issues clustered by dissimilarity

means that the calling context trees of two issues are iden-
tical, and 100 means that the two calling context trees are
entirely different. Note that the axis does not go to 100, be-
cause we only show the subset of the dendrogram with the
most similar issues. The bold lines in the dendrograms show
the connections between the issue we solved and its most
similar peer.

The top dendrogram shows that AbstractTabFolder.mouse-
DoubleClick is similar to other issues related to tabs and
resizing. Knowing this ahead of time would have helped
us in reproducing and fixing the bug. The middle dendro-
gram shows that TextViewer.verifyText is similar to several
issues related to painting controls, including some related
to various rulers. Finally, the bottom dendrogram shows
that ViewportGuard.keyPressed is most similar to Viewport-
Guard.widgetSelected, the dominant issue in Figure 8. This
information would have helped us to predict that fixing the
verifyText issue would have the added benefit of fixing the
(even more relevant) keyPressed bug.

6. Limitations
This section discusses (1) the limitations of the lag hunting
approach and our implementation, and (2) the limitations of
our evaluation studies.

6.1 Limitations of Approach
User-relevant issues. Do the issues reported by our ap-
proach correspond to those performance problems users re-
ally care about? Our approach exploits the fact that there is

a known threshold at which users start to perceive latency.
This is a unique situation: we have a performance metric
(event handling latency), and we have an absolute value
for that metric (around 100 ms for discrete events), estab-
lished by prior research [5, 6, 24, 25], at which performance
is sufficient. However, it would be interesting to study, in
the context of general interactive applications, whether users
indeed would report perceptible latencies above the thresh-
old as performance issues. One could do that by combining
automatic lag hunting with the manual fly-by profiling ap-
proach [1], where users can click a button to immediately
report a performance problem when it occurs.

False positives. Does LagHunter inadvertently catch but-
terflies instead of just bugs? LagHunter’s list of issues in-
cludes all traced landmark method calls. Instead of taking
a binary decision and reporting only the “bugs”, LagHunter
allows the developer to rank the issues according to criteria
such as the landmark’s inclusive time, the number of its oc-
currences, or the number of sessions in which it occurred. It
is up to the developer to select the ranking approach, and to
decide how far down the list he will go in his performance
tuning effort. These decisions are not easy, and they are less
a matter of correctness and more a matter of developer pri-
orities and resources.

False negatives. LagHunter does not necessarily catch
all perceptible performance bugs. While it does highlight
all individual landmark method calls that exhibit a long
latency, it does not currently point out contiguous bursts
of short landmark method calls. Such bursts can occur in
applications that use animation (such as games or video
players). If subsequent calls in such bursts are not separated
by any idle time interval, this is indicative of an animation
where rendering an individual frame takes too long. It could
be useful to also automatically detect and report such bursts.

LagHunter detects long latency only in landmark meth-
ods. If a method outside a landmark incurs long latency,
LagHunter will not detect it. To circumvent this problem, we
include the event dispatch method as a landmark, and thus
any latency in the GUI thread will be captured (all methods
during episodes are transitively called by the event dispatch
method). However, if only the dispatch method was defined
as a landmark, all such long-latency episodes would appear
as a single issue (the event dispatch method). Such a catch-
all issue is difficult to fix. A developer would have to look
at hot subtrees of the dispatch method’s CCT, introduce new
landmark definitions accordingly, and then wait for new is-
sues to appear.

Concurrency. LagHunter targets interactive applications.
Prior work has shown that such applications rarely exhibit
significant concurrent behavior [2]. However, our profiler
does work with concurrent applications, and it tracks the
behavior of all threads, so it is possible to see what other
threads were doing while the user interface thread exhibited
lag. Moreover, our lag hunting approach is not limited to in-
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teractive applications. For example, it could also be used to
track lag in transaction-oriented server applications, where
concurrency is much more prevalent. In that situation, it
might be beneficial to extend LagHunter to track dependen-
cies between threads. That way it could also highlight the
reasons for why a thread blocked or waited.

No automatic optimization. Our approach helps devel-
opers to catch relevant latency bugs, however it does not au-
tomatically optimize the application to eliminate those bugs.
While feedback-directed performance optimizations usually
target a very specific class of performance issue (e.g., to im-
prove memory locality by object co-location), the goal of
our approach is to catch all perceptible performance bugs,
independent of their underlying cause. We thus follow an
ends-based approach (“what needs to be fixed?”) instead of
a means-based approach (“what can we fix?”). This entails,
however, that we do require the involvement of a human de-
veloper.

Difficulty of issue reproduction. How difficult is it for
developers to reproduce an issue given just a lag hunter
report? While the information in the report, especially the
name of the landmark method and the calling context tree,
help in understanding the activity the user must have per-
formed in the wild, additional information (such as screen-
shots of the user’s GUI at the time the problem occurred)
would certainly be helpful. Our agent could capture screen-
shots when it detects long latency behavior and ship those
screenshots to the analysis engine as part of the session re-
port. Moreover, it could use a GUI record and replay tool to
capture user interactions, to partially automate the reproduc-
tion of latency bugs. For privacy reasons, we did not capture
screens or user interactions in our initial implementation of
the lag hunting approach.

However, to alleviate the above privacy concerns, we
have developed a dialog that can automatically be shown to
the user after a latency bug occurred. That dialog presents a
screenshot and allows the user to black out arbitrary regions
of the screen (e.g. to remove passwords or other private
information that is visible). Moreover, we overlay the history
of the mouse coordinates over that screenshot, and allow the
user to navigate back in time in terms of mouse position,
and thus to indicate when the bug occurred. Finally, we
ask the user to point where (position/GUI component in the
screenshot) the bug occurred. We did not use these features
in our study, because we had not yet fully implemented them
at that time. However, our hypothesis7 is that they might
help to gather useful information aiding developers in bug
reproduction, while preserving user privacy.

7 Unknown to us, Google independently developed a similar privacy-
preserving screenshot feature, which they added to their new Google+ web
application. They show a “Send feedback” button at the bottom right of the
web page, and when a user clicks the button, they allow them to black out
screen regions and to highlight problem areas. Google’s introduction of this
approach confirms our hypothesis that our idea can be beneficial.

Cost of stack sampling. Each time our stack sampling
agent takes a sample it slightly increases the latency of the
program. In Section 3.2 we have shown that the median cost
of taking a sample is between 0.5 ms and 2.23 ms. Using a
sampling rate of 1000 Hz would thus add between 50 ms and
223 ms to a 100 ms episode. This would significantly perturb
the measurement results and perceptibly slow down the ap-
plication. Moreover, the large number of samples would lead
to larger traces. However, because we perform lag hunting
in the wild, we can reduce the sampling rate proportionally
to the number of users running the application, while still
receiving the same number of samples for each landmark.
Moreover, when a developer reproduces a reported issue in
the lab, we found that a sampling rate of 10 Hz is still enough
to gather enough stack samples to confirm the issue by re-
peating the perceptibly slow activity a few times.

Inaccuracy of stack sampling. Mytkowicz et al. [20]
have shown that current Java stack sampling profilers are
inaccurate due to the placement of safe-points by the virtual
machine’s JIT compilers. Our approach depends on the same
infrastructure underlying the profilers studied in that paper,
and we thus are prone to the same inaccuracies in the calling
context profiles collected for each issue. The fact that we col-
lect samples in many different environments (different users,
hardware, operating systems, virtual machines), over many
different program runs, might mitigate part of the problem.
Moreover, our landmark tracing approach is based on byte-
code instrumentation, and thus the latency we report is not
affected by that problem. Finally, once virtual machine im-
plementers correct the problems pointed out by Mytkowicz
et al., our sampled calling context profiles will automatically
become more accurate.

Limitations of call pruning. Call pruning can lead to
crashes, usually after the omitted method call. Pruning is
not calling-context sensitive. Assume we prune a call site
o.x() in method m() that would call a method x(). If method
m() is called from a context outside the given landmark, this
pruning could lead to crashes even outside this landmark.
We have not observed this in practice, but we could easily
construct a case where this would occur. Note that the goal
of pruning is to provide the developer with an idea of the
consequences of not executing some call (some call on the
path to a hot CCT subtree). Pruning the call is not a fix, it
normally leads to missing functionality or even to a crash.
Thus, the developer will still have to replace the omitted
code with a more efficient implementation.

6.2 Limitations of Study
Application selection. We evaluate LagHunter by catching
latency bugs in only one single application (Eclipse). This
carries the risk that our approach might not be effective in
finding bugs in other programs. However, Eclipse is an order
of magnitude larger and richer than most other interactive
Java programs. Moreover, it consists of a large number of
independent plug-ins, and some of those plug-ins are more
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complex than many normal stand-alone applications. Eclipse
also is the only Java application that uses two separate Java
GUI toolkits: its default toolkit is SWT, but some Eclipse
plugins (including the plugin responsible for the bug in Fig-
ure 3) use AWT/Swing. Besides the three case studies pre-
sented in Section 5, we have been using LagHunter to catch
performance bugs in a range of other applications, including
Informa [13]. Most recently LagHunter has been adopted by
the authors of CodeBubbles [3] and is now included in the
current CodeBubbles pre-release.

Issue selection. We selected three issues for our case
studies. Our selection was not a blind, random process, and
it was not based on strict, pre-determined criteria. While we
took care in selecting severe and interesting issues, we may
have been biased towards issues that are easier to understand
or fix. We believe that Figure 9 provides a good starting-
point for methodologically selecting issues to analyze in
future empirical studies. Ideally, such studies would take a
random sample of issues with a pre-determined minimum
number of episode occurrences, average inclusive episode
time, and percentage of inclusive episode time due to the
issue.

Self evaluation. We evaluated the benefits of our tool by
using it ourselves. Thus, our case studies may be biased by
our desire to see our approach perform well. Moreover, we
were not familiar with the Eclipse code base, and thus our
approach to fixing a bug is not necessarily representative of
the approach of an experienced Eclipse developer. We would
love to better quantify how using LagHunter improves devel-
oper productivity over not using LagHunter. However, we
believe that a worthy answer to this question will require
studies with real developers. To get quantitative measures of
productivity increase with reasonable statistical significance,
we would need many developers willing to invest a signifi-
cant amount of time.

7. Related Work
We discuss four areas of related work: post-deployment
problem detection, call graph profiling, generic dynamic
profiling and tracing, and latency profiling.

Post-deployment error detection. Liblit et al. [17]
present an approach for finding correctness bugs by cor-
relating the value of predicates inserted at specific program
points with the occurrences of failures. They reduce the cost
of the potentially expensive instrumentation by employing
a code-duplication-based sampling approach, and they im-
prove coverage by collecting the information from deployed
applications. Hauswirth and Chilimbi [14] developed an ap-
proach for memory leak detection in the field based on low-
overhead dynamic instrumentation. Nagpurkar et al. [21]
focus on detecting performance problems in the field. How-
ever, they focus on embedded applications, rely on hardware
profiling support, and identify hot code instead of long laten-
cies. Adamoli and Hauswirth [1] present a fly-by profiling

approach which maintains a ring buffer of periodically taken
call stack samples and sends them to the developers when a
user wants to complain about performance. Like Nagpurkar
et al., they cannot identify long latencies. Glerum et al. [11]
describe Windows Error Reporting, an infrastructure that
gathers information on the client computer at the time of a
failure, and sends it to a central server. They categorize fail-
ure reports by classifying them into “buckets”, based e.g.,
on the application, module, and program counter value at
the time of the failure. Unlike our approach, their work does
not include data about what happened before the crash (only
information available at the time of the crash). Ganapathi
and Patterson [10] found that 44% of the automated Win-
dows Error Reports in their university network represented
hang bugs. However, their definition of hang bug only in-
cludes bugs where a user explicitly killed an application. It
thus excludes all hang bugs with less extreme latencies.

Call graph profiling. Call graph profiling has been used
for a long time to understand application performance. In
1982 Graham et al. first described gprof [12], the profiler that
is now part of the prevalent GNU tool chain. While gprof
only maintains one level of context (one edge in the call
graph), more recent profilers can track more of the calling
context, up to the entire calling context tree. Later work,
such as Spivey’s [26], addresses the high cost associated
with gathering accurate context-sensitive profiles.

Our approach relates to call profiling in two ways. First,
we use a sampling based call profiler for root cause anal-
ysis within long-latency behavior. Using a sampling-based
approach is essential to reduce perturbation. Second, we use
an instrumentation based approach to find long-latency be-
havior, however, we only instrument a subset of important
landmark method calls. In general, LagHunter differs from
classical call profilers in that it collects traces instead of pro-
files. Our online trace filtering approach enables the effective
reduction of trace size while keeping the latency information
necessary for lag hunting.

To provide information about the root cause of a perfor-
mance bug, our approach reruns the program while pruning
the calling context tree. Our idea for call pruning is based
on Misailovic et al.’s work on loop perforation [19]. While
they skip specific loop iterations, we skip specific method
calls. However, unlike loop perforation, call pruning is a fo-
cused approach: we explicitly prune methods that are known
to contribute significantly to perceptible latency.

Generic dynamic profiling and tracing. Existing dy-
namic profiling and tracing techniques such as DTrace [4]
or BTrace [18] provide means to easily instrument running
applications. Similarly, aspect-oriented programming imple-
mentations such as AspectJ [16] provide dynamic weaving
approaches. All these generic approaches provide means to
specify what to instrument and what to do in the instrumen-
tation.
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However, neither approach is sufficient for our needs.
First, the approaches do not support the identification of all
the landmark methods we need to trace. While they can in-
strument method calls matching specific patterns, or even
all methods overriding or implementing specific supertype
methods, they are unable to identify all listener method invo-
cations, because it is not sufficient to know the name, class,
or supertype of a call target to determine whether it is a lis-
tener method. While one could instrument all call sites, or all
call sites that invoke a method in some subtype of EventLis-
tener (something that is possible with the above techniques),
and then decide at runtime in the trace action whether the
specific call indeed is a listener notification, such an ap-
proach would lead to significant overhead. Moreover, neither
of the two low-overhead approaches (DTrace and BTrace)
supports arbitrary computations in its trace actions (e.g., they
disallow loops and recursion), and thus they would be unable
to do the online trace filtering necessary for a lightweight ap-
proach.

While the above techniques do not support lag hunting, it
would be interesting to extend them to support our approach.

Latency profiling. Existing methods to measure re-
sponse time can be grouped into two categories: intrusive
instrumentation-based approaches, and non-intrusive indi-
rect approaches. While non-intrusive approaches do not re-
quire the instrumentation of applications or GUI frameworks
and are more portable, they do not provide the level of detail
available using instrumentation-based approaches.

Endo et al. [7] measure the response time of applications
running on Windows with a non-intrusive approach. They
detect idle time intervals by running a low-priority probe
thread that will only get scheduled when the interactive ap-
plication is idle. Their measurements of short interactions
with Microsoft Office applications show that Word, which
they assume uses asynchronous threads to hide latency, han-
dles about 92% of requests in less than 100 ms, while Pow-
erpoint performs significantly worse.

Zeldovich et al. [27] devised a different non-intrusive ap-
proach to measure response times of interactive applications:
they instrument VNC [23], an infrastructure that allows the
remote interaction with applications, to track the communi-
cation between the application and the display server. They
then correlate user input and screen updates to determine re-
sponse times. Using VNC they can replay tracked sessions
under different system configurations and determine whether
changes in configuration impact response times. Since VNC
is available on various window systems, their approach al-
lows the comparison of response times on different plat-
forms. The application and system with the best response
time they report on handles only 45% of requests in less than
100 ms.

The non-intrusive mechanism to measure response time
in the work by Fláutner et al. [8] keeps track of all processes
that communicate as a result of a user event in the X server

and measures the time it takes for all these processes to
become idle.

In our own prior work [15] we introduced the idea of mea-
suring the latency of observers and we presented a profiler
for use by developers in the lab. Its static-instrumentation
approach and the size of its traces made it impractical for
use in the wild. Moreover, it did not provide any information
about the causes of the long latency of listeners. In subse-
quent work we presented a tool that visualizes latency pro-
files [2] in a visualization similar to the sketch in Figure 5,
and we studied the profiles of 14 open-source Java GUI ap-
plications. One of the key findings in that prior work was the
low amount of concurrency in those applications: only 1.2
threads are runnable on average during interactive episodes,
and for perceptibly long episodes that number is even lower.
The lag hunting approach and the LagHunter tool presented
in this paper were significantly influenced by our prior work.
However, the core idea of lag hunting is different: instead of
creating a single heavy-weight profile in the lab, we need to
collect a large number of light-weight profiles in the field.
This new approach enabled us, for the first time, to study the
perceptible performance of real-world applications in pro-
duction environments, and to automatically produce perfor-
mance bug reports that are helpful in locating and fixing real
performance bugs.

8. Conclusions
Wouldn’t it be great if developers had actionable information
about the performance, as perceived by their users, of their
deployed applications?

In this paper we argue that performance bugs are bugs,
too. Performance bugs are particularly sensitive to context,
which means that they may manifest themselves in the wild
but may escape detection in a testing lab. Thus, to catch
performance bugs, post-deployment detection approaches
are essential.

We present such an approach and a tool, LagHunter,
which focuses on latency bug detection in interactive ap-
plications. LagHunter combines a low-overhead approach
to latency profiling with call stack sampling, automatically
computes information about similar latency bugs, and it per-
forms semi-automated call pruning, to efficiently help de-
velopers find the causes of long latency.

LagHunter is lightweight enough for deployment in pro-
duction settings. We deploy it in such a setting to find per-
formance bugs of the Eclipse IDE. By monitoring 24 stu-
dent developers during a 3-month project, LagHunter gath-
ered 1108 Eclipse sessions representing 1958 hours of us-
age. Based on that data, our automatic analysis reported 881
issues. In this paper we characterize these issues based on
their severity and the information content of their reports. In
a case study we pick three representative issues, and we use
the generated reports to find and eliminate the corresponding
performance bugs.

168



Our characterization shows that even production-quality
software like Eclipse still contains considerable performance
bugs, and our case study shows how LagHunter helps devel-
opers to fix these bugs. We have already used LagHunter
to successfully find and fix performance bugs in other ap-
plications, among them a large educational software tool we
wrote ourself. Moreover, LagHunter has been adopted by the
developers of CodeBubbles for catching performance bugs
in a pre-release of their software. We have made LagHunter
available for download8, and we hope that developers of in-
teractive Java applications will start to use it to catch their
own perceptible performance bugs in the wild.
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