
SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs

Ding Yuan
University of Illinois at

Urbana-Champaign
dyuan3@cs.uiuc.edu

Haohui Mai
University of Illinois at

Urbana-Champaign
mai4@cs.uiuc.edu

Weiwei Xiong
University of Illinois at

Urbana-Champaign
wxiong2@cs.uiuc.edu

Lin Tan∗

University of Waterloo
lintan@uwaterloo.ca

Yuanyuan Zhou
University of California, San Diego

yyzhou@cs.ucsd.edu

Shankar Pasupathy
NetApp, Inc

Shankar.Pasupathy@netapp.com

Abstract
Computer systems often fail due to many factors such as software
bugs or administrator errors. Diagnosing such production run fail-
ures is an important but challenging task since it is difficult to re-
produce them in house due to various reasons: (1) unavailability
of users’ inputs and file content due to privacy concerns; (2) dif-
ficulty in building the exact same execution environment; and (3)
non-determinism of concurrent executions on multi-processors.

Therefore, programmers often have to diagnose a production
run failure based on logs collected back from customers and the
corresponding source code. Such diagnosis requires expert knowl-
edge and is also too time-consuming, tedious to narrow down root
causes. To address this problem, we propose a tool, called Sher-
Log, that analyzes source code by leveraging information provided
by run-time logs to infer what must or may have happened during
the failed production run. It requires neither re-execution of the pro-
gram nor knowledge on the log’s semantics. It infers both control
and data value information regarding to the failed execution.

We evaluate SherLog with 8 representative real world software
failures (6 software bugs and 2 configuration errors) from 7 appli-
cations including 3 servers. Information inferred by SherLog are
very useful for programmers to diagnose these evaluated failures.
Our results also show that SherLog can analyze large server appli-
cations such as Apache with thousands of logging messages within
only 40 minutes.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Diagnostics

General Terms Reliability

Keywords Log, Failure Diagnostics, Static Analysis

∗ This work was done when she was at UIUC as a graduate student. Cur-
rently she is an assistant professor at the University of Waterloo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

1. Introduction
1.1 Motivation

Many applications require high reliability and availability [23]. Un-
fortunately, software failure is a major contributor to system down
time and security holes. As software systems have grown in size,
complexity and cost, it has become increasingly difficult to deliver
bug-free software to end users. As a result, many software fail-
ures (including crashes, hangs, incorrect results and other software
anomalies) occur during production runs.

Besides software defects, administrator errors are another ma-
jor cause for system failures because, being human, administra-
tors usually make mistakes when performing configuration related
tasks. A recent study [29] has shown a significant fraction (48.6%)
of failures in enterprise networks are caused by mis-configurations.

When a system fails in production run, regardless of the root
cause (software bugs, mis-configurations or even hardware faults),
support engineers and programmers are frequently called upon to
diagnose and solve the issue within a tight time schedule. Since
such errors directly impact customers’ business, vendors make di-
agnosing and fixing them as the highest priority. In order to provide
timely solutions to users, vendors often devote extensive time and
human resources, which often results in high supporting cost to
solve end user’s problems. In addition, it also causes interruption
on on-going effort to develop new features or products.

To solve a product-run issue, support engineers1 first need to
understand what have happened during the failure run in order
to narrow down the root cause. The best solution to achieve this
is of course to reproduce the failure in house. Much effort has
been conducted in system and hardware support for reproduc-
ing software failures on uni-processor and multi-processors, in-
cluding TTVM [30], R2 [24], DMP [17], Kendo [38], FDR [46],
BugNet [36], VMWare [43] , just to name a few.

Unfortunately, despite the above applaudable effort in failure re-
production, in reality, many circumstances make such failure repro-
duction impossible or forbiddingly expensive. First, customers’ pri-
vacy concerns can make failure reproduction infeasible. For exam-
ple, financial companies will not be able to release their databases
to vendors to troubleshoot a problem. Even an ordinary desktop
user may feel uncomfortable to send back Microsoft their inputs

1 Note that most tier-2 or tier-3 support engineers are software engineers
who have designed and developed the released software.

typed into a browser before a crash. Second, it is hard to have the
exact same execution environment (including hardware, network,
third-party application layers, OS or library versions, etc.) as what
customers have due to resource or license constraints. Third, how
to provide a low-overhead logging mechanism for failure reproduc-
tion on multi-processors is still a challenging open research prob-
lem [19, 35, 46].

In industry, the common practice in case of failure is that cus-
tomers send vendors logs that are generated by the vendor’s system,
and such logs are the sole data source (in addition to their source
code) to troubleshoot the occurred failure. Based on what are in the
logs and source code, engineers manually infer what may have hap-
pened, just like a detective who tries to solve a crime by connect-
ing all seemingly unrelated on-site evidence together. Therefore, to
resolve a production run failure quickly, it typically requires ex-
perienced engineers to manually examine logs collected from cus-
tomers. In some difficult and urgent cases, customers allow vendors
to provide a newer instrumented version to collect more detailed
logs, especially at the suspect code locations after support engi-
neers’ first round of log analysis. Such handshakes usually can iter-
ate a couple of times, but not more because it requires customers’
close collaboration, and can distract customers away from attend-
ing their own core business. Therefore, each iteration of the log
analysis needs to be effective to quickly zoom into the right root
cause within only a few round of interaction with customers.

1.2 A Motivating Example

Even though human intelligence still greatly exceeds machines’,
there are a few tasks, especially those dull and tedious ones, that
machine automation have done excellent jobs in offloading from
humans. It not only saves time and human cost, but also provides
better accuracy and more comprehensiveness. Failure diagnosis is
a such task.

Let’s consider a real world failure example in rmdir of GNU
core utilities version 4.5.1. Executing rmdir -p with a direc-
tory name ended by slash will mistakenly cause the program to
fail. When executing rmdir -vp dir1/dir2/, where dir1/ and
dir1/dir2/ are existing directories, the buggy program only re-
moves dir1/dir2/, without removing dir1/ as it should have.

The log produced by rmdir contains the following text (we
number each message for the convenience of our description):

rmdir: removing directory, dir1/dir2/ [msg 1]
rmdir: removing directory, dir1/dir2 [msg 2]
rmdir: ‘dir1/dir2’: No such file or directory [msg 3]

Figure 1 shows the highly simplified code of rmdir.c. If
the -p option is specified, empty path will be set to 1, causing
remove parent to be called after removing each argument direc-
tory, which will remove all the super directories along the hierar-
chy. Line 5-24 of remove parent shows the loop that removes all
the super directories. In each iteration, path moves one level up
along the directory hierarchy by removing all the characters after
the last slash of the current directory’s path. The error is triggered
when initially path ends with a trailing slash, so the first iteration
will simply remove the last slash, resulting in the same directory
which has just been removed in line 50 in main. The fix is simply
to remove all the trailing slashes before entering the loop starting
at line 5 in remove parents.

While the root cause may sound simple once known, it was
a “mystery” the first time this failure is reported and being diag-
nosed. The only information available is just the log messages. By
examining the logs and the corresponding source code, an engi-
neer may find that code statements r1, m1 could generate the first 2
messages, and r2,m2 generate the third message. However, simple
combinatorics would indicate a total of 8 combination possibilities,

and different combinations would take engineers to different paths
for narrowing down the root cause.

However, by conducting a deeper analysis, we can find out
that six of the eight paths are infeasible because they are self-
contradictory; and only two paths, namely {m1, r1, r2} or {m1,
m1,m2} are remaining for the next step of follow-up. For exam-
ple, {r1, r1, r2} would not be feasible because it implies m1 not
being executed, which requires verbose not being set, contradic-
tory with the constraint for r1 to be executed.

In addition, to diagnose a failure, engineers often need to know
more than just log-printing code locations. Specifically, they may
need to know what code has been executed and in what order,
i.e., the execution path, as well as values of certain variables. As
log messages are generally sparsely printed, there may be tens
of thousands of possible paths that lead to the same log message
combination (Examples in Section 2). Engineers would need to
manually reason about what code segments and control flows must
have been executed (referred to as Must-Path) and what may have
been executed (referred to as May-Path).

Unfortunately, above analysis is usually beyond human’s man-
ual analysis effort as it is a tedious and repetitive process, with
each step requiring examining its constraints and also checking
them against existing assumptions for feasibility analysis. Many
other real world cases are much more complicated than the sim-
ple example shown here. Many logs contain hundreds and even
thousands of messages, and each message can provide some in-
formation about what could have happened in the failed produc-
tion run. Not all possible combinations are feasible, it requires a
non-trivial, lengthy analysis to prune those infeasible ones and sort
those “must-have-happened” and “must-not-have-happened” from
“may-have-happened”. Such analysis results would provide engi-
neers useful clues to narrow down the root cause. Later sections
will show more real world failure examples that are caused by ei-
ther software bugs or mis-configurations.

Therefore, it is highly desirable to use an automated log infer-
ence engine to automatically infer from the available data (logs and
source code) on what have happened in the failed production run
before narrowing down the root cause. This is exactly the objective
of this work.

1.3 Current State of the Art

Most existing work on log analysis focus on using logs to classify
errors or group similar failures into the same class, or automatically
detecting recurring failures that match to some known issues [3, 8,
14, 27, 47]. For example, Windows Error Reporting system [22]
and the Mozilla Quality Feedback Agent [34] automatically collect
raw failure information (e.g. core-dumps and some heap data). It
still relies on manual effort from the developers to inspect these
runtime information to diagnose the error.

So far, few work has been conducted to automatically infer from
both logs and source code to find out what have happened during a
failed execution.

1.4 Our Contribution

In this paper we present SherLog, a postmortem error diagnosis
tool that leverages logs as starting points in source code analysis
to automatically infer what must or may have happened during a
failed execution.

To be general and practical, we have the following design goals:
• No need to re-execute the program: For practicality, our tool

only assumes the availability of the target program’s source code
and logs generated from failed executions. These two assump-
tions are quite reasonable as diagnosis are done by programmers
themselves and it has been a common practice for customers to
send product logs back to vendors. For example, most storage

1 remove_parents (char *path)
2 {
3 char *slash;
4
5 while (1) {
6 slash = strrchr (path, ’/’);
7 if (slash == NULL)
8 break;
9

10 /* Remove any characters after the slash, */
11 slash[0] = 0;
12
13 /* printing out removing. */
14 if (verbose)
15 error (0,0,_("removing directory, %s"), path

); //r1
16
17 fail = rmdir (path);
18
19 if (fail) {
20 ...;
21 error (0,errno,"%s", quote(path)); //r2
22 break;
23 }
24 } //end while
25 return fail;
26 } //end remove_parent

30 main (argc, argv) {
31 ...
32 while (optc = next_commandline_option) {
33 switch (optc) {
34 ...
35 case ’p’:
36 empty_paths = 1;
37 break;
38 case ’v’:
39 verbose = 1;
40 break;
41 ...
42 }
43 }
44
45 for (; optind < argc; optind++) {
46 char* dir = argv[optind];
47 if (verbose)
48 error (0,0,_("removing directory, %s"),

dir); //m1
49
50 fail = rmdir (dir);
51
52 if (fail)
53 error (0,errno,"%s", quote(dir)); //m2
54 else if (empty_paths)
55 remove_parents (dir);
56 } //end for
57 } //end main

Figure 1: Simplified rmdir.c source code. Bold statements are statements which print out console log messages.

vendors can collect failure logs from more than 50-75% of their
customers [15, 28, 37].
All inference are performed statically using path- and context-
sensitive program analysis and a satisfiability constraint solver
to prune infeasible combinations. This also allows our tool ap-
plicable to even system code such as operating systems for which
dynamic debugging is very cumbersome and challenging.

• No assumption on log semantics: For generality, our work as-
sumes no semantic information on logs. For example, our tool
does not know which log message is a configuration parame-
ter, etc. It simply treats every log message as a text string to
match against source code. Every match provides a “hint point”
for backward and forward inference on execution paths, variable
values, etc. All such derived information is then combined to-
gether to prune infeasible ones and reveal a bigger, global picture
regarding what may have happened during the failed execution.

• Able to infer both control and data information: Since both
execution path and variable values provide programmers useful
clues to understand what have happened during the failed pro-
duction run, we infer both control flow and data flow informa-
tion. This is accomplished via the following three steps (Fig-
ure 4): First, the log file is automatically parsed by our log parser
to match each message to its corresponding logging statement(s)
in source code (referred to as ”Logging Points”). Variable values
printed out in logging messages are also parsed to refine our anal-
ysis. Then SherLog’s path inference engine infers the execution
path based on information from our log parser, along with the
constraints that an inferred path needs to satisfy. Finally, Sher-
Log allows user to query the value of variables along an inferred
execution path, and returns the inferred value of a variable at its
definition and modification points.

• Scalability: Real world software often have thousands or mil-
lions lines of code. Therefore, our inference engine needs to be
scalable to handle such large software. To improve scalability,
we use function summaries and skip log-irrelevant code to limit
the inference space.

• Accuracy: Information reported by SherLog needs to be accu-
rate. Incorrect information can lead programmers to a wild goose
chase, and thus waste effort and delay diagnosis. SherLog’s path-
sensitive analysis faithfully models the C program’s semantic
down to bit level, with a SAT solver to prune infeasible paths.
Caller-visible constraint information is propagated from callee
back to caller to ensure context-sensitivity.

• Precision: The reported information also needs to be precise as
too many possibilities do not help programmers narrow down
the root cause. For this reason, SherLog ranks the results based
on probabilities. Must-Paths are ranked higher than May-Paths.
Along each path, the necessary constraints, are ranked higher
than sufficient but not necessary constraints. In value inference
where multiple values of a variable might be possible, SherLog
ranks concrete values higher than symbolic ones.

• Capability of automatically generating log parsers: Real-
world software have hundreds or thousands of code lines that
can print out log messages, many of which have distinctive log
formats, therefore it would be tedious and error-prone to man-
ually specify how to parse each log message. By extending the
standard C format strings, SherLog can automatically generate
a parser matching majority of the Logging Points. And with
only a few annotations by developers, SherLog can be easily
customized to developers’ specific logging mechanisms.

We evaluate SherLog on 8 real world failures from GNU core-
utils , tar, CVS, Apache and Squid, including 6 software bugs and
2 configuration errors. The result shows that all of the errors can
be accurately diagnosed by SherLog. The performance evaluation
shows that analysis for simple applications such as GNU core-
utils could finish within 5 minutes. For server applications such
as Apache and Squid, we used logs from hours’ of execution with
thousands of messages, and the analysis still finishes within 40 min-
utes. The maximum memory usage for analyzing the 8 real world
failures is 1.3 GB.

For the real world example shown on Figure 1, the information
generated by SherLog is presented by Figure 2. For the first path,

SherLog Report for rmdir
Paths

Path 1:
rmdir.c:30
main()

rmdir.c:45
for(...)

rmdir.c:48
MSG 1

rmdir.c:1
remove parent(...)

rmdir.c:15
MSG 2

rmdir.c:5
while(...)

rmdir.c:21
MSG 3

verbose

empty path
&& !fail

verbose

slash �= NULL

rmdir (dir)

Path 2:
...

Value Inference
Query results of the value of path in remove parents():
path = "dir1/dir2/" on Line 3
path = "dir1/dir2" on Line 11

Figure 2: SherLog’s error report for the rmdir bug. The Must-Paths
are automatically generated to aid diagnosis. SherLog also infers the
necessary constraints, i.e., constraints that must have been satisfied to
execute a Must-Path.

{m1, r1, r2}, we have necessary constraints such as strrchr()

returns non-NULL value at line 6, rmdir() returns failure (non-
zero) at line 17. The developer can query the value of path in
remove parents, and SherLog would report the value of path at
each definition point in remove parents. All these information can
help the developer getting much closer to the root cause.

2. SherLog Overview
As briefly explained in Introduction, SherLog takes two things as
input: (1) a log recorded during the failed execution, mostly from
production runs at customer sites2; and (2) source code of the target
program.

Note that SherLog’s objective is not to detect bugs. Instead, its
objective is to infer information to help programmers understand
what have happened during the failed execution. Such information
includes the likely execution paths (and their constraints) as well as
certain variable values along these paths. So at a high level, Sher-
Log’s objective is similar to program slicer [2] and core-dump an-
alyzer [45]. But they differ in both inputs and information inferred.
The Ideal Goal: Ideally, it would be great if SherLog could output
the exact, complete execution path and state as what actually hap-
pened during the failed execution. Unfortunately, it is impossible
to achieve this goal since SherLog does not have the input data, the
execution environment including file systems and databases, etc.
All it has is just logs generated by the program from the failed exe-
cution. Therefore, with limited available information, SherLog has
to lower its goal.
A Realistic Goal: If we look at only the source code, there are
many possibilities in terms of both execution paths and states dur-
ing the failed execution. Fortunately, logs significantly help us nar-
row down the possibilities, even though it may not pin-point the
execution path and state that actually happened during the failed
execution. Therefore, a realistic goal is to find the following infor-
mation (illustrated in Figure 3):
• Must-Have: partial execution paths that were definitely executed

(referred to as Must-Path), and variable values that were defi-
nitely held during the failed execution.

2 Even though we target for diagnosing production-run failures, SherLog
can help diagnosing errors occurred during in-house testing as well.

1 main() {
2 ...
3 if (A)
4 log(msg1);
5
6 if (!A)
7 log(msg2);
8
9 if (var)
10 b1();
11 else
12 b2();
13 }
14
15 b1() {
16 c();
17 }
18
19 b2() {
20 c();
21 }
22
23 c() {
24 if (A)
25 log(msg2);
26 }

msg1
msg2

A log:

Pruned-Path:Must-Path & May-Path:

{A 0}

{A 0 &&
var=0}

{A 0 &&
var=0}

var 0

1

4

25

10

9

3

16

12

20

{A 0 &&
var 0}

{A 0 &&
var 0}

{A 0}

var=0

A 0

A 0
24

7

1

4

6

3
A 0

{A 0}

{A 0 &&
A=0}

A=0

Unsatisfiable

Figure 3: Must-Path, May-Path, and Pruned-Path. The Must-Paths are
shown in solid lines, while May-Paths are presented in dashed lines.
Pruned-Path is analyzed by SherLog but determined infeasible by our
SAT solver. Logging Points are highlighted in bold circles and fonts.
Constraints along the path are shown in {} on the right of a circle.

• May-Have: partial execution paths that may have been executed
(referred to as May-Path) and their corresponding constraints for
them to happen, as well variable values that may have been held
during the failed execution.

• Must-Not-Have: execution paths that were definitely NOT exe-
cuted (referred to as Pruned-Paths).

SherLog Architecture: To accomplish above objectives, SherLog
first needs to parse logs and using logs to identify starting points
in source code for information inference. Then using the initial
information provided by logs, it tries to statically “walk” through
the code to infer the above information. As illustrated in Figure 4,
SherLog has three main analysis steps: (1) Log Parsing: for each
log message3, identifying which lines in the source code prints it
(referred to as Logging Points), and what program variable values
are revealed in this log message(referred to as Logging Variables);
(2) Path Inference: starting from the information provided by the
log parsing step to infer Must-Paths, May-Paths and Pruned-Paths.
(3) Value Inference: infer variables values on the paths produced by
the previous step.

In this section, we provide a brief summary of each component.
The details are explained in the following three sections.

Figure 4: The components of SherLog.

Log Parsing: In this step, the first operation is to identify the pos-
sible source code locations that can output each log message. This
is a string matching problem and can be solved via many methods,
but each with different efficiency. Instead of doing a brute-force
matching from log messages to source code, SherLog uses an in-
novative approach that starts from the source code itself to obtain
all possible log message formats in regular expressions to match
any run-time logs produced by this program. To support complex,

3 Each line in the log is referred to as a log message.

customized logging facility, SherLog also provides extension hooks
to allow programmers to adapt specific logging utilities and format.

Path Inference: Path inference starts from log points and try to
reconstruct paths (sometimes partial paths) that can connect them
together. To find precise, accurate and relevant information, it starts
from information available from logs, and use a SAT solver to
find all feasible paths and their constraints. To help programmers
narrow down the possibilities, SherLog also separates Must-Paths
from Maybe-Paths. To scale to large software, it uses function
summaries and skip functions that are not relevant to log messages.

Value Inference: Theoretically it is impossible to provide sound and
complete solution for value inference in static analysis, without
environmental information such as inputs and libraries. However
the observation made by SherLog is that in most cases only the
values involved in constraints of the error execution path, as well as
those printed in the log messages are important in error diagnosis.
The former are important because they are the ones leading the
execution to the error site, while the latter are important since
programmers often only prints values that directly caused the error.
SherLog makes best efforts to approximate a sound solution only
to these variables to achieve overall balance between effectiveness
and efficiency. We do so by symbolically execute the program
faithfully following the path inferred in the path inference step,
taking all the constraints along this path as facts for variable values,
and propagating the value information across function calls.

We build all three components of SherLog on top of the Sat-
urn [49] Static Analysis Framework, because Saturn offers both the
flexibility in expressing our analysis algorithm and precise static
analysis of C programs.

3. Log Parsing
The objectives for our log parser (referred as LogParser) include
parsing log messages, connecting them to source code, and provid-
ing the initial set of information for inference in later steps, namely
Path Inference and Value Inference.

To achieve above objectives, LogParser performs two tasks.
First, it needs to identify Logging Points, i.e., possible code loca-
tions that produce each log messages. Second, LogParser extracts
variable values that are directly contained in log messages. Such
values are not only useful for programmers to understand the fail-
ure, but also can be used as additional constraints to guide our next
step of inference.

3.1 Challenges

If programmers simply use a printf to output each log message
entirely, identifying Logging Points is relatively straightforward.
LogParser can just use phrases from each log message to search
against the entire source code and then compare each returned
result against the entire log message to find the true match.

Unfortunately, most real-world software usually use a modular-
ized logging facility, that is typically implemented as complicated
wrappers around standard C library printing calls to support cus-
tomized logging format. In the example shown in Introduction, the
error call at line 53 and 21 will finally call strerrno() function,
to get the constant string “No such files or directory” corre-
sponding to the value of errno. The third argument for error call at
line 48 and 15, ("removing directory,%s") is actually a wrapper
to a call to dcgettext() function for internationalization support.
The quote(dir) call at line 53 wraps the directory string with a
pair of single quotes.

Above complex logging facility makes the naive method de-
scribed earlier ill fitted. For example, it is hard for this method to
find the match for msg 3 because all the sub-strings in this message

are generated dynamically from either user input or functions such
as strerrno().

3.2 Our Approach

To address the above challenge, our LogParser uses a general mech-
anism that starts from source code and its abstract syntax tree
(AST) to automatically generate regular expression based parsers
to parse log messages and extract variable values. In addition, it
also provides an easy way for programmers to support complex,
nested logging facility. Here, we first describe the basic LogParser,
and then discuss how to support complex logging mechanisms.

Basic LogParser: Our basic LogParser requires programmers to
indicate only the logging functions and which parameter in this
function is the format string. For example, in the rmdir example,
error() is the logging function and its third parameter is the
format string.

For the rmdir example, the user provides 3 annotations, i.e.,
{error(), 3, 4}, meaning error() is the logging function, the
3rd parameter of error() is the format string (“removing directory,

%s), and parameters starting from the 4th parameter feed the wild
cards, e.g., %s, in the format string.

Then LogParser scans the entire source code and find out all
possible format strings from the source code that can produce log
messages. This is done through traversing the Abstract Syntax Tree
(AST) of the program to extract all the format string arguments
from all calls to the logging function. It is easy to walk up the AST
to get the actual values for the format string arguments to the log-
ging function call. In the rmdir example, the parser first identifies
both "removing directory, %s" and "%s" as format strings from
error calls.

Now from all obtained format strings, LogParser builds a col-
lection of regular expressions that can be used to match against log
messages. Each regular expression is associated with a code loca-
tion, i.e. a Logging Point. For each log message, LogParser matches
it against the collection of regular expressions. The corresponding
code locations for any matching regular expressions are possible
Logging Points for this message. In the rmdir example described in
Introduction, LogParser finds out that msg1 matches two possible
Logging Points: code Line 48 (m1) and Line 15 (r1).

For a matching regular expression, SherLog also maps the value
back to the format string argument to obtain the associated variable
values. For example, if [msg 1] is generated by Log-Point m1, Log-
Parser can obtain the value of variable dir at m1 as dir1/dir2/.
Similarly, if it is generated by r1, LogParser knows that the value
of variable path at r1 is dir1/dir2/.

Supporting complex logging mechanisms: The basic LogParser
described above can work well for programs with relatively simple,
flat logging mechanisms. Unfortunately, some real world programs
use more complex, hierarchical logging facility with nested log for-
matting from some assisting functions. Such complication requires
us to extend our basic LogParser.

In the rmdir example, error() sometimes calls strerrno() to
get a string that corresponds to the value stored in errno. Now we
cannot simply use the format string "%s" in line 53 or 21 as a wild-
card to match msg3. Doing so would infer incorrect value of dir

at line 53 or path at line 21 being "‘dir1/dir2’: No such file

or directory". To correctly parse msg3, We need to separate the
string constant “No such file or directory” from the rest of the
message.

To address this problem, LogParser provides a simple exten-
sion mechanism to allow programmers to annotate complex for-
mat string. Programmers can define a new format string ‘%s’:

%{serrno}, along with a rule shown in figure 5 to handle the newly
defined specifier %{serrno}. This new format string can be used to

match [msg3], with %s mapped to dir1/dir2, and serrno mapped
to a Regex instance No such file or directory.
rule = [{"specifier": serrno; "regex": Regex;
"val_func": ErrMsgToErrno}]

Figure 5: User defined rule to handle error strings returned by
strerror().

Programmers can use the above APIs to construct a group of
Regex with the constant error messages returned by strerror or
any other third-party libraries whose source code is not available to
SherLog. One such error message is No such file or directory.
ErrMsgToErrno is an optional value mapping function to extract
variable values. In this case, ErrMsgToErrno reversely maps each
error message to its corresponding error number errno. Thus, we
know that if the Regex maps to No such file or directory, the
value of errno would be ENOENT. It can then be used as an additional
constraint in our path/value inference.

These user defined regular expressions are then added into our
collection to map against log messages. In rmdir case, SherLog
infers that the value of dir at line 53 or path at line 21 were
dir1/dir2, and the value of errno were ENOENT.

4. Path Inference
Given a log, we want to recreate paths that could have generated the
log or parts of the log, along with the constraints that the path needs
to satisfy. To make SherLog useful and practical for real world sys-
tems, SherLog has to meet several design goals: (1) Precise: be
as concrete as possible to narrow down the possibilities for pro-
grammers. (2)Accurate: information reported by SherLog should
be correct. (3) Scalable: can handle large software. (4)Relevant:
most information reported should be related to the occurred failure.

To achieve the above goals, SherLog’s Path Inference engine
uses a log-driven, summary-based approach. Being log-driven al-
lows SherLog to focus on relevant information. Summary-based
approach enable SherLog to scale to large software such as server
applications. To be accurate, SherLog uses inter-procedural path-
and context-sensitive analysis, and reports the constraints associ-
ated with each feasible path. To improve precision, SherLog sep-
arates Must-Path from May-Path so programmers can first focus
on those paths that have definitely happened. Additionally, when it
is impossible to narrow down the complete path between two log
points, SherLog tries to reconstruct the maximum partial paths.

We first give a high-level overview of the design and process,
and then describe our approach in more detail.

4.1 Overall Design and Process

SherLog is summary-based, that each function f ’s body is analyzed
separately, and at the call-site of f , only a summary of f is used.
The summary of each function f is the subsequences of logging
messages f might print out, along with the constraints that needs to
be satisfied for f to print out those messages. If there is a path P in
f that calls a and b, a prints [msg 1] under the constraint Ca and b
prints [msg 2] under the constraint Cb, then f might print [msg 1,
2] given that the constraint Ca ∧Cb ∧CP is satisfiable, where CP

is the constraint along P . Then the analysis is a recursive process,
that given a message sequence, initially the Log Parser provides the
Logging Points in the program that print each message, under the
constraints that the log variables must hold the values revealed in
the log. SherLog starts with the functions that directly call these
Logging Points, and recursively propagating the subsequences a
function connects from callee to caller, along with constraints.
The caller would concatenate all the sub-sequences the callees
connects into a longer sub-sequence. At the end, if we can infer
a complete execution path of the program that prints the entire
message sequence, then we should find main has summary that

prints the entire log. Otherwise, we only inferred partial paths.
The path SherLog reports is the call chains and the constraints
it satisfies. Figure 6 shows the analysis order of functions for the
rmdir case.

Loops are modeled as a function with a tail-recursive call to
itself in SherLog, that at the end of a loop body, a call instruction
is inserted with the target to the current loop’s head. Thus, loop
is treated with no difference than a function. We will use the
term function to also refer to loop in the rest of paper. This way,
repeating logging messages printed by loop iterations would be
precisely connected by analyzing function/loop repeatedly until it
can not connect more logging messages.

{m1, r1, r2} {m1, m1,m2}

Figure 6: SherLog’s analysis for rmdir.

SherLog only analyzes functions that directly or indirectly calls
the Logging Points. In the rmdir case, only the functions shown in
Figure 6 are analyzed, while functions like rmdir() on line 17 in
Figure 1 is skipped. For functions SherLog analyzes, we use precise
path-sensitive analysis to faithfully follow the program’s semantic.
For functions that doesn’t print logging messages, SherLog simply
ignores their side-effects. This is a trade-off in our design deci-
sion to balance scalability with precision. This allows us analyzing
functions that must affect the execution that generates the logging
sequence precisely, while not wasting time on those functions that
may have effects. Skipping the side-effects of functions is gener-
ally unsound, that might introduce both false-positives and false-
negatives in the paths we inferred. However, we find this approach
works well in practice since partial side-effects of these skipped
functions could still be recovered from the constraints along a path.
For example, without analyzing rmdir() on line 17, SherLog still
infers that it returns non-zero value along the path {m1, r1, r2};
without analyzing the while loop at line 32, SherLog still infers
that verbose needs to be non-zero along the two paths. Later in
our value inference, we allow user to further query why the return
value of rmdir() is non-zero. Modeling all functions in the pro-
gram would result in a full-symbolic execution approach which is
unlikely to scale well to large applications.

Once the analysis is finished, SherLog reports the paths that
connects the longest sub-sequence of logging messages involving
the error message. By default, SherLog assumes the last message is
the error message unless otherwise specified by user. There might
be multiple paths that connects the same sequence of Logging
Points. In this case, SherLog would “diff” all these paths and first
report the common records along these paths as Must-path before
output the rest.

Figure 6 shows how SherLog infers the two paths {m1, r1, r2}
and {m1, m1,m2} in rmdir example. For {m1, r1, r2}, log parser
could map message 1, 2 and 3 to error() at line 48, 15 and 21
respectively. SherLog first analyzes the while loop at line 5, as it
will directly call two Logging Points error()@15 and error()@21.
This would result in a path error()@15->error()@21, with the con-
straints Cw as “strrchr �= NULL ∧ verbose �= 0 ∧ rmdir()@17 �=
0”. Thus a summary of this while loop will be generated and stored,
including the path, the messages it connects ([msg2] and [msg3]),

and a converted constraint Cr as “verbose �= 0”. Because this sum-
mary is to be used by the caller of the while loop, so the constraint
must be converted to filter out caller invisible fields such as “str-
rchr �= NULL ∧ rmdir()@17 �= 0”. Then SherLog analyzes the
caller of this while loop, remove parents, directly using the sum-
mary of the while loop at line 5 to propagate message connection
information to the caller. This will generate a summary for function
remove parents similar as the one for the while loop. Next Sher-
Log analyzes the for loop in main, which finds a path error()@48

->remove parents@55, along with the constraint Cp as “verbose �=
0 ∧ rmdir()@50 = 0”. It then uses the previously computed sum-
mary of remove parents, and further connects message 1 with mes-
sage 2 and 3 by solving the constriant Cp ∧ Cr along this path.

Figure 6 also shows the inference of path {m1, m1,m2} in the
rmdir example. This path involves the for loop at line 45 being
repeated twice. At the beginning, SherLog analyzes this loop the
first time by connecting message 2 and 3. The next time, it will first
connect message 1, then use the previously computed summary of
itself to further connect 1 with 2 and 3. SherLog would analyze the
for loop one more time and find out it can no longer produce any
new summaries. Thus SherLog would stop the analysis.

Figure 7: SherLog connects maximum partial message sequence.

This design also makes SherLog practical to connect maximum
partial paths if the complete path is unavailable, e.g., because of
multi-thread executions or system restart. Figure 7 shows the case
where message 1,2 and 3 are generated by thread 1, while message
4, 5 and 6 by thread 2. The bottom-up design of SherLog still
connects message 1,2 and 3 with path 1 and 4,5,6 with path 2,
although SherLog couldn’t statically further connect path 1 and 2.
If message 6 is the actual error message, SherLog would report path
2 to user which is the longest path involving a message of interest.

4.2 Overview of Saturn Static Analysis System

We give a brief background of the Saturn Static Analysis frame-
work that SherLog is built on before we move into the detail im-
plementation. Saturn is a static analysis framework of C programs.
User writes analysis in a logic programming language to express
the program analysis algorithm. Saturn is summary-based, and
models loops as tail-recursive function calls. It is also constraint-
based, that the analysis captures all the conditions as constraints
along a path that reaches the program point of interest. A SAT
solver can be used to report whether these constraints are satis-
fiable. Saturn models all C program’s construct such as integers,
structures, pointers, etc., faithfully [49] by statically name every
memory location accessed by each statement uniquely within cur-
rent function being analyzed [4]. Thus, each bit accessed by the
function is represented by a distinct boolean variable. Saturn also
supports alias analysis, with an option to turn it on for the analy-
sis. Currently SherLog doesn’t turn on alias analysis, and assumes
non-aliasing among pointers.

4.3 Detailed Design

We formalize the path inference problem as a constrained sequence
matching problem. Given a log file L, we use a sequence of integers
M = [1, 2, · · ·n] to match the sequence of logging messages,
an integer i corresponds to the ith message in the log. Log parser
generates a set of Logging Points for each log message:

Possible Logging Point:s : i → {li,j}

where li,j is a candidate Logging Point for message i. The prob-
lem of path inference is to find all paths P in the program (func-
tion/loop call chains) that connects sequences of Logging Points
Li,k = [li,ji , li+1,ji+1 , · · · , lk,jk] where [i, k] ⊆ [1, n], under the
constraint that P is a feasible path in the program. Intuitively, we
are searching for all the possible continuous sub-sequences of the
logging messages that can be printed in the program.

SherLog’s summary-based analysis decouples the problem of
searching for Logging Point sequences in the entire program into
searching from function by function. The summary we are comput-
ing for each function will be:

sum(F, i, k, Pi,k, CF)

This tuple sum indicates that, in function F , there is a path (call-
chain) Pi,k, which will connects the sequence [i, k], under the
constraint CF . Path Inference engine is to find all possible sum
tuples for each function F . All the computed summary tuples are
stored in a Berkely DB database as key/value pairs F /sum.

More formally, if function F calls F ′ at program point PP ,
SherLog searches the summary database for the the key F ′. For
each sum(F ′, i, k, Pi,k, CF ′), SherLog generates a predicate
logp(PP, i, k, P ′

i,k, C
′
F ′), indicating at program point PP there is

sub-sequence matched by callee, with the following rule:
logp(PP, i, k, P ′

i,k, C
′
F) : −

PP is the call site to F ′,
sum(F ′, i, k, Pi,k, CF ′),

P ′
i,k = concatenate(F ′@PP, "->", Pi,k),

convert(CF ′ , C′
F ′)

This rule propagates the sequence matching behavior of callee to
the caller’s context. For the path string Pi,k, we attach the current
function name F ′ and call-site to the path string within F ′, thus
recursively construct a path string such as
"...remove parents@55->while@5->error@15...". The convert
predicate is to convert the constraint from callee’s context into
the caller’s context. We implement strongest observable necessary
condition [18] for constraint convertion, which filters all the caller-
unobservable conditions involving local variables and keeping only
the caller-observable conditions such as return values, function
arguments and globals. It guarantees the converted constraint is a
necessary condition of the orginal one to be conservative.

With the logp defined, we can now summarize the sequence
matching behavior of F as:

sum(F,i1, km, Pi1,km, CF) : −
PP1, PP2, . . . , PPm is a path in F with constraint Cp,

logp(PP1, i1, k1, Pi1,k1, C
′
F1), · · · · · ·

logp(PPm, im, km, Pim,km, C′
Fm),

k1 + 1 = i2, k2 + 1 = i3, . . . , km−1 + 1 = im,

Pi1,km = concatenate(Pi1,k1 . . . Pim,km),

CF = Cp ∧C′
F1 . . . ∧C′

Fm, SAT(CF)

Here PP1 to PPm are call sites within F whose targets have
summary entries. We are ignoring the side effects of functions
that doesn’t have summary entries, i.e., not printing logs. This
rule connects all the sub-sequences matched by F1, F2 to Fm

together to form a longer sub-sequence. Note that we propagate
the constraints from the callee to ensure inter-procedural path- and
context- sensitivity. The sum entry is only added to the summary
database if the constraint is satisfiable, i.e., path is feasible. Note
that if the sequence generated by Fi and Fi+1 are discontinued,
then we simply ignore this path.

At the beginning we initialize the logp for each Logging Point
lij as:

logp(lij , i, i, “”, log varialbes=log values)

The path of the initial Logging Points is empty string. Then it’s a
iterative process that SherLog gradually adds more summaries into
the summary database. The analysis stops when the sub-sequences
each function matches stabilizes. Although the sub-sequences each
function generates is always guaranteed to converge, since we are
not backtracking along the sequence, the constraints might not. For
example, a loog can be analyzed infinite numbers of times but only
printing the logging message in the first iteration. SherLog handles
this by setting a threshold T that a function/loop can be maximumly
analyzed T times.
External Code Modeling: In order to correctly model the program
behavior, SherLog needs to understand the side effects of some ex-
ternal routines, such as abort and exit, whose source code are not
available. The summary-based design eases this process that we
can write a summary of the routine and stores into the summary
database. Currently, we manually modeled roughly 20 routines in-
cluding library calls as well as system calls. These routines include
strrchr, stat, exit, abort, setjmp, longjmp, etc.

An interesting case is the handling of setjmp/longjmp which
are commonly used in C program to model exception handling. At
each call site to longjmp(jmp env), SherLog first treats that node
in the Control Flow Graph as termination node. Then it creates
two summary entries for the setjmp(jmp env) call. One has the
summary same as the caller of longjmp as it reaches the call-
site, with the constraint that the return value of setjmp being the
none-zero. The other summary entry simply indicate setjmp would
do nothing with a zero return value. This way the control flow
from the call-site of longjmp will be redirected to the call-site of
setjmp, through the propagation of the context information stored
in summary entry.

4.4 Reporting Inferred Paths

There might be multiple paths inferred by the static analysis en-
gine that connects the same Logging Point sequence. In the exam-
ple shown in Figure 3, we find two paths main->log@4->b1@10
->c@16->log@25 and main->log@4->b2@12->c@20->log@25,
all connecting the same Logging Point sequence: log@4,log@25.
In real world applications the scarcity of Logging Points might re-
sult in tens of thousands paths connecting two Logging points. To
be useful, SherLog needs to effectively summarize these paths be-
fore output them to the user.

We define all the paths that connect the same sequence of Log-
ging Points L as the May-Paths for L. The common call-records
among all these May-Paths are defined as Must-Path for L. So
for each L, we can only have one Must-Path. In the example
shown in Figure 3, there is one feasible Logging Points sequence
log@4,log@25, with two May-Paths of length 5, and one Must-
Path main->log@4..->log@25 of length 3. In real-world error ex-
ecution finding Must-Path from May-Paths can effectively localize
the root cause, that most of the errors can be diagnosed by looking
only at Must-Path. We also rank the call-records in all the May-
Paths by their frequencies.

The final output of SherLog’s path inference would be the
Must-Paths that connects the longest sequence of logging mes-
sages involving the error message, along with a randomly selected
May-Path for each Must-Path. By default, SherLog assumes the
last message is the error message. The user could query paths in-
volving other messages or other May-Paths. For the rmdir ex-
ample, there are two Logging Points sequences, {m1, r1, r2}
and {m1, m1,m2}, so we report two Must-Paths. Since each
Must-Path has only one May-Path, so in the end SherLog reports
two Must-Paths same as May-Paths: main->for@45->error@48
->remove parents@55->while@5->error@15 and main->for@45
->error@48->for@45->error@48->error@53. The constraints
with each function/loop record along each path can be inspected.

5. Value Inference
Once the path inference engine infers an execution path P , Sher-
Log can further infer the value-flow of a variable v along P by
re-executing P symbolically. Value Inference is built on top of Sat-
urn’s memory model. Each memory location accessed by the func-
tion, e.g., local variables, globals, formal arguments, etc., is stat-
ically and symbolically named. Along each path, Saturn models
the assignment relationship among memory locations as guarded
points-to graph, that location A points to location B under a cer-
tain condition C. Note that the points-to relationship here refers
only to the relationship between the Saturn’s statically named lo-
cations, not to be confused with C program’s pointer information.
A predicate value(PP, l, val, C) is used to model this behavior,
indicating at program point PP , location l points-to the val under
constraint C. Consider the following example:

1: a = argc;
2: if (c == 1)
3: a = 1;
4:

In this program, a, argc, c and integer 1 all have static names for
their location. By executing the assignment and branch instruction
following C’s semantic [4], Saturn would infer that at line 4, lo-
cation a points-to the location of integer constant 1 if c == 1 is
true, that value(line 4, a, 1, c == 1). Otherwise, a points to argc,
that value(line 4, a, argc, c �= 1). We refer any constant value of
a variable as concrete value.

Given a path P = {F1, F2, ..., Fn}, where each Fi is either a
function or loop, the value inference symbolically executes each Fi

following their orders in P . Within each function Fi body, it infers
the guarded points-to information for all the variables accessed by
Fi. At the call-site in Fi to Fi+1, SherLog propogates the context
information from caller to callee. For all the value(PP, l, val, C),
where val is concrete and l is observable by Fi+1, this informa-
tion is propagated to Fi+1 given C is satisfiable. Next when an-
alyzing Fi+1, SherLog initializes this points-to information, con-
verting caller’s location to callee’s location and similar constraint
conversion as in Path Inference. Thus, we are propagating the con-
stant value information along P . Note that the constraint C we are
solving in Fi includes the constraints inferred in path inference, to
guarantee that the value we infers is only along the queried path.

If variable var’s value within function Fi is queried along the
path P , the analysis stops in Fi. SherLog would output all the
inferred guarded points-to information of var in Fi, at each point
where a is modified. SherLog also outputs any the constraints
involving var if var can be found in the constraint of Fi.

In the rmdir example, the user might query the value of variable
path in remove parents, along the path "main->for@45->error@48

->remove parents@55->while@5->error@15->error@21". Sher-
Log starts with main, then the body of the for loop at line 45.
At line 48, SherLog infers logging variable dir points-to a con-
crete value “dir1/dir2/”. At line 55, this information is propagated
to remove parents as context information. Within remove parents,
value of variable path is initialzed as “dir1/dir2/”. At line 6, Sher-
Log would infer slash points to the last ‘/’ in “dir1/dir2/” after
calling strrchr. Then at line 11, the assignment would change the
path from “dir1/dir2/” to “dir1/dir2”, removing the last slash. The
output of SherLog for this query is shown in Figure 2.

Like Path Inference, SherLog’s Value Inference also skips the
analysis on functions that doesn’t print logs, which might cause
Value Inference return incorrect result. It also does not model
complicated C’s features such as pointer arithmetic. Instead, we
do best effort in ensuring the correctness of values involved in
constraints of the path and those printed in the log messages,
guaranteeing that our inference result would always conform with
the constraint of the path. User can also force SherLog to analyze

functions that are skipped in Path Inference. For example, in the
rmdir case user can query the return value of rmdir() at line 17.
SherLog still answer this query by propagating constants along
the path, and into the function body of rmdir() after the call at
line 17 within the while loop. Our evaluations on real world errors
confirmed the effectiveness of our value inference.

6. Evaluation Methodology
We evaluate SherLog on 8 real world failures from 7 applications
(including 3 servers), which are summarized in Table 1. This suite
covers a wide spectrum of representative real-world failures and
applications. Six (6) of the failures are caused by software semantic
bugs and 2 by configuration errors, which no prior static analysis
work could diagnose.

For evaluation purpose, we manually reproduced and diagnosed
each failure, collected the run-time log, and summarized the infor-
mation essential for diagnosing each error. Results generated by
SherLog are compared against our summary. If SherLog could in-
fer a subset of the summarized information we consider it useful. If
all the information essential for diagnosing the failure are inferred
correctly by SherLog, we consider SherLog complete.

Our experiments are conducted on a Linux machine with 8 Intel
Xeon 2.33GHz CPUs, and 16GB of memory. SherLog is a single
threaded program. We set a 30 seconds time-out threshold, so that
each function/loop will not be analyzed more than 30 seconds.

Log Parser # Paths Path Len Effective
Name Regex log Pts Must May Must May Msg Useful Comp.
rmdir 4 10 2 2 4.5 4.5 3

√ √
ln 17 23 1 1 5 5 2

√ √
rm 17 25 1 10 7 13 4

√ √
CVS1 695 1,173 1 2 2 4 2

√ √
CVS2 695 1,173 1 120 5 12 1

√ √
Apache 997 1,259 1 1 8 8 10

√ √
Squid 1,134 1,209 1 57 9 15 108

√ √
TAR 171 228 5 24 3 7 1

√ √

Table 2: Detailed result for SherLog. Regex is the number of regular
expressions (format strings) generated by the Log Parser. Log Pts. is
the number of logging points in the program that matches these regular
expressions. # Paths is the number of each type of paths. Path Len
is the length of the paths. We only count number of function calls,
ignoring loops. For multiple-must paths, we report the average length.
The length of May-Path is the length of a randomly chosen May-Path
along the Must-Path. Msg is the length of the May path in terms of
number of logging messages it connects, including the error message.
Comp. stands for completeness.

7. Experimental Results
7.1 Overall Results

Table 2 shows the diagnostic results by the SherLog on the 8 errors.
In all 8 cases, SherLog correctly and completely inferred all the
diagnostic information.

Table 2 also shows the results of SherLog components. The Log
Parser results confirm that large applications often print hundreds
of or thousands of different kinds of messages, and it is common
for multiple Logging Point to have the same format string (num-
bers in column Log Pts are bigger that those in column Regex),
which makes it hard for developers to manually reason about the
exponential number of Logging Point combination possibilities for
a given log. In most cases, SherLog reports one Must-Path contain-
ing 2-9 function calls, which is much more precise information than
the 18K-317K LOC and the exponential number of Logging Point
combinations. This result demonstrates that SherLog is effective in
zooming into the paths that are relevant to the failure. Table 2 also

shows the number of logging messages SherLog connects. SherLog
cannot connect Logging Points across threads (Apache and Squid),
processes communicated by message passing (CVS 1 and CVS 2),
or functions called by function pointer (TAR).

7.2 SherLog Diagnosis Case Studies

We use 3 errors as case studies to demonstrate the effectiveness of
SherLog in help diagnosing bugs and mis-configurations.

Case 1:ln

SherLog Report for ln
Synptoms

A user uses ln to create a hard link for a file, but somehow ln tries to
create a hard link for the current directory "." and fails.

Log Traces
create hard link ‘./dir1/target’ to ‘target’ [MSG 1]
ln:‘.’: hard link not allowed for directory [MSG 2]

Paths

ln.c:1
main()

ln.c:11
for(...)

ln.c:12
do link(...)

...
MSG 1

ln.c:11
for(...)

ln.c:12
do link(...)

...
MSG 2

tar
ge

t dir
ec

tor
y

sp
ec

ifi
ed

|| n
fil

es
>

2

Value Inference
Query results of the value of file[1] in main():
file[1] set to "." on Line 6, if n files == 1

Figure 8: SherLog report for ln in coreutils 4.5.1

1 int main (int argc, char **argv) { ...
2 if (n_files == 1) {
3 static char *dummy[2];
4 dummy[0] = file[0];
5 dummy[1] = ".";
6 file = dummy;
7 n_files = 2;
8 dest_is_dir = 1;
9 } ...

10 if (target_directory_specified || n_files>2) {
...

11 for (i = 0; i <= last_file_idx; ++i)
12 errors += do_link(file[i], target_directory);
13 }
14 }

Figure 9: ln.c in GNU Coreutils-4.5.1. The log messages are printed in
function do link(), whose code is not shown due to space limit.

A user uses ln of coreutils 4.5.1. to create a hard link for a
file, but somehow ln tries to create a hard link for the current
directory (“.”) and fails. The log is shown in Figure 8, while the
highly simplified code is shown in Figure 9.

SherLog automatically infers control flow and data flow infor-
mation (the bottom of Figure 8) that is useful for the developer to
understand the root cause of this error. SherLog infers one Must-
Path from the log messages. It shows that do link() in Line 12
was executed twice, and it failed in the second time and printed out
log message [MSG 2]. It also shows that the constraints target

directory specified || n files > 2 must be satisfied for this
error to happen. Then the developer would naturally want to know
why the second file name, variable file[1], was set to the cur-
rent directory. So he or she can query SherLog for this information.
From the source code and the log messages, SherLog infers that
file[1] is set to the current directory on Line 5 if n files (the
number of files to be linked) is 1. Combined with the path con-
straints target directory specified || n files > 2, she or he

Name Program App Description Type LOC #MSG Root Cause Description
rmdir rmdir-4.5.1 GNU coreutils Bug 18K 3 missing to handle trailing slashes with -p option.
ln ln-4.5.1 GNU coreutils Bug 20K 2 missing the condition check for -target-directory option.
rm rm-4.5.1 GNU coreutils Bug 23K 4 missing a condition check causing option -i behaves like -ir
CVS1 CVS-1.11.23 version control server Config 148K 3 incorrectly setting the permission for locking directory.
CVS2 CVS-1.11.23 version control server Config 148K 2 using wrong configuration file from a newer version.
Apache apache-2.2.2 web server Bug 317K 1,309 incorrectly handles EOF in response stream when set up as proxy server.
Squid Squid-2.3 web proxy cache server Bug 69K 197 Treating certain icon files wrongly by not caching them
TAR tar-1.19 archive tool Bug 79K 2 Tar fails to update a non-existing tarball, instead of first creating it.

Table 1: Applications and real errors evaluated in our experiments. Type indicates the error type, either software bug or configuration error. LOC is
the number of lines of code. #MSG is the number of logging messages in the error’s log.

SherLog Report for Squid
Symptoms

End users can not see certain FTP icons if they connect the FTP server
via Squid 2.3.STABLE4 [39].

Log Traces
Starting Squid Cache version 2.3.STABLE4
for i686-pc-linux-gnu...

...
storeCheckCachable: NO: too small

Paths

store.c:1
storeCheckCacheable()

store.c:3
MSG 1

storeCheckTooSmall(e) �= 0

Value Inference
#return@storeCheckTooSmall ={

0 if !EBIT TEST(e->flags, ENTRY SPECIAL) || ...
1 if EBIT TEST(e->flags, ENTRY SPECIAL) || ...

Figure 10: SherLog diagnosis report for Squid 2.3.STABLE4.

can infer that target directory specified is set, because n files

> 2 is not true. At this point, the developer would know the root
cause. Line 5 (and the if statement from Line 2 to 9) should only
be executed if no link name is specified for ln, so ln would create
a hard link in the current directory (by setting file[1] to be “.”).
If target directory specified is set, then Line 5 should not be
executed, meaning the code forgets to check if target directory

specified was set at Line 2. Replacing Line 2 with if (n files

== 1 && !target directory specified) would fix the problem.

Case 2: Squid

1 int storeCheckCachable(StoreEntry * e) { ...
2 else if (storeCheckTooSmall(e)) {
3 debug(20, 2) ("storeCheckCachable: NO: too

small\n");
4 } ...
5 }
6 static int storeCheckTooSmall(StoreEntry * e) {
7 if (EBIT_TEST(e->flags, ENTRY_SPECIAL))
8 return 1;
9 ...

10 }

Figure 11: store.c in Squid 2.3.STABLE4.
User experiences some missing icons on some web-pages. The

log messages of Squid proxy server seem to imply that Squid thinks
the missing file is too small to be cached. SherLog reports 57 May-
Paths that could connect this particular message, however, only
1 Must-Path is reported(Figure 10). The highly simplified source
code is shown in Figure 11.

SherLog infers the condition for the error message printing is
storeCheckTooSmall() returns a non-zero value. SherLog’s value
inference engine for the return value of storeCheckTooSmall()

shows that storeCheckTooSmall() returns 1 when the file’s flag
is of ENTRY SPECIAL. By this step, the developers would realize
there is a typo in storeCheckTooSmall(): it should return 0 instead

of 1 for these files.Note that as discussed earlier, the function
body of storeCheckTooSmall() was initially skipped at the path
inference stage for better scalability because it does not print any
log messages. But if a user query values related to such skipped
code, SherLog is able to analyze them just as in this case study.

Case 3:CVS Configuration Error

SherLog Report for CVS
Symptoms

Some users in a corporate network cannot perform any CVS operations.
Log Traces

cvs [status aborted]: unrecognized auth response from
whoami.utopia.net:

cvs pserver: /repository/CVSROOT/config: unrecognized
keyword ‘UseNewInfoFmtStrings’

Paths

parseinfo.c:1
parse config()

parseinfo.c:3
while(...)

parseinfo.c:18
MSG 1

(!strcmp(line,
“RCSBIN”) &&

!strcmp(line,
“SystemAuth”) ...)

Value Inference
Not Needed.

Figure 12: SherLog report for CVS in coreutils 4.5.1

Some users in a corporate network cannot perform any opera-
tions with CVS. The error can be difficult to diagnose because this
failure affects only a portion of the users, all of which access the
same repository. The result of inferred executions along with its
constraints are shown in Figure 12.

SherLog helps to locate relevant source code function parse
config(), which matches keywords by calling strncmp() one
by one, and signaling failures when the keyword does not match
any of them. Therefore, the constraints in Figure 12 captures all
supported keywords by this particular CVS version. They imply
that the keyword UseNewInfoFmtStrings is not supported since
it is not in the constraints. It turns out the keyword is a new feature
added in CVS 1.12. Therefore users of earlier versions should not
use this option. Upgrading the CVS package solves the problem.

7.3 Performance of SherLog

Table 3 shows the performance of SherLog on each case. All
diagnostic components of SherLog finishes within 40 minutes.
Among the three components, Path Inference takes the longest
time, because it needs to scan through the entire program, and
analyzing log-related functions multiple times. Once the paths are
inferred, value inference only analyzes the functions/loops along
the inferred path, which greatly reduces the analysis time. Log
Parser’s timing overhead is negligible.

The maximum memory consumption is mainly determined by
the size of the function/loop SherLog is analyzing. For example, in
CVS, function regex compile spans more than 1,100 lines of code,
resulting in more than 1GB memory usage.

Parser Path Value
Name Time Time Mem. Time Mem.
rmdir 0.02s 2.25m 174 MB 15.54s 116 MB
ln 0.02s 2.32m 194 MB 37.75s 165 MB
rm 0.01s 2.00m 511 MB 38.87s 123 MB
CVS1 0.32s 39.56m 1,317 MB 188.53s 323 MB
CVS2 0.19s 38.96m 1,322 MB 39.19s 232 MB
Apache 0.67s 28.38m 321 MB 19.23s 217 MB
Squid 0.81s 38.02m 1,520 MB 22.01s 252 MB
TAR 0.08s 6.55m 210 MB 29.14s 155 MB

Table 3: Performance of SherLog. s stands for seconds, m stands for
minutes. Mem. measures the maximum memory usage at any given
time during the execution. Value inference’s performance is measured
by querying multiple relevant variable values in one pass along the
inferred path.

8. Discussion and Limitations

How broadly applicable SherLog is? SherLog assumes that the
logging messages are relevant to an error’s symptom and root
cause. Although this assumption conforms with the motivation
of logging, we found that this is not always true based on our
experience. In some cases, the error symptoms are not captured
by any logging message, while in some other cases, the logging
messages are too general to offer path information. However, with
the increasing complexity of software, developers are likely to
design more informative and discriminative log messages to help
them diagnose problems encountered by their customers in order
to retain their customers. Thus, approaches such as SherLog would
be able to help in more cases.
Lessons for better logging messages design: Although designing
good logging messages for failure diagnosis largely depends on
developers’ domain knowledge and is application specific, we do
observe some general guidelines can be followed. 1). Recording
thread ID in concurrent programs. 2). Recording the exact location
in the source code where the error message is printed out, for
example, using FILE and LINE macros in GNU C language.
3). Recording relevant variable’s value in the error messages. How
to further design better logging messages requires sophisticated
analysis of the program, which remains as our future work.
Handling logs from concurrent execution: SherLog focuses on
connecting continuous log message sequences.Some mature soft-
ware such as Apache HTTPD or Log4j [32] usually record thread
IDs in logging messages. So it is easy to separate the log messages
out for each thread. We can then apply SherLog to each thread’s
logs to find path and variable information in this thread. To infer
information across threads is interesting and challenging, which re-
mains as our future work.
Locating relevant log messages: SherLog assumes our users have
certain understanding of the log to be able to identify the er-
ror symptom messages out of millions lines of various messages.
The common practice in large programs is to divide logging mes-
sages into different severity levels, from informational to fatal er-
ror messages. In this case, users only need to focus on messages
above certain level. In addition, current log analysis work [27] have
demonstrated the effectiveness of locating a small number of sus-
picious log messages from millions lines of log messages. These
approaches could be used together with SherLog.

9. Related Work

Log analysis: Existing log analysis work focused on using statisti-
cal techniques to detect anomaly indicated by logs, or detect recur-
ring failures that match known issues [3, 8, 14, 21, 27, 47]. These
studies did not leverage source code for extracting control-flow and

data-flow information, and thus cannot recreate the execution paths
(or partial execution paths) and run-time variable values as SherLog
does to help developers diagnose errors. Through studying com-
mercial storage system logs, Jiang et. al. [27] pointed out that logs
can be of great value in error diagnosis. They also proposed using
statistical techniques to identify key events recorded in the log that
can help pinpoint the root causes. Xu et. al. [47] applied machine
learning techniques to learn common patterns from a large amount
of console logs, and detect abnormal log patterns that violate the
common patterns. To help parse logs more accurately, they ana-
lyzed the Abstract Syntax Tree of the program to extract the format
strings used to print out the logs. However, their error detection
and diagnosis are based on learning patterns solely from log mes-
sages, and thus cannot provide the capability of generating run-time
control-flow and data-flow information. Magpie [8] addressed the
problem of grouping log messages generated by the same request
in a distributed environment. Once the log messages are grouped in
per-request basis, they could compute the resource consumptions
for each request, then use clustering techniques to learn the com-
mon patterns for each request, and identify anomalous requests.
Trace analysis: Trace analysis [6, 9, 11, 12, 31] analyzes execution
traces generated at run-time by instrumented programs to detect or
diagnose errors. While SherLog leverages logs produced by ven-
dor’s software as is, trace analysis requires to modify the software
statically or dynamically to add instrumentations, which may not
always be feasible, especially for production software. For exam-
ple, Liblit et. al. [31] introduced “cooperative bug isolation”, which
collects run-time traces from instrumented programs by sampling
from many users to offload the monitoring overhead. With some
classification techniques, they can pinpoint the predicates recorded
in the traces that are most correlated with the bugs. HOLMES [12]
further investigated how path profiling based program sampling
can help bug isolation. They also developed an iterative and bug-
directed profiling technique to effectively isolate bugs with low
overheads.
Error diagnosis without error reproduction: Some error diag-
nostic work uses static analysis thus do not need to reproduce the
failures [26, 33, 40, 41]. PSE [33] performs off-line diagnosis of
program crashes caused by one particular type of errors, i.e., NULL
pointer dereferences. Different from PSE, SherLog is general to di-
agnose all types of errors as long as some error related information
is contained in the log. In addition, PSE requires the availability of
core-dumps, which are generally not available for non-crash errors.
Static slicing [26, 40, 41] produces a smaller slice of a program ac-
cording to a slicing criterion, which can be used for error diagnosis.
SherLog can be viewed as a static slicer that uses logs as the slicing
criterion to balance between scalability and precision.
Error diagnosis requiring error reproduction: Traditional error
diagnosis and fault localization often relies on reproducing the error
on the vendors’ site [1, 2, 7, 16, 25, 42, 44, 50]. As discussed in
section 1.1, this assumption may not hold for real-world software
errors. Agrawal et. al. adapt execution slices and data flow tests to
localize the root causes of bugs [2]. Ball et. al. propose an algorithm
to localize the root causes from model checking error traces [7].
Static analysis and software bug detection: Many analysis tools
are used or can be used to statically detect software bugs [5, 10,
13, 20, 48, 49]. SherLog is different from these studies because it
leverages run-time logs and its goal is error diagnosis as opposed
to error detection.

10. Conclusion
We designed and implemented a practical and effective diagnosis
technique, SherLog, which can analyze logs from a failed produc-
tion run and source code to automatically generate useful control-

flow and data-flow information to help engineers diagnose the error
without reproducing the error or making any assumption on log se-
mantics. We evaluate SherLog on 8 real world software failures,
i.e., 6 bugs and 2 configuration errors, from 7 open source appli-
cations including 3 servers. For all of the 8 failures, SherLog in-
fers useful and precise information for developers to diagnose the
problems. In addition, our results demonstrates that SherLog can
analyze large server applications such as Apache with thousands of
logging messages within 40 minutes.

Acknowledgments
We thank the anonymous reviewers for their insightful feedback,
the Opera group and Yoann Padioleau for useful discussions and
paper proofreading. This research is supported by NSF CNS-
0720743 grant, NSF CCF-0325603 grant, NSF CNS-0615372
grant, NSF CNS-0347854 (career award) and NetApp Gift grant.

References
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging with dy-

namic slicing and backtracking. Software—Practice and Experience,
23(6):589–616, June 1993.

[2] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localiza-
tion using execution slices and dataflow tests. In ISSRE’95.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In SOSP’03.

[4] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, P. Hawkins, and B. Hackett.
The Saturn Program Analysis System.

[5] K. Ashcraft and D. Engler. Using programmer-written compiler ex-
tensions to catch security holes. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy.

[6] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and
E. Witchel. Traceback: First fault diagnosis by reconstruction of dis-
tributed control flow. In PLDI’05.

[7] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. ACM SIGPLAN Notices,
38(1):97–105, Jan. 2003.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI’04.

[9] E. Bodden, P. Lam, and L. Hendren. Finding programming errors
earlier by evaluating runtime monitors ahead-of-time. In FSE’08.

[10] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In OSDI’08.

[11] F. Chen and G. Roşu. Parametric trace slicing and monitoring. In
TACAS’09.

[12] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
HOLMES: Effective statistical debugging via efficient path profiling.
In ICSE’09.

[13] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective
Symbolic Execution. In HotDep’09.

[14] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In
SOSP’05.

[15] Dell. Streamlined Troubleshooting with the Dell system E-Support
tool. Dell Power Solutions, 2008.

[16] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software
fault localization. In ISSTA, pages 121–134, 1996.

[17] J. Devietti, B. Lucia, M. Oskin, and L. Ceze. Dmp: Deterministic
shared-memory multiprocessing. In ASPLOS’09.

[18] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. SIGPLAN Not., 2008.

[19] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution replay of multiprocessor virtual machines. In VEE’08.

[20] D. Engler, B. Chelf, and A. Chou. Checking system rules us-
ing system-specific, programmer-written compiler extensions. In
OSDI’00.

[21] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels:
Fully automatic tool generation from ad hoc data. In POPL’08.

[22] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: ten years of implementation and experience. In SOSP’09, pages
103–116, New York, NY, USA, 2009. ACM.

[23] J. Gray. Why do computers stop and what can be done about it?, 1985.
[24] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and

Z. Zhang. R2: An application-level kernel for record and replay. In
OSDI’08.

[25] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing: integrating dy-
namic information with static analysis. ACM Transactions on Software
Engineering and Methodology, 6(4):370–397, Oct. 1997.

[26] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88.

[27] W. Jiang. Understanding storage system problems and diagnosing
them through log analysis. Ph.D. Dissertation.

[28] W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and Y. Zhou. Un-
derstanding customer problem troubleshooting from storage system
logs. In FAST’09.

[29] S. Kandula, R. Mahajan, P. Verkaik, S. Agrawal, J. Padhye, and
P. Bahl. Degailed diagnosis in enterprise networks. In SIGCOMM’09.

[30] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In USENIX ATC’05.

[31] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI’03.

[32] Apache Logging Services - Log4j. http://logging.apache.org/
log4j.

[33] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE:
Explaining program failures via postmortem static analysis. SIGSOFT
Softw. Eng. Notes, 29(6):63–72, 2004.

[34] Mozilla Quality Feedback Agent. http://support.mozilla.com/
en-US/kb/quality+feedback+agent.

[35] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared mem-
ory dependencies using strata. In ASPLOS’06.

[36] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging. In
ISCA’05.

[37] NetApp. Proactive health management with auto-support. NetApp
White Paper, 2007.

[38] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deter-
mistic multithreading in software. In ASPLOS’09.

[39] Squid Archives. http://www.squid-cache.org/Versions/v2/
2.3/bugs/#squid-2.3.stable4-ftp_icon_not_found.

[40] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI’07.
[41] F. Tip. A survey of program slicing techniques. Journal of Program-

ming Languages, 3:121–189, 1995.
[42] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnos-

ing production run failures at the user’s site. In SOSP’07.
[43] VMWare. Using the intergrated virtual debugger for visual studio.

http://www.vmware.com/pdf/ws65_manual.pdf.
[44] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging

as search: finding the needle in the haystack. In OSDI’04.
[45] Windows Error Reporting(Dr.Watson). http://www.microsoft.

com/whdc/maintain/StartWER.mspx.
[46] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling

full-system multiprocessor deterministic replay. In ISCA’03.
[47] W. Xu, L. Huang, M. Jordan, D. Patterson, and A. Fox. Mining console

logs for large-scale system problem detection. In SOSP’09.
[48] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model

checking to find serious file system errors. In OSDI’04.
[49] Y.Xie and A.Aiken. Saturn: A scalable framework for error detection

using boolean satisfiability. Transactions on Programming Language
and Systems, 29(3):1–16, 2007.

[50] A. Zeller. Isolating cause-effect chains from computer programs. In
FSE’02.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

