
IEEE TRANSACTIONS ON RELIABILITY 1

An Empirical Study on the Effect of Testing on
Code Quality using Topic Models:

A Case Study on Software Development Systems
Tse-Hsun Chen, Stephen W. Thomas, Hadi Hemmati, Meiyappan Nagappan, and Ahmed E. Hassan

Abstract—Previous research in defect prediction has proposed
approaches to determine which files require additional testing
resources. However, practitioners typically create tests at a
higher-level of abstraction, which may span across many files.
In this paper, we study software testing, especially test resource
prioritization, from a different perspective. We use topic models
to generate topics that provide a high-level view of a system,
allowing developers to look at the test case coverage from a
different angle. We propose measures of how well-tested and
defect-prone a topic is, allowing us to discover which topics are
well-tested and which are defect-prone. We conduct case studies
on the histories of Mylyn, Eclipse, and NetBeans. We find that (i)
34 to 78% of topics are shared between source code and test files,
indicating that we can use topic models to study testing; (ii) well-
tested topics are usually less defect-prone; defect-prone topics are
usually under-tested; (iii) we can predict which topics are defect-
prone but not well-tested with an average precision and recall
of 75% and 77%, respectively; (iv) our approach complements
traditional prediction-based approaches by saving testing and
code inspection effort; and (v) our approach is not particularly
sensitive to the parameters that we use.

Index Terms—Empirical study, code quality, topic models,
testing.

ACRONYMS AND ABBREVIATIONS

LDA Latent Dirichlet Allocation
CDDTCumulative Defect Density of a Topic
MIC Maximal Information Coefficient
MINE Maximal Information-based Nonparametric Explo-

ration
MAS Maximum Asymmetry Score
MEV Maximum Edge Value
LSI Latent Semantic Indexing
LOC Lines of Code
CCDT Cumulative Churn Density of a Topic
PCA Principal Component Analysis
PC Principal Component
QA Quality Assurance
LM Linear Regression Model
RTM Relational Topic Model
MWE Maximal Weighted Entropy

T. Chen is with the Department of Computer Science and Software
Engineering at Concordia University, QC, Canada. (The paper was written
when T. Chen was at Queen’s University).

S. W. Thomas and A. E. Hassan are with the Software Analysis and
Intelligence Lab (SAIL) at Queen’s University, ON, Canada.

H. Hemmati is with the University of Calgary, AB, Canada.
M. Nagappan is with the University of Waterloo, ON, Canada.

NOTATIONS

Z a set of topics
zi topic i
fj document j
α Dirichlet priors for Dirichlet distributions
β Dirichlet priors for Dirichlet distributions
θ topic membership
R2 coefficient of determination
II number of LDA iterations
K number of topics in LDA
W topic weight
δ topic membership threshold

I. INTRODUCTION

SOFTWARE defects are costly and time-consuming to
fix, spawning much research in defect prediction [1].

However, in practice, software testing is still widely used for
detecting defects prior to the release of a software system.
Specifically, practitioners create and execute test cases in an
effort to uncover as many defects as possible and maximize
software quality.

Existing research in software engineering uses code cover-
age (or test coverage), i.e., the proportion of the source code
files that are tested by the test cases, to determine which files
or methods should receive additional testing resources. In addi-
tion, defect prediction approaches have been augmented with
traditional testing criteria, such as statement coverage, path
coverage, and function converge [2]–[5]. However, research [6]
indicates that testers create test cases from a higher-level view
of the system (e.g., features, business logics, or components),
instead of individual files.

Thus, in this paper, we propose an approach to study
software testing from a different perspective. We use an
advanced statistical technique, called topic models, to generate
the topics (i.e., co-occurring words) in source code files. A
prior study by Baldi et al. [7] has shown that the topics
generated by topic models have a strong agreement with
that of other aspect mining approaches. Their results indicate
that these topics can provide developers a high-level view of
a system. We posit that if practitioners can identify which
topics, as opposed to which files, require more testing, then
practitioners can better utilize their limited testing resources.
To this end, we propose an approach to automatically discover
which topics are present in which source code files and



IEEE TRANSACTIONS ON RELIABILITY 2

in which test cases. In particular, we generate topics using
latent Dirichlet allocation (LDA) [8], following the success of
related research [9]–[13]. We then define new metrics, most
notably topic testedness, which indicates how well-tested a
topic is. We also use the Cumulative Defect Density of a Topic
(CDDT) [13] to indicate the defect-proneness of a topic.

Our proposed approach enjoys many advantages. First, un-
like traditional coverage metrics, topics can span across many
files, which may better represent how practitioners view their
code as they create test cases. Second, by concentrating on the
topics with low testedness and high CDDT, practitioners can
allocate their testing resources on the most vulnerable topics
of the source code. As topics are linked back to the source
code files, practitioners may use our approach to allocate more
testing resources on the files related to under-tested and defect-
prone topics. Finally, our approach is able to identify defect-
prone files that are much smaller in size compared to those
identified by traditional approaches.

To evaluate our approach, we perform an in-depth case study
on three large, real-world software systems, focusing on the
following research questions.

RQ1: To what degree do source code and test files share
topics?
To answer this question, we measure the proportion
of a topic found in test code versus source code. We
find that in all three studied systems, between 34%
and 78% of the topics are shared between source
code and test files.

RQ2: Are well-tested topics less defect-prone?
Previous research has shown that high code coverage
may help improve software quality [14]. We wish
to study if this observation also holds when we
study code coverage at the topic level. We find that
there is a non-coexistence relationship between topic
testedness and CDDT: when a topic is well-tested, it
is usually less defect-prone; when a topic is defect-
prone, it is usually under-tested.

RQ3: Can we identify defect-prone topics that need
more testing?
To answer this question, we use a naı̈ve Bayes
classifier to perform a cross-release prediction, and
identify defect-prone topics that are under-tested. We
find that by training on previous releases of a system,
we can obtain, on average, a precision of 0.75 and
a recall of 0.77 when classifying topics according
to their testedness and CDDT in later releases. By
linking the predicted topics back to source code
files, our approach allows practitioners to allocate
additional testing resources more effectively to these
parts of the code.

The result of our parameter sensitivity analysis also shows that
our approach is not particularly sensitive to the parameters that
we use.

The rest of this paper is organized as follows. Section II,
describes the background of our approach for discovering
topics in source code and test files. We also briefly describe
a new correlation measure called Maximal Information Co-
efficient (MIC) [15], which we use to study the relationship

Top words

z1 os, cpu, memory, kernel
z2 network, speed, bandwidth
z3 button, click, mouse, right

(a) Topics (Z).

z1 z2 z3

f1 0.3 0.7 0.0
f2 0.0 0.9 0.1
f3 0.5 0.0 0.5

(b) Topic memberships (θ).

Fig. 1. Example topic model in which three topics are discovered from three
source code files (not shown). (a) The three discovered topics (z1, z2, z3)
are defined by their top (i.e., highest probability) words. (b) The three source
code files (f1, f2, f3) can now be represented by a topic membership vector.

between topic testedness and CDDT. Section III outlines the
design of our case studies. Section IV presents the answers to
our research questions. Section V studies the parameter and
threshold sensitivity of our proposed approach. Section VI
discusses the potential threats to the validity of our results.
Section VII describes related work. Finally, Section VIII
concludes the paper.

We make the datasets and results of our case study publicly
available [16] and encourage others to replicate and verify our
studies.

II. BACKGROUND

We generate topics using topic models [8], following previ-
ous research [7], [11], [17]. In particular, we use the linguistic
data from each source code and test file, i.e., the identifier
names and comments, which helps to determine the function-
ality of a file [18]. We then treat the linguistic data as a corpus
of documents, which we use as a basis for topic models. In
this section, we introduce the background knowledge of the
approaches that we use to capture the topics and study the
relationship between topic testedness and defects.

A. Topic Modeling

(This subsection is taken from our previous work with some
modifications [13]). In topic models, a topic is a collection of
frequently co-occurring words in a corpus. Given a corpus of
n documents f1, ..., fn, topic models automatically discover a
set Z of topics, Z = {z1, ..., zK}, as well as the mapping θ
between topics and documents (see Figure 1). The number of
topics, K, is an input that controls the granularity of the topics.
We use the notation θij to describe the topic membership value
of topic zi in document fj .

Intuitively, the top words of a topic are semantically related
and represent some real-world concepts. For example, in
Figure 1a, the three topics represent the concepts of “operating
systems”, “computer networks”, and “user input”. The topic
membership of a document then describes which concepts



IEEE TRANSACTIONS ON RELIABILITY 3

are present in that document: document f1 is 30% about the
topic “operating systems” and 70% about the topic “computer
networks”.

More formally, each topic is defined by a probability dis-
tribution over all the unique words in the corpus. Given two
Dirichlet priors (parameters for Dirichlet distributions), α and
β, a topic model generates a topic distribution θj for fj based
on α, and generates a word distribution φi for zi based on
β. The topic membership values define links between topics
and source code files. In Figure 1b, the source code file f1
belongs to topic z1 and z2, because its membership values of
these two topics are larger than 0. This is because f1 contains
words from topics z1 and z2, such as os, cpu, and network.

Using the topics and the topic membership vectors, we
define topic metrics to help us characterize the topics and
answer our research questions. We define metrics as needed
in Section IV.

B. Maximal Information Coefficient

Maximal information coefficient (MIC) is an approach that
was recently developed to discover different kinds of rela-
tionships, such as linear and functional, between pairs of
variables [15]. We use MIC later in the paper to measure
the relationship between how well a topic is tested and its
defect-proneness. Recently, MIC has been shown to be useful
in finding relationships in software engineering data [19].
Since the relationship between topic testedness and defects
may not be linear, we use MIC to find any possible non-
linear relationships in the data that cannot be discovered by the
commonly-used Pearson or Spearman correlation coefficients.

MIC provides generality (finding many different kinds of re-
lationships), and equitability (gives a similar score to different
relationships with the same amount of noise). In this way, MIC
can be viewed as the coefficient of determination (R2) in linear
regression analysis, except MIC is not limited to a simple
linear relationship. Therefore, the interpretation of MIC will
be similar to that of R2 (e.g., a value of 1 represents a perfect
relationship). We use the following maximal information-
based nonparametric exploration (MINE) measures that are
computed from MIC using the tool that Reshef et al. [20]
provide:

• MIC - p2: a measure of the linearity of the relationship,
where p is the Pearson correlation coefficient. Since the
MIC value is close to p2 when the relationship is linear, if
MIC - p2 is close to zero, then the relationship is linear;
if MIC - p2 is close to MIC, then the relationship is non-
linear.

• Maximum Asymmetry Score (MAS): a measure of the de-
parture from monotonicity, i.e., a function that preserves
a given order. MAS is always less than or equal to MIC.
If MAS is very close to MIC, then the relationship is not
monotonic; otherwise, the relationship is monotonic.

• Maximum Edge Value (MEV): a measure of the non-
functionality, i.e., whether the relationship can pass a
vertical line test [21]. If the relationship is functional
between two variables, then when one variable changes,
the other variable will also change according to some

TABLE I
STATISTICS OF THE STUDIED SYSTEMS, AFTER PREPROCESSING.

Lines No. of No. uniq No. of No. uniq Lines Post-release
of source source words in test words in of test defects
code (K) files source files test code (K)

Mylyn 1.0 107 667 2,902 165 1,363 20 586
Mylyn 2.0 115 761 3,037 173 1,347 21 856
Mylyn 3.0 141 937 3,412 217 1,574 29 409

Eclipse 2.0 797 6,722 12,346 1,011 3,005 237 1,692
Eclipse 2.1 987 7,845 13,691 1,290 4,324 430 1,182
Eclipse 3.0 1,305 10,545 15,726 1,835 5,794 600 2,679

NetBeans 4.0 840 3,874 11,364 502 3,660 95 287
NetBeans 5.0 1,758 7,880 16,219 1,246 5,818 234 194
NetBeans 5.5.1 2,913 14,522 21,397 2,238 8,195 438 739

mathematical function. MEV ≤MIC always holds. When
MEV is close to zero, the relationship is non-functional;
otherwise, the relationship is functional.

III. CASE STUDY DESIGN

The purpose of our case study is to answer our three
research questions:

1) To what degree do source code and test files share
topics?

2) Are well-tested topics less defect-prone?
3) Can we identify defect-prone topics that need more

testing?
In this section, we detail the design of our case study. We
introduce the systems that we use for our case study, and
describe how we identify test files. Then, we describe our data
collection and preprocessing steps as shown in Figure 2, and
finally outline the specifics of our topic modeling approach.

A. Studied Systems

We use Mylyn, Eclipse, and NetBeans as the three studied
systems in our case study (Table I). Mylyn is a popular
task management plugin for Eclipse. Eclipse and NetBeans
are both popular IDEs, where the former has an extensive
plugin architecture, and the latter allows applications to be
built from a set of modules. We conduct our case study on
three versions of each studied system. We choose these three
systems because they all use unit tests, and they differ in
size and number of defects. Unit test files are usually large
enough to contain enough linguistic data (i.e., identifier names
and comments) from which we can extract topics. If the test
files were too small (e.g., simple one-line scripts), then our
methodology may not have enough information to capture
meaningful topics [22].

B. Identifying Test Files

Unfortunately, it is difficult to automatically identify which
source code files are in fact test files, as test files are not,
in general, explicitly marked. To do so, we use a heuristic
similar to the approach proposed by Zaidman et al. [23].
First, we check out the entire source code repository. Then,
we extract all source code files that have a file path that
contains the test keywords junit or test (the studied systems
use the JUnit testing framework). For example, we would



IEEE TRANSACTIONS ON RELIABILITY 4

Preprocess

Preprocess

Preprocess

LDA
Identify
Shared
Topics

Zk

θij

 
Topic Metrics

V3
Source

V3
Test

V2
Source

V2
Test

V1
Source

V1
Test

SVN

Fig. 2. Our process of applying topic models and calculating topic metrics. We preprocess test file and source code files, then run LDA on all versions of
the data together. We first obtain shared topics (topics that exist in both source code and test code) using the topics and topic membership values returned
by LDA. We then calculate the topic metrics on shared topics only.

extract the source code files under the folder src/test/, but
not src/UI/. It is possible that a file may not be related
to testing even though its path contains one of these test
keywords. For example, in Eclipse 2.0, the source code file
.../core/tests/harness/PerformanceTimer.java is a utility class
that tests use, but is not itself a test case.

To increase the precision of our process for test file identi-
fication, we make sure that the name of the source code files
also contains at least one of the test keywords. Therefore, a
file is identified as a test file if and only if both its name
and path contain at least one of the two test keywords, i.e.
“junit” or “test”. Table I shows the number of test files that
are identified using this heuristic.

C. Data Preprocessing

We collected the source code and test files from each version
of each studied system. Then, we preprocessed the files using
the preprocessing steps proposed by Kuhn et al. [18]. Namely,
we first extracted comments and identifier names from each
source code or test file. Next, we split the identifier names
according to common naming conventions, such as camel case
and underscores. Finally, we stemmed the words and remove
common English-language stop words and Java keywords. We
further pruned the words that appeared in more than 80% or
less than 1% of the source code and test files to eliminate
overly common words (e.g., language reserved words) and
overly rare words (e.g., typos) [24]. The preprocessing steps
may affect the resulting topics, which we discuss in detail in
Section VI.

D. Latent Dirichlet Allocation

We used a popular topic model called latent Dirichlet
allocation (LDA) [8]. We note that other topic models can be
used. We choose LDA because LDA is a generative statistical
model, which helps to alleviate model overfitting, compared
to other topic models such as Probabilistic LSI [25]. In
addition, LDA has been shown to be effective for a variety
of software engineering purposes, including analyzing source
code evolution [26], calculating source code metrics [27],
and recovering traceability links between source code and
requirements documents [28]. Recently, Hindle et al. [29]
show that practitioners with a good general knowledge about
a software system can relate the topics generated by LDA to

actual code change history, indicating the LDA can produce
meaningful and usable topics. Finally, LDA is fast and can
easily scale to millions of documents.

We give both the preprocessed source code and test files to
LDA (an approach proposed by Linstead et al. [12]), so the
source code and test files will have the same set of topics for
measuring topic testedness. In our studied systems, each test
file usually corresponds to one Java file (i.e., unit tests). Due
to the nature of the Java files, each file usually corresponds
to one class. Thus, we are studying the relationship between
the topics in source code and test files at the class level
in the paper. We did not conduct our study at the method
level, because methods in the same source code/test file are
usually related to the same business logic, which would result
in having very similar topics. In addition, if we run LDA
on the method level, the topics that we get may not be as
high quality as the topics that we get by running LDA on the
class/file level. The number of words in each method is usually
very short, which increases the difficulty for LDA to capture
the underlying topics in the methods [8], [30]. Therefore, we
choose to conduct our study at the file level.

For this study, we use K=500 topics for all studied systems.
Chen et al. [13] and Lukins et al. [31] found that 500 topics
is a good number for Eclipse and Mylyn, and to be consistent,
we also choose this number for NetBeans. Moreover, a prior
study [30] finds that choosing a larger K does not really affect
topic quality. The additional topics will be rarely used during
the LDA sampling process, so these additional topics will be
considered noise and can be filtered out. However, choosing a
smaller K can be more problematic, since the topics cannot be
separated properly. Thus, we choose to use a relatively large
K for our studies.

We use MALLET [32] as our LDA implementation. MAL-
LET uses Gibbs sampling to approximate the joint distribution
of topics and words. We ran MALLET with 10,000 sampling
iterations (II), of which 1,000 were used as burn-in iterations
to optimize for α and β. In addition, we let MALLET build the
topics using both unigrams (single words) and bigrams (pairs
of adjacent words) at the same time, since bigrams have been
shown to help improve the performance of topic models [33].
Section V studies the parameter and threshold sensitivity of
our proposed approach.



IEEE TRANSACTIONS ON RELIABILITY 5

IV. CASE STUDY

In this section, we present our results for the three research
questions. We divide each question into four parts: motiva-
tion, approach, results, and discussion. We first introduce our
motivation and describe the approach that we use to solve the
research question. Then, we provide our findings and conclude
with a more detailed discussion.

A. To what degree do source code and test files share
topics? (RQ1)

1) Motivation: In this question, we investigate how topics
are shared between source code and test files. To do so, we
check whether topics are evenly distributed between these two
types of files. If topics are present in only one of the file types
(source code or test), then we cannot examine the effect of
testing on code quality using topics (i.e., there is no overlap
between the topics in them). By determining which topics are
shared, we also determine which topics are not shared: those
only found in source files (source-only topics), and those only
found in test files (test-only topics). Excluding unshared topics
allows us to remove a source of outlier topics (e.g., topics
about assert are well-tested but less defect-prone, because
they are keywords in test files; however these topics are not
present in source code files) in our further analysis in RQ2
and RQ3.

2) Approach: To measure the per-topic lines of testing
code, we define the test weight of the topic zi as:

Wtest(zi) = 1/LOCtest

ntest∑
j=1

θij ∗ LOC(testj), (1)

where ntest is the total number of test files, LOC(testj) is the
lines of code of test file testj , LOCtest is the total LOC of
all test files, and θij is the topic membership of topic zi in
file testj .

Similarly, we define source Wsource, the weight metric for
source code files, as

Wsource(zi) = 1/LOCsource

nsource∑
j=1

θij∗LOC(sourcej), (2)

where nsource is the total number of source code files,
LOC(sourcej) is the lines of code of source code file sourcej ,
LOCsource is the total LOC of all source code files, and θij
is the topic membership of topic zi in file sourcej .

We normalize the weight metrics above by LOC because
LOC is different between test code and source code files. This
normalization helps eliminate possible influences by the size
difference between the two file types. We note that although
LDA operates based on tokens (i.e., unigrams or bigrams in
the test files and source code entities), the correlation between
LOC and the number of tokens is very high for all subject
systems (above 0.93). Thus, the weight metric is not sensitive
to using either LOC or number of tokens.

To find shared topics between source code and test files, we
define the W ratio metric of topic zi as

Wratio(zi) =
Wtest(zi)

Wtest(zi) +Wsource(zi)
. (3)

TABLE II
SUMMARY OF TOPICS THAT BELONG TO SOURCE CODE, TEST, AND

SHARED TOPICS. PERCENTAGE OF SHARED TOPICS IS CALCULATED AS
THE NUMBER OF SHARED TOPICS OVER THE TOTAL NUMBER OF TOPICS

(500 TOPICS).

No. of source- No. of test- No. of shared % shared
only topics only topics topics topics

Mylyn 1.0 250 73 177 35%
Mylyn 2.0 257 71 172 34%
Mylyn 3.0 245 83 172 34%

Eclipse 2.0 208 33 269 54%
Eclipse 2.1 177 42 281 56%
Eclipse 3.0 141 40 319 64%

NetBeans 4.0 132 27 341 68%
NetBeans 5.0 119 27 354 71%
NetBeans 5.5.1 90 21 389 78%

The W ratio metric is used for removing noise in our dataset.
We only use W ratio to identify topics that are prevalent in
either source code or test code.

There are two possible approaches to determine source-only
topics (e.g., topics about mutators and accessors, or printing)
and test-only topics (e.g., topics about assert): (i) by manual
inspection of the topics; or (ii) by removing topics according
to predefined thresholds. To avoid bias that could stem from
manual inspection, we use the W ratio values of 0.05 and
0.95 as thresholds to remove topics that are more prevalent
in source code or test files (Sections V and VI provide a
discussion of how different threshold values may impact our
study). Topics that have a W ratio less than 0.05 are more
prevalent in source code files; topics with a weighted ratio
larger than 0.95 are more prevalent in test files. Although the
W ratio value is 0.5 when a topic is perfectly shared between
source code and test files, this corner case will not affect our
result. These perfectly shared topics will not be removed in
our further analysis according to our thresholds. Therefore,
the topics that have a W ratio between 0.05 and 0.95 are the
shared topics that we seek.

3) Results: Figure 3 shows the weighted topic ratio of
each studied version of Eclipse. We only show the result for
Eclipse here, but the results are very similar for Mylyn and
NetBeans. The figure illustrates that topics belong to three
different categories: source-only topics (left), test-only topics
(right), and shared topics (middle). In all the studied systems
of our case study, we find that 34–78% of the topics are
being shared between source code files and test files, using our
chosen threshold value (Table II). Since a majority of topics
are shared, we can study code coverage using topic models.

4) Discussion: To understand what kinds of topics are
identified as unshared topics (source-only or test-only topics)
and what these topics represent, we manually look at the
top words of some representative test and source code topics
(Table III). The complete information of the generated topics
and their metrics values are online [16].

a) Mylyn: We find that the source-only topics in Mylyn
are about sorting, adding, removing, and monitoring tasks
or operations (topics 20, 32, 55). Another source-only topic,
Topic 41, is about synchronizing tasks with the user interface.



IEEE TRANSACTIONS ON RELIABILITY 6

TABLE III
TOPIC LABEL AND TOP WORDS OF SELECTED TEST/SOURCE-ONLY TOPICS IN OUR STUDIED SYSTEMS. THE NUMBER ON THE LEFT-HAND SIDE OF EACH

COLUMN REPRESENTS THE TOPIC NUMBER.

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

Mylyn 1.0

171 eclips debug configur, launch, test, 20 sort sort, order, sort order,
eclips, junit, launch configur action, view, categori

198 program arg arg, program, configur, 55 progress work, progress, progress monitor
program arg, plugin, add monitor total work, total, tick

Mylyn 2.0

331 assert enable enabl, assert enabl, test assert, 41 set synchron, task task, update,
accompani, enabl test, distribut synchronize manag, data manag, set

496 structur bridge web, bridg, recourc, 190 select index version, repositori, combo,
structur bridg, structur, web resourc valid, server, repositori version

Mylyn 3.0

60 sandbox share, share data, bob, 32 add task add, add task, command,
share data data, sandbox, folder servic, id, task viewer

444 assert wizard wizard, histori, assert, 282 mylyn core, repositori, repositori repositori,
size, histori context, page task core connector, throw, repositori attach

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

Eclipse 2.0

101 return qualify code, test, qualifi, 8 search scope scope, search, pattern,
creat, creat test, code creat search scope, limit, privat

291 assert target file, project, exist, 48 submission handler servic, submiss, shell,
exit assert, workspac, exit assert command, bind, activ

Eclipse 2.1

59 nl unit, nl, nl nl, 277 content offset content, offset, local,
source, type, assert attribut, local content, content offset

445 assert equal assert, equal, test, 243 gdk color gdk, gtk, window,
assert equal, public test, length gdk color, style, set

Eclipse 3.0

424 test suit test, suit,test suit, 12 print print, packet, id,
add, test test, add test command, stream, println

468 item assert select,test,equal, 124 handl gtk gtk, handl, widget,
equal assert, assert equal, number handl gtk, gtk widget, signal

Test-Only Topics Source-Only Topics
Label Top Words Label Top Words

NetBeans 4.0

0 test suit test, suit, test suit, 18 content pane pane, set, layout,
junit, nb, nb test add, pane add, border

295 property test test, exclud, testbag, 470 mutator method method, pattern, properti,
config, includ, set setter, set, getter

NetBeans 5.0

38 cvs test cvsroot, test, set, 33 text area area, text, text area,
cv, cvss, crso jtext area, area set, set

390 test editor test, action, editor, 182 paint component paint, compon, paint compon,
node, test editor, netbean test draw, item, substitut

NetBeans 5.5.1

10 jframe test test, frame, assert, 106 slide bar slide, tab, bar,
jframe, set, visibl bound, slide bar, compon

79 perform test test, perform, perform test, 125 mdb password, mdb, factori,
pass, method, pass test connect factori, connect, set



IEEE TRANSACTIONS ON RELIABILITY 7

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●

●●
●●●●
●●●
●●●
●●
●●●
●●
●
●●●●●
●●
●●
●●●●●●
●●●●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(a) Eclipse 2.0.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●●●●●●●

●●●●
●●
●●
●●●●
●●
●●●●●
●●●
●●
●●●●●●
●●●
●●●●
●●●
●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(b) Eclipse 2.1.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●●

●●●●
●●●●●
●●●
●●●
●●●
●●●●●●
●●
●●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0.
0

0.
4

0.
8

Topic ID (Sorted)

W
 R

at
io

(c) Eclipse 3.0.

Fig. 3. The W ratio of test topics in source code files in Eclipse. The dashed lines indicate the cut-off thresholds of 0.05 and 0.95. There are three different
categories of topics shown in the figures: source-only topics (left), test-only topics (right), and shared topics (middle).

Topics 190 and 282 are about accessing source code repos-
itories such as Bugzilla. Topics 171 and 331, both test-only
topics, are about test keywords in Mylyn. We look at test files
related to topic 198, and find that they are about launching
JUnit plugin tests; for example, launching Mylyn Plug-in
Development Environment UI configuration tests. Other test-
only topics are about testing hypertext structure bridging (topic
496), testing shared task directory (topic 60), and testing task
import wizard (topic 444).

b) Eclipse: Source-only topics in Eclipse include topics
about searching (topic 8), GUI (topics 124 and 243), convert-
ing packets to human readable form (topic 12), key binding
services (topic 48), and servlets to interface client (topic 277).
In contrast, the test-only topics in Eclipse all contain some
test keywords, such as “test”, “create test”, or “test suit”.

c) NetBeans: NetBeans has source-only topics about
GUIs (topics 18, 33, 182, and 106), mutator and accessor
functions (topic 470), and message-driven bean initialization
(topic 125). Test-only topics in NetBeans are about different
kinds of software components testing, such as editors (topic
390) and CVS (topic 38).'

&

$

%

34%–78% of the topics are shared between source code
and test files, implying that we can study topic testedness
by comparing the prevalence of a topic in these two types
of files. In addition, we find that the unshared topics are
mostly about keyword topics (e.g., assert in test files)
that only exist in either source code or test files.

B. Are well-tested topics less defect-prone? (RQ2)
1) Motivation: In this question, we want to understand the

relationships between how tested a topic is and its cumulative
defect density. A previous study has shown that high code
coverage may increase software quality [14]; however, we
want to study if this observation also holds when we study
code coverage at the level of topics. The difference between
our topic-based approach and other traditional code coverage
approaches is that traditional code coverage approaches can
only tell us whether a statement, a branch, or a method call,
etc., has been covered by the tests or not. On the other hand,
topics can span across many files and provide a high-level view
of the system. For example, to see if “network event handling”
is well-tested, code coverage would not help much, since this

feature is implemented in several statements across several
methods. Our approach shows how well-tested a topic is, so
our approach is not bounded to either statements, methods, or
classes. We hypothesize that topics that are well-tested will
be less defect-prone, and topics that are under-tested will be
more defect-prone. If the hypothesis holds, then practitioners
can focus on testing source code files related to defect-prone
topics to improve code quality.

2) Approach: Researchers have proposed different metrics
to capture the code coverage of test files. In this paper, we want
to study code coverage at the abstraction level of topics, and
examine the effect of topic testedness (i.e., how well-tested is
a topic) on the cumulative post-release defect density for each
topic. The post-release defects are the defects that are reported
within six months after the version is released [34]. We define
the testedness of topic zi as

Testedness(zi) =
Wtest(zi)

Wsource(zi)
, (4)

where Wtest(zi) and Wsource(zi) are the computed weight
metrics (Equation 1 and 2) for test and source code files,
respectively. We normalize the weight metrics according to the
total lines of code in test files and source code files to take the
size difference between both file types into the account. The
intuition behind this metric is that if a topic is more prevalent
in the test files, then the topic is well-tested.

Chen et al. [13] proposed a metric to capture the Cumulative
Defect Density of a Topic (CDDT). CDDT is calculated by first
computing the weighted defect density for all topics in each
file. Then, CDDT cumulates the weighted defect density of
the topic across all files. We use this metric to quantify the
cumulative post-release defect density of each topic.

In summary, the cumulative effect defect density of a topic
(CDDTpost) is calculated as

CDDTpost(zi) =

n∑
j=1

θij ∗
(

POST(fj)
LOC(fj)

)
, (5)

where POST(fj) is the number of post-release defects of file
fj , which are those defects found up to six months after the
release date of a given version, LOC(fj) is the lines of code in
source code file fj , and θij is the topic membership of topic zi
in file fj . The six-month period for determining post-release
defects is used by other studies to study software quality (e.g.,



IEEE TRANSACTIONS ON RELIABILITY 8

LTHD

LTLD

HTHD

HTLD

C
D

D
T

Topic Testedness

Fig. 4. Position of each class on the scatter plot. The bottom left corner
has low testedness and low CDDTpost (LTLD) topics. The upper left corner
has low testedness and high CDDTpost topics. The rest of topics have high
testedness and low CDDTpost (HTLD). There is only a few topics that have
high testedness and high CDDTpost (HTHD).

[34]). Note that we also exclude all the unshared topics as
identified in RQ1.

We classify topics into four different classes as shown in
Figure 4:

• Class LTHD: low testedness and high CDDTpost

• Class LTLD: low testedness and low CDDTpost

• Class HTLD: high testedness and low CDDTpost

• Class HTHD: high testedness and high CDDTpost

We define the level of testedness and CDDTpost (i.e., low
or high) relative to the quartiles of both metrics. We classify
topics that have a testedness and CDDTpost value smaller than
the third quartile (75%) of all topics to be class LTLD. Topics
that have a CDDTpost value larger than or equal to the third
quartile and have a testedness value smaller than the third
quartile are classified as class LTHD. Class HTLD includes the
topics that have high testedness (larger than the third quartile)
but have lower CDDTpost (smaller than the third quartile).
Finally, there are a few topics that are classified as having high
testedness and high CDDTpost by our approach (HTHD).

We use the MIC score and MINE measures (see Sec-
tion II-B) to describe and verify the relationships that we
observe in the scatter plots.

3) Results: Table IV summarizes the number of topics in
each class. Class LTHD has the fewest number of topics
among all classes, except HTHD, and class LTLD has signif-
icantly more topics than other classes. This implies that there
exist less defect-prone topics that are under-tested (LTHD),
and it would be desirable to focus testing on these topics.

Appendix A shows the scatter plots of the relationship
between topic testedness and CDDTpost for each version of
each system. Due to the approach that we use to automatically
classify the topics, topics in HTHD are usually at the boundary
between LTHD and HTLD. The topics in other classes are
distributed along the X and Y axes.

Table V shows the MINE and MIC scores, indicating that
there is a non-coexistence relationship between testedness and
CDDTpost [15]. In our case, this relationship indicates that
when a topic is well-tested, it is more likely to be less defect-
prone.

TABLE IV
NUMBER OF TOPICS IN EACH CLASS.

LTHD LTLD HTLD HTHD

Mylyn 1.0 38 94 38 6
Mylyn 2.0 39 90 39 4
Mylyn 3.0 39 90 39 4

Eclipse 2.0 52 142 52 13
Eclipse 2.1 60 150 60 11
Eclipse 3.0 72 167 72 8

NetBeans 4.0 72 183 73 13
NetBeans 5.0 60 205 60 29
NetBeans 5.5.1 72 219 73 25

TABLE V
SCORES OF MINE METRICS COMPUTED BETWEEN TOPIC TESTEDNESS

AND THE CUMULATIVE POST-RELEASE DEFECT DENSITY OF A TOPIC
(CDDTpost).

MIC MIC-p2 MAS MEV p

Mylyn 1.0 0.54 0.51 0.16 0.54 -0.16
Mylyn 2.0 0.56 0.53 0.16 0.56 -0.16
Mylyn 3.0 0.36 0.31 0.11 0.36 -0.22

Eclipse 2.0 0.20 0.18 0.02 0.19 -0.12
Eclipse 2.1 0.21 0.20 0.02 0.21 -0.11
Eclipse 3.0 0.24 0.21 0.08 0.24 -0.16

NetBeans 4.0 0.24 0.22 0.07 0.24 -0.13
NetBeans 5.0 0.20 0.20 0.02 0.20 -0.02
NetBeans 5.5.1 0.19 0.19 0.03 0.19 -0.08

A non-coexistence relationship happens when one variable
is more dominant, and the other variable is less dominant (only
one can have a high value). Topics in class HTLD have a
relatively low CDDTpost compared to the other two classes.
In addition, topics in class LTHD always have the highest
CDDTpost amongst all topics, and their testednesses are also
low. Although there are some outliers (HTHD), where a few
relatively well-tested topics have a higher CDDTpost value,
most topics follow the non-coexistence pattern: when a topic
is defect-prone, it is usually under-tested; when a topic is well-
tested, its CDDTpost is usually low. Topics in class LTLD
are usually related to configuration tasks or trivial operations,
which are usually under-tested. However, topics in LTLD also
exhibit low CDDTpost, so we are not interested in testing these
topics.

In order to support our argument that the discovered rela-
tionships are non-coexistence and not random, we check the
linearity, monotonicity, and functionality of the relationship
between two variables (Table V). In all studied systems,
the p values are all negative, and the differences between
MIC and MIC−p2 are very small. This indicates that the
relationship between topic testedness and CDDTpost is non-
linear [15]. For example, a not well-tested topic can be either
in LTHD or LTLD, since testedness and CDDTpost are not
directly proportional to each other. In addition, the relatively
small MAS values imply that the relationship is monotonic,
which provides additional evidence that the relationship is
non-coexistence; i.e., when one variable increases, the other
variable also increases/decreases accordingly. For example,



IEEE TRANSACTIONS ON RELIABILITY 9

TABLE VI
TOP WORDS, TESTEDNESS, AND CDDTpost OF SELECTED TOPICS FROM

EACH CLASS OF TOPICS.

Top words Testedness Median of CDDTpost Median of
Testedness CDDTpost

class LTHD: Mylyn 1.0

417 task, mylar, eclips, 1.05 1.05 0.249 0.002
eclips mylar, mylar task

class LTLD: Eclipse 2.1

494 sheet, cheat, cheat sheet, 0.22 0.343 <0.001 0.008
resourc, properti sheet

class HTLD: NetBeans 5.5.1

206 frame, jintern, jintern frame, 2.40 0.644 <0.001 0.002
intern, intern frame, pane

class HTHD: Eclipse 3.0

206 breakpoint, debug, ijava, 2.65 0.387 0.12 0.002
thread, core, suspend

when testedness increases, CDDTpost decreases. The values
for MEV are all very close to MIC, which means that there
is a functional relationship. For example, CDDTpost can be
computed as some function of testedness. Although the rela-
tionship is non-linear, negative p values indicate that when the
value of testedness increases, CDDTpost decreases (negative
correlation). Taken in aggregate, the results in Table V support
our hypothesis that there is a non-coexistence relationship
between topic testedness and CDDTpost (well-tested topics are
usually less defect-prone), and this relationship is functional
and not random.

4) Discussion: We list one concrete example of a topic in
each class from the studied systems in Table VI. We note
that there are many other examples in each case study system
for each class. We have posted the data online, and interested
readers can interpret and verify the topics [16]. The topic on
task-related actions and Eclipse integration is more defect-
prone in Mylyn 1.0. As we can see from Table VI, the
testedness of this topic is also very low, and it is classified
as class LTHD. This topic corresponds to tasks management
in Mylyn.

The stack map frame topic in NetBeans 5.5.1 is a topic that
is well-tested and has a very low CDDTpost. It is therefore
classified as class HTLD. This topic corresponds to one of
the basic operations in NetBeans for controlling the stack, on
which many higher-level functions rely. The topic on property
sheets is used for displaying program properties to developers
in Eclipse IDE. This is not a core functionality in Eclipse.
Hence it neither requires much testing nor does it exhibit many
defects. Debugging related functionality in Eclipse is tested
more, but it also has a relatively high CDDTpost.'

&

$

%

We find that there is a non-coexistence relationship
between testedness and CDDTpost: when a topic is well-
tested, it is usually less defect-prone; when a topic is
defect-prone, it is usually not well-tested. We verify that
this relationship exists and is not random using the MIC
score and MINE measures.

C. Can we identify defect-prone topics that need more
testing? (RQ3)

1) Motivation: In RQ2, we see evidence that well-tested
topics are usually less defect-prone. Therefore, it will be
beneficial to know which topics require more testing in future
releases. Topics that are less tested can be classified into
two categories: high defect-prone and low defect-prone. If
we could automatically identify those topics that are under-
tested and more defect-prone, then practitioners could put
more testing resources on these topics, or the source code
files that are related to these topics (we can link topics back
to the source code files). By allocating the testing resources
more effectively, we can reduce the time and cost in the testing
phase before releases. Even though topics in class LTLD are
under-tested, we are not interested in them, since they already
have a low CDDTpost value. By avoiding further testing on
topics in class LTLD, we can avoid the unnecessary allocation
of testing resources.

In the research field of defect prediction, some researchers
predict the number of defects in a file, whereas others predict if
a file is defect-prone or not. Similarly, in this paper, we have
made the choice to predicting whether a topic is in LTHD
instead of predicting the actual values. We do this because the
topic testedness measure is (a) continuous in value and not
categorical, and hence the statistical models would implicitly
be more erroneous (i.e., data is highly skewed and cannot be
modelled by normal distribution), and (b) the results in terms
of categories like LTHD are more intuitive for the developer
to interpret than a topic testedness value.

2) Approach: We build a classifier to predict the class (i.e.,
class LTHD, LTLD, or HTLD) to which a topic belongs across
versions (e.g., train the classifier on 2.0 and test on 2.1). We
exclude the topics in HTHD in our analysis, because the main
focus of this research question is to predict the topics in LTHD.
In addition, HTHD has a much smaller number of topics,
which may affect the overall quality of the classifier [35]. We
use the following topic metrics as the independent variables
(i.e., features) in the classifier: topic weight, support, scatter,
and the cumulative churn density of a topic (CCDT). These
topic metrics are defined below.

The weight of a topic measures the total lines of code in
the topic as

Weight(zi) =
n∑

j=1

θij ∗ LOC(fj), (6)

where LOC(fj) is the lines of code of file fj . Since size is
a well-known predictor for software defects, we include this
metric in the classifier.

The support of a topic measures how many files contain the
topic, and is defined as

Support(zi) =
n∑

j=1

I(θij ≥ δ), (7)

where I is the indicator function that returns 1 if its argument
is true, and 0 otherwise. We set the membership threshold δ
in Equation 7 to 1% in order to remove insignificant topics
in files when computing the support metric for each topic. A



IEEE TRANSACTIONS ON RELIABILITY 10

more detailed analysis on this threshold value is presented in
Section V.

The scatter of a topic measures how spread out the topic is
across all source code files, based on the information entropy
of the topic memberships values. Both Thomas et al. [17] and
Baldi et al. [7] use this metric to measure topic scattering. We
define the scatter of a topic zi as

Scatter(zi) = −
n∑

j=1

log(θij) ∗ θij . (8)

Scatter is a measure of the level of coupling of a topic. If
a topic is highly scattered, the topic is implemented across
many different source code files, which increases maintenance
difficulty.

Cumulative Churn Density of a Topic (CCDT) measures
the number of changes (i.e., added and modified changes) per
lines of code that is made to the part of files related to the
topic. We sum up the churn density for each topic across all
files to obtain the cumulative churn density of a topic. We
define CCDT as

DCHURN(zi) =

n∑
j=1

θij ∗
(

CHURN(fj)

LOC(fj)

)
, (9)

where CHURN(fj) is the total number of prior changes to
source code file fj before release. Previous research has shown
that if the code in a topic is changed more often, then this topic
is more likely to be defect-prone [36].

The above-mentioned metrics measure the structure and his-
tory of a topic, which may affect the testing and maintenance
practice of a topic, and its CDDT.

Previous studies have shown that a naı̈ve Bayes classifier
is an effective algorithm for defect prediction [37], [38], thus
we use naı̈ve Bayes in this paper. We train the classifier on
older releases, and predict on newer releases. For example, we
train our classifier using Eclipse 2.0, and predict the class in
which the topics in Eclipse 2.1 belong. We aim to predict to
which topics should the testers allocate more testing resources.
To avoid the problem of having highly correlated independent
variables in the classifier, we use principal component analysis
(PCA) to transform these variables into a new set of uncorre-
lated variables [37]. We select the principal components (PCs)
until either 90% of the variances are explained, or when the
increase in variance explained by adding a new PC is less than
the mean variance explained of all PCs [39].

Since we are interested in finding the defect-prone topics
that require more testing, we only report the precision and
recall for classifying topics in this class (i.e., class LTHD). Our
goal is not predicting defects, but rather, helping practitioners
allocate testing resources more effectively.

3) Results: We show the classification results in Table VII.
In all the studied system, we obtain, on average (computed
across all versions of the studied systems), a precision of 0.75
and a recall of 0.77, which means that most of the under-tested
and defect-prone topics are classified correctly. Mylyn has the
best classification result among three studied systems, possibly
because Mylyn has a larger proportion of test files. In Table I,
we can see that although Mylyn is the smallest system among

TABLE VII
PRECISION, RECALL, AND F-MEASURE FOR CLASSIFYING

UNDER-TESTEDNESS AND DEFECT-PRONE TOPICS (CLASS LTHD).

Train on Test on Precision Recall F-measure

Mylyn 1.0 Mylyn 2.0 0.82 0.92 0.87
Mylyn 2.0 Mylyn 3.0 0.78 0.79 0.78

Eclipse 2.0 Eclipse 2.1 0.79 0.63 0.70
Eclipse 2.1 Eclipse 3.0 0.84 0.79 0.81

NetBeans 4.0 NetBeans 5.0 0.65 0.60 0.62
NetBeans 5.0 NetBeans 5.5.1 0.64 0.86 0.73

the three, it has relatively more test files. NetBeans, on the
other hand, has the fewest proportion of test files, which also
yields the lowest F-measure.

Since we obtain high precision and recall values for all
studied systems, practitioners may use our approach to reliably
identify those defect-prone topics that require more testing.
Then, practitioners can allocate more testing resources on these
specific topics, and improve the overall code quality.

4) Discussion: The results above show that we can predict
which topics are under-tested and defect-prone. By focusing
on these topics, the QA resources may be allocated more
efficiently. Further, to show that our approach can be used
to complement current prediction-based resource allocation
approaches (i.e., statistical models that help allocate testing
resources by predicting which parts of the system are more
defect-prone) for finding defects, we perform an additional ex-
periment that compares our approach with existing approaches.

Namely, we use our prediction model to identify LTHD
topics, resulting in a list of possibly-defect-prone topics. We
link these topics to their corresponding source code files using
a topic membership value of 0.5. If a source code file has a
membership value larger than 0.5 in any of the LTHD topics,
then this file belongs to LTHD. We choose the relatively high
value of 0.5 because it helps us find the source code files that
truly belong to the topic (a file can only belong to one topic
with a membership value > 0.5), and it helps limit the number
of linked files that must be examined by testers.

To compare our approach with the prediction-based re-
source allocation approaches, we build a linear regression
model (LM) as a baseline for comparison. We use code
churn and LOC as the independent variables in the model
and predict the number of defects [40]. Previous studies have
used prediction models to predict the defect-proneness of
source code files to help allocate software quality assurance
effort [41], [42]. We select the top n files predicted by our
approach and the top n files selected by LM, and examine their
similarities and differences. (n is determined by the number
of files that belong to LTHD, which is fixed for each system.)

We choose LOC and churn as our baseline metrics for LM
due to several reasons. Although LOC may not represent all
static metrics, LOC is shown to be a good general software
metric and has been used for benchmarking prior proposals
of new metrics [43], [44]. In addition, LOC is shown to
have a high correlation with other complexity metrics [45],
[46]. We choose code churn as the baseline for change-related
metrics because it has been shown to be a good explainer for



IEEE TRANSACTIONS ON RELIABILITY 11

defects [47], [48], and has also been used as baseline models
for comparing metrics [40]. Moreover, LOC and code churn
are shown to have the best explanatory power for defects,
and are typically used as baseline metrics by other researchers
when proposing new metrics [43], [46], [49], [50].

Table VIII shows the median LOC, defect density,
and percentage of overlap between the source code
files predicted by our approach and the LM model.
In all studied systems, our approach identifies files
with fewer LOC and higher overall defect densities.
As an example, a relatively small file in Eclipse 3.0
(ant/internal/ui/editor/model/AntDefiningTaskNode.java,
which has 71 lines of code) is identified as defect-prone by
our topic-baed approach, while LM does not. The defect in
this file is related to linkage issues, and using information
such as file size, complexity, or churn may not capture the
defect [51]. According to the bug report, by providing more
test cases, this defect was successfully located and fixed. In
our study, our approach outperforms the traditional approach
(LM) in terms of saving effort in code inspection and testing.

We note that the actual number of defects in the files
identified by LM is higher (because the sheer size of each
file is much larger). However, our approach can serve to
complement LM, since the overlap between the files identified
by our approach and LM is small (0–6.2%), and our approach
identifies much smaller files. In addition, developers are al-
ready aware that larger files are usually more defect-prone and
thus require more testing. This means that our approach can
help developers also find the smaller files that require more
testing. By using the two approaches in concert, developers
and testers may locate additional defects.'

&

$

%

We can predict defect-prone and under-tested topics
with an average precision and recall of 0.75 and 0.77,
respectively. In addition, we find that our approach out-
performs traditional prediction-based resource allocation
approaches in terms of saving testing and code inspection
effort. Our approach is able to identify parts of the
systems that are defect-prone and under-tested, which
may help practitioners allocate testing resources more
effectively.

V. PARAMETER SENSITIVITY ANALYSIS

Our approach, detailed in Section II, involves the choice
of several input parameters. Each parameter may influence
the results of our case study. In particular, LDA takes four
parameters as input: number of topics (K), number of iter-
ations (II), and two Dirichlet priors used for smoothing (α
and β). In addition, we define three other parameters: W ratio
(used to remove noise and determine shared topics), δ (used in
Equation 7), and PCA cut-off (used to determine the number
of PCs in the naı̈ve Bayes classifier).

We perform a sensitivity analysis to determine how sensitive
our results are to our particular parameter value choices.
We define a baseline set of parameter values, which are the
values used in the aforementioned three research questions. In

particular, the baseline values are: K=500, II=10,000, W cut-
off=0.05, δ=0.01, and PCA cut-off=90%. Since we use the α
and β that are automatically optimized by MALLET, we do
not change these two values [32]. We increase and decrease
each parameter value independently to study the sensitivity of
each parameter. We also provide more variance to the LDA
parameters due to its probabilistic property [52]. We decrease
K to 300 and 400, and increase K to 600 and 700. We
decrease II to 8,000 and 9,000, and increase II to 11,000
and 12,000. For δ, we consider δ/2 and δ ∗ 2, which are
0.005 and 0.02. Finally, we consider two different PCA cut-off
thresholds, which are 80% and 95%.

For each parameter, we repeat the experiments in RQ2 and
RQ3, and report the MIC score from RQ2, and the precision
and recall from RQ3. Table IX shows only the parameters that
may influence the MIC score, since the topics will be slightly
different when K, II , and W cut-off change (the other two
parameters cannot change the MIC score, since they do not
change the topics). Table X shows the precision and recall of
all the parameters that may influence the classification result.
Note that, since we are doing cross-release prediction, the
precision and recall of the first version of each studied system
are not available.

In this paper, we follow the guidelines of previous
work [13], [31] for choosing K=500 for Eclipse and Mylyn.
We also used K=500 for NetBeans, since the size of NetBeans
is similar to that of Eclipse (Table I). We see from Table IX
that in most cases, when K, W cut-off change, and II change,
the MIC scores remain relatively stable. The MIC score in
Mylyn is not as stable as the other two studied systems, since
the number of shared topics is less in Mylyn (i.e., we have less
data points). We find that changing K varies the MIC score by
an average of 16% from the baseline value; changing II varies
the MIC score by an average of 12%; and changing W cut-
off varies the MIC score by an average of 8.8%. These three
parameters determine the number of data points (topics) and
topic accuracy in the dataset, which has a direct effect on the
overall relationship between topic testedness and CDDTpost.
In addition, since changing K directly changes the number of
data points (i.e., number of topics), varying K has a larger
effect on MIC. One thing to note is that the MINE measures
of all the systems follow the same pattern as described in
RQ2, which supports our hypothesis that the relationship is
non-coexistence.�

�

�

�
Changing the parameters may influence the MIC score.
However, the resulting MIC scores and MINE measures
are still relatively stable, and the observed patterns (i.e.,
non-coexistence) are preserved.

From Table X we can see that when K, W cut-off, and
II change, the prediction results do not vary much. Changing
K varies the precision and recall by an average of 8% from
the baseline value; changing II varies the precision and recall
by 2% and 3%; and changing W cut-off varies the precision
and recall by 3%. We find that the results are also relatively
insensitive to the threshold δ: changing δ varies both the
precision and recall by only 1% and 0%. We find that changing



IEEE TRANSACTIONS ON RELIABILITY 12

TABLE VIII
MEDIAN LOC, DEFECT DENSITY, AND PERCENTAGE OVERLAP OF THE source code files THAT ARE PREDICTED TO BE IN CLASS LTHD AND THE MOST

DEFECT-PRONE FILES PREDICTED BY THE LINEAR REGRESSION MODEL. THE NUMBERS IN THE PARENTHESES INDICATE THE PERCENTAGE
IMPROVEMENT OF OUR APPROACH OVER LM IN TERMS OF THE DEFECT DENSITY OF THE RETURNED FILES. % files IS THE PERCENTAGE OF THE SOURCE

CODE FILES IN A SYSTEM THAT IS USED FOR COMPARING THE TWO APPROACHES.

Predicted System Prediction % files Median Defect Density % overlapping
Approach (n) LOC (Defect/KLOC) files

Mylyn 2.0 Topic-based 1.9 % 57.0 11.64 (+62%) 0 %LM 718.0 7.20

Mylyn 3.0 Topic-based 0.7 % 50.0 6.90 (+128%) 0 %LM 947.0 3.03

Eclipse 2.1 Topic-based 4.2 % 23.0 4.08 (+274%) 1.8 %LM 450.0 1.09

Eclipse 3.0 Topic-based 5.9 % 22.0 5.76 (+210%) 2.1 %LM 633.0 1.86

NetBeans 5.0 Topic-based 5.2 % 78.0 0.39 (+56%) 2.0 %LM 447.0 0.25

NetBeans 5.5.1 Topic-based 12.5% 64.0 0.48 (+4%) 6.2 %LM 376.0 0.46

the PCA cut-off value has no effect on precision and recall,
since we only have a few independent variables in the naı̈ve
Bayes classifier and the cut-off results in the same number of
selected PCs.

Table X also shows that Mylyn 2.0 has the best result
when K is 700, and Mylyn 3.0 has the best result when
K is 500. For larger systems like Eclipse and NetBeans, the
result we get when K is 700 do not differ much from our
baseline (when K is 500). We even find that when K is 700,
our approach gives a worse result compared to the baseline.
Since Mylyn is a smaller system compared to other studied
systems, using a smaller K may be more intuitive; however,
the precision and recall are not significantly better (or may
even be worse) when we change K to a smaller number. Our
sensitivity analysis shows that the ratio between K and the
size of the system may not have a considerable impact on
the performance of our approach. A prior study by Hindle
et al. [53] has found that text in the source code is much
more repetitive than natural language text. In addition, topic
models are very good at finding words with similar meanings
(synonymy) [18], which may explain why using the same
K for Mylyn yields comparable performance to NetBeans
and Eclipse. Future research should explore the use of other
variants of topic models (e.g., [18], [25], [27], [52], [54]).�
�

�
�

The precision and recall are consistent for all systems
(change ≤ 8%, on average) when any of the parameters
are increased and decreased.

VI. POTENTIAL THREATS TO VALIDITY

In this section, we discuss the potential threats to validity
of our approaches.

A. Construct Validity

1) Parameter and Threshold Choices: Since it is possible
that the source-only topics that are excluded in RQ1 belong to
the class LTHD, we study how many such topics there are and

TABLE XI
SUMMARY OF THE EXCLUDED SOURCE-ONLY TOPICS THAT BELONG TO

THE CLASS LTHD, AND THE MEDIAN CDDTpost OF THESE TOPICS.

System % Source-only Topics Median CDDTpost

that are in LTHD

Mylyn 1.0 16 % 3.9 ∗ 10−3

Mylyn 2.0 16 % 6.3 ∗ 10−3

Mylyn 3.0 7 % 1.8 ∗ 10−3

Eclipse 2.0 19 % 6.9 ∗ 10−3

Eclipse 2.1 8 % 4.9 ∗ 10−3

Eclipse 3.0 11 % 8.4 ∗ 10−3

NetBeans 4.0 6 % 5.1 ∗ 10−6

NetBeans 5.0 8 % 3.5 ∗ 10−6

NetBeans 5.5.1 8 % 2.9 ∗ 10−4

how defect-prone they are (Table XI). We find that most of
the excluded topics do not belong to LTHD (81%–94%), and
these topics have a low overall CDDTpost value. Therefore,
these topics do not significantly affect our results.

We use the third quantile of topic testedness and CDDTpost

to classify topics into three classes. However, this threshold
can be changed, and more advanced clustering algorithms may
be used. To study the effects of this classification threshold on
the results, we change the threshold from the third quantile to
median and to the 90% quantile, and repeat our study in RQ3.
Namely, we study the precision and recall of predicting LTHD
topics across versions and report the defect density of the files
that are classified as in LTHD. Table XII shows the prediction
result when the threshold is changed to median. Since the class
imbalance reduces when we change the threshold to median,
the classification accuracy increases (except for Eclipse 3.0).
However, since now LTHD includes some topics that were
previously classified as other classes (e.g., LTLD), the overall
defect density of the files that are identified by our approach
decreases (when compared to Table VIII).

Table XIII shows the prediction result when the threshold
is changed to the 90% quantile. Since the number of LTHD



IEEE TRANSACTIONS ON RELIABILITY 13

TABLE IX
RESULTS OF THE PARAMETER SENSITIVITY ANALYSIS OF THE PARAMETERS THAT MAY INFLUENCE the MIC score. THE BASELINE PARAMETERS AND

THEIR VALUES ARE SHOWN IN THE TABLE. FOR EACH SYSTEM, WE SHOW THE MIC SCORE WHEN THE PARAMETER CHANGES. THE VALUES IN THE
PARENTHESES INDICATE THE INCREASE/DECREASE FROM THE BASELINE MIC SCORE.

Baseline Values: K=500, II=10,000, W cut-off=0.05

Lower Higher
New Value MIC New Value MIC

Mylyn 1.0 (Baseline MIC = 0.54)

K=300 0.32 (-0.22)
K=600 0.40 (-0.14)

400 0.38 (-0.16) 700 0.76 (+0.22)

II=8K 0.49 (-0.05)
II=11K 0.53 (-0.01)

9K 0.57 (+0.03) 12K 0.47 (-0.07)
W cut-off=0.025 0.46 (-0.08) W cut-off=0.1 0.63 (+0.09)

Mylyn 2.0 (Baseline MIC = 0.56)

K=300 0.38 (-0.18)
K=600 0.40 (-0.16)

400 0.46 (-0.10) 700 0.68 (+0.12)

II=8K 0.49 (-0.07)
II=11K 0.53 (-0.03)

9K 0.62 (+0.06) 12K 0.53 (-0.03)
W cut-off=0.025 0.52 (-0.04) W cut-off=0.1 0.63 (+0.07)

Mylyn 3.0 (Baseline MIC = 0.36)

K=300 0.30 (-0.06)
K=600 0.28 (-0.08)

400 0.30 (-0.06) 700 0.43 (+0.07)

II=8K 0.31 (-0.05)
II=11K 0.31 (-0.05)

9K 0.26 (-0.10) 12K 0.34 (-0.02)
W cut-off=0.025 0.33 (-0.03) W cut-off=0.1 0.30 (-0.06)

Eclipse 2.0 (Baseline MIC = 0.20)

K=300 0.25 (+0.05)
K=600 0.21 (+0.01)

400 0.25 (+0.05) 700 0.28 (+0.08)

II=8K 0.22 (+0.02)
II=11K 0.19 (-0.01)

9K 0.22 (+0.02) 12K 0.22 (+0.02)
W cut-off=0.025 0.21 (+0.01) W cut-off=0.1 0.21 (+0.01)

Eclipse 2.1 (Baseline MIC = 0.21)

K=300 0.27 (+0.06)
K=600 0.20 (-0.01)

400 0.18 (-0.03) 700 0.25 (+0.04)

II=8K 0.27 (+0.06)
II=11K 0.20 (-0.01)

9K 0.22 (+0.01) 12K 0.24 (+0.03)
W cut-off=0.025 0.25 (+0.04) W cut-off=0.1 0.22 (+0.01)

Eclipse 3.0 (Baseline MIC = 0.24)

K=300 0.28 (+0.04)
K=600 0.23 (-0.01)

400 0.25 (+0.01) 700 0.21 (-0.03)

II=8K 0.25 (+0.01)
II=11K 0.20 (-0.04)

9K 0.21 (-0.03) 12K 0.24 (—)
W cut-off=0.025 0.25 (+0.01) W cut-off=0.1 0.22 (-0.02)

NetBeans 4.0 (Baseline MIC = 0.24)

K=300 0.20 (-0.04)
K=600 0.25 (+0.01)

400 0.19 (-0.05) 700 0.26 (+0.02)

II=8K 0.24 (—)
II=11K 0.29 (+0.05)

9K 0.23 (-0.01) 12K 0.28 (+0.04)
W cut-off=0.025 0.27 (+0.03) W cut-off=0.1 0.26 (+0.02)

NetBeans 5.0 (Baseline MIC = 0.20)

K=300 0.20 (—)
K=600 0.19 (-0.01)

400 0.21 (+0.01) 700 0.19 (-0.01)

II=8K 0.22 (+0.02)
II=11K 0.21 (+0.01)

9K 0.23 (+0.03) 12K 0.25 (+0.05)
W cut-off=0.025 0.21 (+0.01) W cut-off=0.1 0.19 (-0.01)

NetBeans 5.5.1 (Baseline MIC = 0.19)

K=300 0.19 (—)
K=600 0.18 (-0.01)

400 0.18 (-0.01) 700 0.23 (+0.04)

II=8K 0.27 (+0.08)
II=11K 0.20 (+0.01)

9K 0.18 (-0.01) 12K 0.27 (+0.08)
W cut-off=0.025 0.20 (+0.01) W cut-off=0.1 0.19 (—)



IEEE TRANSACTIONS ON RELIABILITY 14

TABLE X
RESULTS OF THE PARAMETER SENSITIVITY ANALYSIS OF THE PARAMETERS THAT MAY INFLUENCE THE prediction result. THE BASELINE PARAMETERS
AND THEIR VALUES ARE SHOWN IN THE TABLE. FOR EACH SYSTEM, WE SHOW THE PRECISION AND RECALL WHEN THE PARAMETER CHANGES. THE

VALUES IN THE PARENTHESES INDICATE THE INCREASE/DECREASE FROM THE BASELINE PRECISION AND RECALL.

Baseline Values: K=500, II=10,000, W cut-off=0.05, δ=0.01, PCA cut-off=90%

Lower Higher
New Value Precision Recall New Value Precision Recall

Mylyn 2.0 (Baseline Precision = 0.82, Base Recall = 0.92)

K=300 0.81 (-0.01) 0.76 (-0.16)
K=600 0.80 (-0.02) 0.89 (-0.03)

400 0.80 (-0.02) 0.91 (-0.01) 700 0.90 (+0.08) 0.96 (+0.04)

II=8K 0.85 (+0.03) 0.98 (+0.06)
II=11K 0.78 (-0.04) 0.92 (—)

9K 0.84 (+0.02) 0.97 (+0.05) 12K 0.86 (+0.04) 0.95 (+0.03)
W cut-off=0.025 0.91 (+0.09) 0.89 (-0.03) W cut-off=0.1 0.79 (-0.03) 0.93 (+0.01)

δ=0.005 0.82(—) 0.95 (+0.03) δ=0.02 0.82 (—) 0.92 (—)
PCA cut-off=80% 0.82 (—) 0.92 (—) PCA cut-off=95% 0.82 (—) 0.92 (—)

Mylyn 3.0 (Baseline Precision = 0.78, Base Recall = 0.79)

K=300 0.88 (+0.09) 0.70 (-0.09)
K=600 0.63 (-0.15) 0.85 (+0.06)

400 0.74 (-0.04) 0.64 (-0.15) 700 0.52 (-0.26) 0.89 (+0.07)

II=8K 0.79 (+0.01) 0.78 (-0.01)
II=11K 0.76 (-0.02) 0.74 (-0.05)

9K 0.73 (-0.05) 0.78 (-0.01) 12K 0.78 (—) 0.76 (-0.03)
W cut-off=0.025 0.77 (-0.01) 0.74 (-0.05) W cut-off=0.1 0.71 (-0.07) 0.76 (-0.03)

δ=0.005 0.78 (—) 0.78 (-0.01) δ=0.02 0.78 (—) 0.79 (—)
PCA cut-off=80% 0.78 (—) 0.79 (—) PCA cut-off=95% 0.78 (—) 0.79 (—)

Eclipse 2.1 (Baseline Precision = 0.79, Base Recall = 0.63)

K=300 0.86 (+0.07) 0.83 (+0.20)
K=600 0.85 (+0.06) 0.72 (+0.09)

400 0.82 (+0.03) 0.63 (—) 700 0.74 (-0.05) 0.65 (+0.02)

II=8K 0.79 (—) 0.62 (-0.01)
II=11K 0.80 (+0.01) 0.61 (-0.02)

9K 0.77 (-0.02) 0.67 (+0.04) 12K 0.80 (+0.01) 0.65 (+0.02)
W cut-off=0.025 0.79 (—) 0.62 (-0.01) W cut-off=0.1 0.78 (-0.01) 0.65 (+0.02)

δ=0.005 0.79 (—) 0.63 (—) δ=0.02 0.81 (+0.02) 0.63 (—)
PCA cut-off=80% 0.79 (—) 0.63 (—) PCA cut-off=95% 0.79 (—) 0.63 (—)

Eclipse 3.0 (Baseline Precision = 0.84, Base Recall = 0.79)

K=300 0.73 (-0.11) 0.94 (+0.15)
K=600 0.77 (-0.07) 0.86 (+0.07)

400 0.78 (-0.06) 0.84 (+0.05) 700 0.75 (-0.09) 0.78 (-0.01)

II=8K 0.80 (-0.04) 0.77 (-0.02)
II=11K 0.84 (—) 0.78 (-0.01)

9K 0.80 (-0.04) 0.79 (—) 12K 0.81 (-0.03) 0.79 (—)
W cut-off=0.025 0.82 (-0.02) 0.78 (-0.01) W cut-off=0.1 0.84 (—) 0.81 (+0.02)

δ=0.005 0.84 (—) 0.81 (+0.02) δ=0.02 0.81 (-0.03) 0.79 (—)
PCA cut-off=80% 0.84 (—) 0.79 (—) PCA cut-off=95% 0.84 (—) 0.79 (—)

NetBeans 5.0 (Baseline Precision = 0.65, Base Recall = 0.60)

K=300 0.56 (-0.09) 0.63 (+0.03)
K=600 0.67 (+0.02) 0.58 (-0.02)

400 0.60 (-0.05) 0.63 (+0.03) 700 0.68 (+0.03) 0.60 (—)

II=8K 0.64 (-0.01) 0.62 (+0.02)
II=11K 0.64 (-0.01) 0.59 (-0.01)

9K 0.63 (-0.02) 0.59 (-0.01) 12K 0.61 (-0.04) 0.61 (+0.01)
W cut-off=0.025 0.65 (—) 0.57 (-0.03) W cut-off=0.1 0.65 (—) 0.63 (+0.03)

δ=0.005 0.65 (—) 0.60 (—) δ=0.02 0.63 (-0.02) 0.60 (—)
PCA cut-off=80% 0.65 (—) 0.60 (—) PCA cut-off=95% 0.65 (—) 0.60 (—)

NetBeans 5.5.1 (Baseline Precision = 0.64, Base Recall = 0.86)

K=300 0.58 (-0.06) 0.88 (+0.02)
K=600 0.65 (+0.01) 0.79 (-0.07)

400 0.67 (+0.03) 0.94 (+0.08) 700 0.68 (+0.04) 0.90 (+0.04)

II=8K 0.65 (+0.01) 0.88 (+0.02)
II=11K 0.65 (+0.01) 0.85 (-0.01)

9K 0.68 (+0.04) 0.88 (+0.02) 12K 0.63 (-0.01) 0.83 (-0.03)
W cut-off=0.025 0.66 (+0.02) 0.86 (—) W cut-off=0.1 0.62 (-0.02) 0.85 (-0.01)

δ=0.005 0.65 (+0.01) 0.86 (—) δ=0.02 0.61 (-0.03) 0.85 (-0.01)
PCA cut-off=80% 0.64 (—) 0.86 (—) PCA cut-off=95% 0.64 (—) 0.86 (—)



IEEE TRANSACTIONS ON RELIABILITY 15

TABLE XII
CROSS-VERSION CLASSIFICATION RESULTS WHEN CHANGING THE

CLASSIFICATION THRESHOLD from the third quantile to median. THE
TABLE SHOWS THE PRECISION, RECALL, % OF OVERLAPPING FILES THAT

ARE IDENTIFIED BY OUR TOPIC-BASED APPROACH AND LM, AND THE
DEFECT DENSITY OF THE IDENTIFIED FILES.

Predicted Precision Recall % overlapping Defect Density (Defect/KLOC)
System files Topic-based LM

Mylyn 2.0 0.98 0.95 0% 7.33 5.76
Mylyn 3.0 0.85 0.85 0% 3.28 3.10

Eclipse 2.1 0.85 0.74 2.1% 2.63 1.01
Eclipse 3.0 0.73 0.75 3.5% 3.50 1.86

NetBeans 5.0 0.73 0.68 5.5% 0.09 0.23
NetBeans 5.5.1 0.79 0.76 7.6% 0.32 0.45

TABLE XIII
CROSS-VERSION CLASSIFICATION RESULTS WHEN CHANGING THE

CLASSIFICATION THRESHOLD from the third quantile to the 90 percentile.
THE TABLE SHOWS THE PRECISION, RECALL, % OF OVERLAPPING FILES
THAT ARE IDENTIFIED BY OUR TOPIC-BASED APPROACH AND LM, AND

THE DEFECT DENSITY OF THE IDENTIFIED FILES.

Predicted Precision Recall % overlapping Defect Density (Defect/KLOC)
System files Topic-based LM

Mylyn 2.0 0.67 0.78 0% 0 5.76
Mylyn 3.0 0.76 0.72 0% 4.33 1.02

Eclipse 2.1 0.79 0.79 1.6% 5.33 1.11
Eclipse 3.0 0.63 0.84 1.5% 7.79 1.88

NetBeans 5.0 0.55 0.67 0.7% 0.60 0.25
NetBeans 5.5.1 0.60 1.00 7.6% 0.71 0.47

topics is reduced, the precision and recall decrease (class
imbalance increases). However, we find that after changing
the threshold, our topic-based approach can identify files with
much higher defect density, compared to the same number of
files identified by LM. One exception is Mylyn 2.0, where
our topic-based approach does not locate any defect-prone
files. After manual investigation, we find that there is only
one file that belongs to the LTHD class, and this file contains
no defect. This may imply that the threshold is too high for
Mylyn 2.0, and other threshold values should be used. In short,
after changing the threshold to median and the 90% quantile,
the results follow the same trend. However, higher threshold
values may result in identifying fewer files (but these files
have higher defect density), which may reduce the manual
inspection effort required by the practitioners.

2) Different Source Code Preprocessing Steps: The source
code preprocessing steps may affect the resulting topics and
thus, our results. Thus far, the effects of the preprocessing steps
have received limited empirical attention from our community,
so it is not yet clear which steps are the best. Some researchers
split identifiers and some do not; some researchers stem
and some do not. There are many papers that even propose
advanced splitting techniques [55], [56]. A study by the second
author [57] explicitly considers these issues, and finds that
indeed, splitting, stopping, and stemming are all beneficial for
topic models in the context of bug localization. Nonetheless,
much more research is needed to quantify these effects for
other software engineering tasks.

TABLE XIV
PRECISION OF OUR HEURISTIC ON IDENTIFYING SOURCE CODE AND TEST

FILES.

Studied System Precision of finding Precision of finding
source files test files

Mylyn 1.00 0.94
Eclipse 1.00 0.90
NetBeans 0.98 0.76

3) Correctness of the Heuristic for Finding Test Files: Our
approach relies on the accuracy of the heuristic that we use
to identify test files in a system (Section III-B). Although we
define the heuristic for finding test files based on previous
research [23], it is not clear how this heuristic performs in
our studied systems. Therefore, we randomly select 50 source
code files and 50 test files from each studied system. The
fourth author manually checks whether these files are classified
correctly, and the first author verifies the classification result.
The files that we randomly sampled are tagged and made
available online [16].

We use the following criteria for determining whether a file
is a source code or test file: a file is classified as a test file if it is
testing some functionality of the system. Table XIV shows the
precision of our heuristic on identifying source code and test
files. The heuristic has high precision in Mylyn and Eclipse,
but a relatively lower precision in NetBeans. We found that
NetBeans provides tools for users to create test cases, which
our approach identifies these files as test files. In addition,
some test files that we randomly sampled in NetBeans are
very short, and only provide class signatures (e.g., interfaces).
These files again do not provide any means of code coverage.
The relatively lower precision of finding test files in NetBeans
may explain why our approach is not performing as well in
NetBeans. Nevertheless, the heuristic still has a high precision
value for the studied systems.

4) Classifier Choice: The goal of this paper is to provide
initial evidence that it is possible to analyze code coverage
using topic models, and to identify topics of the source code
files that require more testing. We choose a naı̈ve Bayes
classifier, which is shown to have a good performance in
classifying defective files [37], [38]. However, other classifiers
may also be used, and different classifiers may have different
classification performance.

B. Internal Validity

1) Assumption of the Topic Metrics: In our topic testedness
metric, we made the assumption that if a topic appears more
in test files, then this topic is well-tested. However, this may
not always be true, since there may be some set-up code
in the test files that is not meant to be tested. This threat
is not specific to our approach, because traditional coverage-
based approaches (e.g., [58]) make similar assumptions. For
example, in traditional block coverage approaches, a code
block is assumed to be tested if a test case covers it, but the
code block may be executed only for setting up the test case.
Nevertheless, the success of the test case depends on the fact
that the setup code being executed correctly. As a result, in



IEEE TRANSACTIONS ON RELIABILITY 16

TABLE XV
PERCENTAGE OF SOURCE CODE FILES THAT ARE TESTED BY THE TEST

FILES THAT BELONG TO THE SAME TOPIC (WHEN USING DIFFERENT TOPIC
MEMBERSHIP THRESHOLDS).

Studied Systems % Source Code Covered
θ = 0.1 θ = 0.3 θ = 0.5

Mylyn 24 43 35
Eclipse 37 45 60
NetBeans 37 43 55

coverage-based testing, a test case may be explicitly testing
one functionality but also implicitly testing other functionality.

The CCDT and CDDT metrics may also have such problem.
For example, if 80% of a file belongs to topic A, then it may
not be the case that 80% of its defects are about topic A; these
defects may be related to other 20% of topics. Obtaining code-
level metrics is a difficult task, and most researchers only focus
on file-level defect analysis. Fortunately, although such issues
may be present in our metrics, the results of our approaches
are still promising. Moreover, one of the advantages of our
topic metrics is that we are taking the cumulated values of
each topic across all the files. By considering the information
in all the files, hopefully the problem will be averaged out. We
plan to redefine our topic metrics using code-level information
and study its improvement over using file-level information in
the future.

Finally, the quality of the test cases, and words used in
source code and tests may also affect the performance of our
approach.

2) Studying Code Coverage Using Topics: We made the
assumption that a source code file is tested by a test file if
they share the same topic (i.e., have a covering relationship).
We conducted an experiment to verify the covering relation-
ship between test code and source code. The experiment is
described as follows. We first identify the topics that are shared
by both source code and tests (i.e., shared topics). Then, we
identify the source code and test files that belong to the same
topic in order to examine the covering relationship. Note that
since we need to use a threshold (i.e., topic membership value)
to find files that belong to the same topic, we have tried out
three different threshold values: 0.1, 0.3, 0.5. For example, a
topic membership of 0.5 for a file means that 50% of the file
is related to the topics.

Table XV shows the percentage of source code files that are
tested by the test files that belong to the same topic. In general,
we find that there is a covering relationship if two types of
files (source code and test files) belong to the same topic.
Around 30% to 60% of the source code files are tested by
the test files that belong to the same topic. The finding further
suggests that it is possible to apply the suggested approach to
study code coverage using topic models. The finding further
supports our results in the paper. Our proposed approach is
indeed capturing the covering relationship and we are able to
accurately identify less tested topics and more defect-prone
topics.

3) Interpreting Topics: Although Hindle et al. [29] show
that topics generated by LDA make sense to practitioners,

people without domain knowledge still have some difficulties
understanding the topics. In cases where developers have hard
time interpreting the LTHD topics that our approach points
out, developers can use our approach to map the topics to the
corresponding files. Another benefit of recovering the mapping
is that developers may find it easier to work with files when
it comes down to writing test cases. Thus, our approach can
still help developers when the topics are difficult to interpret.

C. External Validity

1) Studied Systems: In our case study, we considered in
detail three versions of Mylyn, Eclipse, and NetBeans. How-
ever, these three systems may not be representative. We try to
choose systems with various sizes to minimize the threats, but
more case studies are needed to verify the generalizability of
our approach.

VII. RELATED WORK

Our work is mostly related to applications of topic models
in software engineer, defect prediction using topic models, and
software testing.

A. Applications of Topic Models in Software Engineering

Researchers have applied topic models to a wide range of
tasks in software engineering. Kuhn et al. [18] use Latent
Semantic Indexing (LSI) to help developers better understand
software systems by clustering source code files based on the
similarity of word usage. Linstead et al. [12] and Thomas
et al. [17], [26] use topics to study the evolution in the
source code. Maskeri et al. [11] apply LDA to source code
to uncover its business logic. Other researchers apply topic
models to software engineering problems such as recovering
traceability links between documents and source code [28],
locating concepts in the source code [59], and searching
relevant code in a system [60]. Bavota et al. [61] use relational
topic models (RTM) to study software coupling. In another
work, Bavota et al. [62] use RTM to help software refactoring.
Gethers et al. [63] develop an Eclipse plugin for viewing the
similarity between source code and requirements. Gethers et
al. [64] combine several information retrieval approaches for
traceability link recovery. Finally, Chen et al. [65] survey over
one hundred papers that are related to the use of topic models
on software engineering tasks.

The most relevant work to this paper is about prioritizing
test cases using topic models [66]. Thomas et al. show that
topic models can be used to help software testing process by
considering the semantic difference among test cases. In this
paper, we study how testing may help improve software quality
at the topic level, and show that our approach can complement
current existing approaches.

B. Defects and Topic Models

Recent studies also apply topic models to understand soft-
ware quality. These approaches differ from traditional ap-
proaches [36], [67], [68], since they consider the topics in
source code files. Nguyen et al. [10] use LDA to propose



IEEE TRANSACTIONS ON RELIABILITY 17

a topic-based defect prediction approach. The authors first
apply LDA to the studied systems using K=5 topics, and
propose a topic metrics based on these five topics. Liu et al. [9]
propose a metric called Maximal Weighted Entropy (MWE)
to model class cohesion using topics, and study the effect of
topic cohesion on software defects.

In earlier work [13], [69], we consider the defect history of
topics, and show that each topic should be treated differently.
Some topics have much higher CDDT than others, and topics
can help explain defects in software system. In this paper, we
go one step further: we study the effect of topic testedness
on CDDT, and show that we can help practitioners allocate
testing resources through our case studies.

C. Testing and Software Quality

Some researchers, such as Zaidman et al. [23], study the
co-evolution between production code and test code using
three different views: change history, growth history, and test
quality evolution. Instead of using the topics in source code,
Zaidman et al. create links between source code and test files
using class signature. Nagappan et al. [5] use traditional test
metrics to predict software defects at the file level. One major
difference between our study and that of Zaidman et al. and
Nagappan et al. is that we study the relationship between
software testing and quality using topics. By using topics, we
can provide a more intuitive overview about which features
may require more testing to testers. Previous researches have
studied code coverage using criteria such as statement cov-
erage, path coverage, function converge etc. [2]–[4]. These
criteria study code coverage from the structure and function
call graphs to evaluate the testing approaches. However, they
do not identify which part of the system is defect-prone, hence
requiring more testing. In this paper, we use topics to study
topic-level code coverage and identify those part of the system
that are defect-prone and require more testing.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the effect of topic testedness, i.e.,
the extent to which a topic is tested, on code quality. We
proposed new topic metrics to study this relationship. We
performed a detailed case study on three large, real-world
systems: Mylyn, Eclipse, and NetBeans. The summary and
highlights of our findings include:

• Test files and source code files share a significant number
of topics.

• The cumulative defect density of a topic (CDDT) and
topic testedness have a non-coexistence relationship, i.e.,
do not both have high values. Well-tested topics are
unlikely to have high CDDT; high CDDT topics have
low testedness.

• We are able to predict, with high recall and precision,
whether an under-tested topic is at risk of containing
defects, which can help practitioners allocate testing
sources more effectively.

• Although our approach is done at the topic level, we
can still map from topics to files and help practitioners
allocate testing resources.

• Our approach outperforms tradition prediction-based re-
source allocation approaches in terms of allocating testing
and code inspection resources.

In future work, we plan to compare traditional code cov-
erage approaches with our topic-based approach. We also
plan to use traditional code coverage analysis approaches in
conjunction with the topic-based approach proposed in this
paper, to better identify those parts of the system that require
more testing, and to examine more systems.

ACKNOWLEDGMENT

We thank Dr. Yasutaka Kamei for providing us the bug
datasets of the studied systems that are used in this paper.

APPENDIX A
CDDTpost V.S. TOPIC TESTEDNESS

This appendix shows scatter plots of cumulative post-release
defect density of a topic (CDDTpost) against topic testedness
for all versions of the studied systems (Figure 5, 6, and 7).
Each point represents a topic. Black points (class LTHD) are
under-tested and defect-prone topics; red points (class LTLD)
are under-tested and less defect-prone topics; green points
(class HTLD) are well-tested and less defect-prone topics; and
blue points (class HTHD) are well-tested and highly defect-
prone topics.

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(a) Mylyn 1.0

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(b) Mylyn 2.0

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(c) Mylyn 3.0

Fig. 5. CDDTpost v.s. topic testedness for Mylyn.

REFERENCES

[1] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Transactions on Software Engineering and Methodology,
vol. 16, no. 1, Feb. 2007.

[2] S. Ntafos, “A comparison of some structural testing strategies,” IEEE
Transactions on Software Engineering, vol. 14, pp. 868 –874, jun 1988.

[3] J. C. Huang, “An approach to program testing,” ACM Comput. Surv.,
vol. 7, pp. 113–128, Sep. 1975.

[4] G. Myers, T. Badgett, T. Thomas, and C. Sandler, The Art of Software
Testing, 2nd ed., 2004.



IEEE TRANSACTIONS ON RELIABILITY 18

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ● ●
●

●

●

●

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(a) Eclipse 2.0

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●●●

●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(b) Eclipse 2.1

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(c) Eclipse 3.0

Fig. 6. CDDTpost v.s. topic testedness for Eclipse.

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●●

● ●●●●

●

●●

●

●
●

●●

●

●

●

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(a) NetBeans 4.0

● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●
●●

●

●●

0 5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(b) NetBeans 5.0

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Topic Testedness

C
D

D
T

P
O

S
T

● LTHD
LTLD
HTLD
HTHD

(c) NetBeans 5.5.1

Fig. 7. CDDTpost v.s. topic testedness for NetBeans.

[5] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Using in-process
testing metrics to estimate post-release field quality,” in Proceedings
International Symposium on Software Reliability Engineering, 2007, pp.
209–214.

[6] E. Weyuker, “Testing component-based software: a cautionary tale,”
IEEE Software, vol. 15, no. 5, pp. 54 –59, sep 1998.

[7] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory
of aspects as latent topics,” in Proceedings of the 23rd ACM SIGPLAN
Conference on Object-oriented Programming Systems Languages and
Applications, 2008, pp. 543–562.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[9] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chrisochoides,
“Modeling class cohesion as mixtures of latent topics,” in Proceedings
of the 25th International Conference on Software Maintenance, 2009,
pp. 233 –242.

[10] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong, “Topic-based defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 932–935.

[11] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in
source code using latent Dirichlet allocation,” in Proceedings of the 1st

India Software Engineering Conference, 2008, pp. 113–120.
[12] E. Linstead, C. Lopes, and P. Baldi, “An application of latent Dirichlet

allocation to analyzing software evolution,” in Proceedings of Seventh
International Conference on Machine Learning and Applications, 2008,
pp. 813–818.

[13] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. Hassan, “Explaining
software defects using topic models,” in Proceedings of the 9th Working
Conference on Mining Software Repositories, 2012, pp. 189–198.

[14] J. R. Horgan, S. London, and M. R. Lyu, “Achieving software quality
with testing coverage measures,” Computer, vol. 27, no. 9, pp. 60–69,
Sep. 1994.

[15] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C.
Sabeti, “Detecting novel associations in large data sets,” vol. 334, no.
6062, 2011, pp. 1518–1524.

[16] T.-H. Chen, http://petertsehsun.github.io/topicTesting.html, 2015.
[17] S. Thomas, B. Adams, A. Hassan, and D. Blostein, “Validating the

use of topic models for software evolution,” in Proceedings of the
10th International Working Conference on Source Code Analysis and
Manipulation, 2010, pp. 55–64.

[18] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
pp. 230–243, 2007.

[19] D. Posnett, P. Devanbu, and V. Filkov, “MIC check: A correlation tactic
for ESE data,” in Proceedings of the 9th Working Conference on Mining
Software Repositories, 2012, pp. 22–31.

[20] D. Reshef, Y. Reshef, P. Sabeti, and M. Mitzenmacher, “Mine:
maximal information-based nonparametric exploration,” 2012. [Online].
Available: http://www.exploredata.net/

[21] J. Stewart, Calculus: Concepts and Contexts, ser. Stewart’s Calculus
Series. Cengage Learning, 2009.

[22] I. Titov and R. McDonald, “Modeling online reviews with multi-grain
topic models,” in Proceedings of the 17th international conference on
World Wide Web, 2008, pp. 111–120.

[23] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production & test code,” in
Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, 2008, pp. 220–229.

[24] S. W. Thomas, “Mining software repositories with topic models,” School
of Computing, Queen’s University, Tech. Rep. 2012-586, 2012.

[25] T. Hofmann, “Probabilistic Latent Semantic Indexing,” in Proceedings
of the 22nd International Conference on Research and Development in
Information Retrieval, 1999, pp. 50–57.

[26] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling
the evolution of topics in source code histories,” in Proceedings of the
8th Working Conference on Mining Software Repositories, 2011, pp.
173–182.

[27] M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,”
in Proceedings of the 26th International Conference on Software Main-
tenance, 2010, pp. 1–10.

[28] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in Proceedings of the 32nd International
Conference on Software Engineering, 2010, pp. 95–104.

[29] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Relating
requirements to implementation via topic analysis: Do topics extracted
from requirements make sense to managers and developers?” in Pro-
ceedings of the 28th IEEE International Conference on Software Main-
tenance, 2012, pp. 243–252.

[30] H. Wallach, D. Mimno, and A. McCallum, “Rethinking LDA: Why
priors matter,” Proceedings of Neural Information Processing Systems,
pp. 1973–1981, 2009.

[31] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, pp. 972–990, September 2010.

[32] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002. [Online]. Available: http://mallet.cs.umass.edu

[33] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, pp. 467–479, Dec. 1992.

[34] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, ser. PROMISE ’07, 2007.

[35] F. Provost, “Machine learning from imbalanced data sets 101 (extended
abstract),” in Proceedings of the AAAI 2000 Workshop on Imbalanced
Data Sets, 2000.

http://www.exploredata.net/
http://mallet.cs.umass.edu


IEEE TRANSACTIONS ON RELIABILITY 19

[36] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th international
conference on Software engineering, 2005, pp. 284–292.

[37] B. Turhan and A. Bener, “Analysis of naive bayes assumptions on soft-
ware fault data: An empirical study,” Data and Knowledge Engineering,
vol. 68, no. 2, pp. 278–290, 2009.

[38] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, Jan 2007.

[39] I. Jolliffe, Principal Component Analysis. Springer, 2002.
[40] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch

my code!: Examining the effects of ownership on software quality,” in
Proceedings of the 19th Symposium on the Foundations of Software
Engineering and the 13rd European Software Engineering Conference,
2011, pp. 4–14.

[41] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proceedings of the 14th European Conference on Software Maintenance
and Reengineering, 2010, pp. 107–116.

[42] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and
A. E. Hassan, “Revisiting common bug prediction findings using effort-
aware models,” in Proceedings of the 26th International Conference on
Software Maintenance, 2010, pp. 1–10.

[43] M. DAmbros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in Proceedings of the 7th Conference on
Mining Software Repositories, 2010, pp. 31–41.

[44] J. Rosenberg, “Some misconceptions about lines of code,” in Proceed-
ings of the 4th International Symposium on Software Metrics, 1997, pp.
137–142.

[45] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N. A. Kraft, and
C. Ward, “Cyclomatic complexity and lines of code: Empirical evidence
of a stable linear relationship.” Journal of Software Engineering and
Applications, vol. 2, pp. 137–143, 2009.

[46] A. Oram and G. Wilson, Making Software: What Really Works, and
Why We Believe It, ser. O’Reilly Series. O’Reilly Media, Incorporated,
2010.

[47] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in Proceedings of 27th International Conference
on Software Engineering, 2005, pp. 284–292.

[48] S. Biyani and P. Santhanam, “Exploring defect data from development
and customer usage on software modules over multiple releases,” in
Proceedings of the 9th International Symposium on Software Reliability
Engineering, 1998, pp. 316–320.

[49] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910,
Oct. 2005.

[50] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of
a subset of change metrics for defect prediction,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2008, pp. 309–311.

[51] “Eclipse bug report 71888,” https://bugs.eclipse.org/bugs/show bug.cgi?id=
71888, ”Last accessed July 2016”.

[52] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering, 2013,
pp. 522–531.

[53] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 837–847.

[54] T. Hofmann, “Unsupervised learning by probabilistic Latent Semantic
Analysis,” Machine Learning, vol. 42, no. 1, pp. 177–196, 2001.

[55] D. Binkley, D. Lawrie, and C. Uehlinger, “Vocabulary normalization
improves IR-based concept location,” in Proceedings of the 28th IEEE
International Conference on Software Maintenance, 2012, pp. 588–591.

[56] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” in Proceedings of the 27th IEEE International Con-
ference on Software Maintenance, 2011, pp. 113–122.

[57] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, “The
impact of classifier configuration and combination on bug localization,”
IEEE Transactions on Software Engineering, vol. 39, no. 10, pp. 1427–
1443, 2013.

[58] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-
zation: A family of empirical studies,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[59] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical analysis
of information retrieval based concept location techniques in software
comprehension,” Empirical Software Engineering, vol. 14, no. 1, pp.
93–130, 2008.

[60] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent Dirichlet allo-
cation for automatic categorization of software,” in Proceedings of the
6th International Working Conference on Mining Software Repositories,
2009, pp. 163–166.

[61] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” ACM Trans. Softw. Eng. Methodol., vol. 23,
no. 1, pp. 4:1–4:33, 2014.

[62] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 671–694, July 2014.

[63] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “CodeTopics: Which topic am I coding now?” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
2011, pp. 1034–1036.

[64] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrating
orthogonal information retrieval methods to improve traceability recov-
ery,” in Proceedings of the 2011 27th IEEE International Conference
on Software Maintenance, 2011, pp. 133–142.

[65] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1–77, 2016.

[66] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Software Engineering,
vol. 19, no. 1, pp. 182–212, 2012.

[67] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence
using software change history,” Transactions on Software Engineering,
vol. 26, no. 7, pp. 653 –661, 2000.

[68] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, 2009, pp. 78–88.

[69] T.-H. Chen, W. Shang, M. Nagappan, A. E. Hassan, and S. W. Thomas,
“Topic-based software defect explanation,” Journal of Systems and
Software, pp. –, 2016.

Tse-Hsun Chen Tse-Hsun Chen is an Assistant
Professor in the Department of Computer Science
and Software Engineering at Concordia University,
Montreal, Canada. He obtained his BSc from the
University of British Columbia, and MSc and PhD
from Queen’s University. Besides his academic ca-
reer, Dr. Chen also worked as a software perfor-
mance engineer at BlackBerry for over four years.
His research interests include performance engineer-
ing, database performance, program analysis, log
analysis, and mining software repositories. Early

tools that are developed by Dr. Chen are integrated into industrial practice
for ensuring the quality of large-scale enterprise systems. More information
at: http://petertsehsun.github.io/

Stephen W. Thomas Stephen W. Thomas received
an MS degree in computer science from the Uni-
versity of Arizona in 2009 and a PhD from Queens
University in 2012. His research interests include
empirical software engineering, temporal databases,
and unstructured data mining.



IEEE TRANSACTIONS ON RELIABILITY 20

Hadi Hemmati Dr. Hadi Hemmati is an assis-
tant professor at the department of electrical and
computer engineering University of Calgary. Before
joining University of Calgary in 2017, Dr. Hemmati
was an assistant professor at the department of
computer science, University of Manitoba, Canada
(2013-2016), where he still has an adjunct position,
and a postdoctoral fellow at University of Wa-
terloo (2012-2013), and Queens University (2011-
2012). He received his PhD from Simula Research
Laboratory, Norway. His main research interest is

Automated Software Engineering with a focus on software testing and quality
assurance.His research has a strong focus on empirically investigating software
engineering practices in large-scale systems, using model-driven engineering
and data science. He has/had industry research collaborations with SEB,
Latvia; Micropilot, Canada; CA Technologies, USA; Blackberry, Canada; and
Cisco Systems, Norway.

Meiyappan Nagappan Meiyappan Nagappan is an
Assistant Professor in the David R. Cheriton School
of Computer Science at the University of Waterloo.
His research is centered around the use of large-
scale Software Engineering (SE) data to address
the concerns of the various stakeholders (e.g., de-
velopers, operators, and managers). He received a
PhD in computer science from North Carolina State
University. Dr. Nagappan has published in various
top SE venues such as TSE, FSE, EMSE, and IEEE
Software. He has also received best paper awards

at the International Working Conference on Mining Software Repositories
(MSR 12, 15). He is currently the Editor of the IEEE Software Blog and the
Information Director for the IEEE Transactions on Software Engineering. He
continues to collaborate with both industrial and academic researchers from
the US, Canada, Japan, Germany, Chile, and India. You can find more at
mei-nagappan.com.

Ahmed E. Hassan Ahmed E. Hassan is a Canada
Research Chair in Software Analytics and the
NSERC/Blackberry Industrial Research Chair at the
School of Computing in Queen’s University. Dr.
Hassan serves on the editorial board of the IEEE
Transactions on Software Engineering, the Journal
of Empirical Software Engineering, and PeerJ Com-
puter Science. He spearheaded the organization and
creation of the Mining Software Repositories (MSR)
conference and its research community.

Early tools and techniques developed by Dr. Has-
san’s team are already integrated into products used by millions of users
worldwide. Dr. Hassan industrial experience includes helping architect the
Blackberry wireless platform, and working for IBM Research at the Almaden
Research Lab and the Computer Research Lab at Nortel Networks. Dr.
Hassan is the named inventor of patents at several jurisdictions around the
world including the United States, Europe, India, Canada, and Japan. More
information at: http://sail.cs.queensu.ca/


	Introduction
	Background
	Topic Modeling
	Maximal Information Coefficient

	Case Study Design
	Studied Systems
	Identifying Test Files
	Data Preprocessing
	Latent Dirichlet Allocation

	Case Study
	To what degree do source code and test files share topics? (RQ1)
	Motivation
	Approach
	Results
	Discussion

	Are well-tested topics less defect-prone? (RQ2)
	Motivation
	Approach
	Results
	Discussion

	Can we identify defect-prone topics that need more testing? (RQ3)
	Motivation
	Approach
	Results
	Discussion


	Parameter Sensitivity Analysis
	Potential Threats to Validity
	Construct Validity
	Parameter and Threshold Choices
	Different Source Code Preprocessing Steps
	Correctness of the Heuristic for Finding Test Files
	Classifier Choice

	Internal Validity
	Assumption of the Topic Metrics
	Studying Code Coverage Using Topics
	Interpreting Topics

	External Validity
	Studied Systems


	Related Work
	Applications of Topic Models in Software Engineering
	Defects and Topic Models
	Testing and Software Quality

	Conclusions and Future Work
	Appendix A: CDDTpost v.s. Topic Testedness
	References
	Biographies
	Tse-Hsun Chen
	Stephen W. Thomas
	Hadi Hemmati
	Meiyappan Nagappan
	Ahmed E. Hassan


