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ABSTRACT
Over the past decade, several research efforts have studied
the quality of software systems by looking at post-release
bugs. However, these studies do not account for bugs that
remain dormant (i.e., introduced in a version of the software
system, but are not found until much later) for years and
across many versions. Such dormant bugs skew our under-
standing of the software quality.

In this paper we study dormant bugs against non-dormant
bugs using data from 20 different open-source Apache foun-
dation software systems. We find that 33% of the bugs intro-
duced in a version are not reported till much later (i.e., they
are reported in future versions as dormant bugs). Moreover,
we find that 18.9% of the reported bugs in a version are not
even introduced in that version (i.e., they are dormant bugs
from prior versions). In short, the use of reported bugs to
judge the quality of a specific version might be misleading.
Exploring the fix process for dormant bugs, we find that
they are fixed faster (median fix time of 5 days) than non-
dormant bugs (median fix time of 8 days), and are fixed by
more experienced developers (median commit counts of de-
velopers who fix dormant bug is 169% higher). Our results
highlight that dormant bugs are different from non-dormant
bugs in many perspectives and that future research in soft-
ware quality should carefully study and consider dormant
bugs.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software Qual-
ity Assurance (SQA)
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Reliability, Human Factors
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1. INTRODUCTION
A plethora of research efforts focus on helping practition-

ers discovers software bugs by predicting [1, 2, 3, 4, 5, 6, 7,
8, 9], detecting [10, 11], and understanding software bugs [7,
12]. The majority of such efforts focus on studying post-
release bugs [2, 6, 7, 8, 9, 5], which are bugs reported within
a fixed period of time after the software is released. However,
some bugs may remain dormant in a system for years, and
are hence not accounted for in such studies (i.e, they will
show up in a future version as dormant bugs). Moreover,
some of the reported bugs might not have been introduced
by the most recent version (i.e., bugs dormant from prior
versions).

Despite the importance of dormant bugs, little work has
been done to understand their characteristics. Therefore, in
this paper we conduct an empirical study using 20 Apache
software systems. The study explores the characteristics and
importance of dormant bugs and compares them to that of
non-dormant bugs. We define dormant bugs as a bug that
was introduced in one version (e.g., Version 1.1) of a system,
yet it is NOT reported until AFTER the next immediate
version (e.g., is reported against Version 1.2 or later).

We find that 33% of the bugs introduced in a version are
not reported till much later (i.e., they are reported in future
versions as dormant bugs). Moreover, we find that 18.9%
of the reported bugs in a version are not even introduced
in that version (i.e., they are dormant bugs from prior ver-
sions). In short, the use of reported bugs to judge the quality
of a specific version might be misleading. We then proceed
to investigate the characteristics of such bugs along the fol-
lowing research questions:

RQ1: How quickly are dormant bugs fixed?
We find that dormant bugs are fixed faster than non-dormant
bugs: dormant bugs have a median fix time of 5 days and
non-dormant bugs have a median fix time of 8 days. We also
find that dormant bugs have a statistically significant higher
reopen rate than that of non-dormant bugs, even though
both types of bugs are rarely reopened (90% are never re-
opened). This indicates the importance of dormant bugs
and shows that once they are found, they are fixed quickly.

RQ2: What is the size of a dormant bug fix?
It is not clear whether dormant bugs are fixed faster be-
cause the fix is simpler or small. Therefore, we study the
code changes to understand the complexity of dormant bug
fixes. Surprisingly, we find that dormant bug fixes involve
modifying more lines of code than non-dormant bug fixes.
Dormant bug fixes have a median fix size of 19 lines of code,



whereas non-dormant bug fixes have a median fix size of 10
lines of code (almost double).

RQ3: Who fixes dormant bugs?
We find that more experienced developers are assigned to
fix dormant bugs. Developers who fix non-dormant bugs
have contributed a median of 278 commits, whereas devel-
opers who fix dormant bug have contributed a median of
748 commits (169% more). Once again, the fact that more
senior personnel are assigned to these dormant bugs may
indicate their importance.

RQ4: What are the root causes of dormant bug
fixes?
Understanding the root causes of dormant bug fixes could
shed light as to why experienced developers are assigned
to dormant bugs. By manually studying 714 bug reports
(half dormant and half non-dormant), we find that dor-
mant bugs are mostly caused by corner cases, wrong control
flows (whereas non-dormant bugs are mostly caused by in-
correct function implementation), which make dormant bugs
more difficult to debug, and hence may require the knowl-
edge of experienced developers.

In summary our study highlights the unique nature and
importance of dormant bugs. Future bug studies should
carefully consider dormant bugs.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 describes the studied
systems, our data collection approach, and defines dormant
bugs. Section 4 discusses our motivation for studying dor-
mant bugs. Section 5 presents the results of our research
questions. Section 6 highlights the potential threats to va-
lidity of our study. Finally, Section 7 concludes the paper.

2. RELATED WORK
In this section, we summarize prior work on bug analysis

and prediction along two dimensions: 1) discovery time, and
2) impact on software system.

2.1 Studies on Bugs that are Discovered at Dif-
ferent Times

Prior studies have looked at pre- and post-release bugs.

Pre-release Bugs. Pre-release bugs are bugs found before
a system is released. Nagappan and Ball [13] predicted the
pre-release bug density of the Windows Server 2003 using a
static analysis tool. Zimmermann et al. [14] predicted pre-
release bugs using a variety of software metrics.

Post-release Bugs. Nagappan et al. [4] predicted post-
release bugs (which are bugs found in a fixed period of time
after the system is released or in the next immediate version)
using source code metrics. They used 5 different Microsoft
systems to perform their case study and found that it is
possible to build prediction models for an individual project,
but no single model can perform well on all projects. Khomh
et al. [15] studied how does the release cycle of Firefox affect
users’ perception of post-release bugs. Bird et al. [12] studied
the relationship between code ownership and pre- and post-
release bugs, and discovered that the total number of minor
contributors has a negative correlation with code quality.
While prior studies looked at when the bug is reported, we
focus on when a bug has been introduced. In particular,
dormant bugs may be reported many versions after they
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Figure 1: Definition of dormant bugs.

were initially introduced. Hence pre-release or post-release
bugs may contain dormant and non-dormant bugs in them.

2.2 Studies on Bugs that have Different Im-
pact

Bugs can also be classified by their impact on the sys-
tem (e.g., high impact, or security, or performance). There
are several past studies that have focused on understand-
ing characteristics of such bugs. For example, Shihab et al.
used different software metrics to predict high-impact bugs,
and showed that these bugs have high severity [5]. Zim-
mermann et al. predicted security-related bugs in Windows
Vista using classical software metrics such as churn and com-
plexity [16]. Li et al. empirically studied software bugs in
open source systems, and found that semantic errors are the
dominant root causes of software bugs and the number of
security bugs is increasing [17].

Jin et al. manually studied 109 performance bugs, and
proposed a performance bug detection technique [10]. The
authors also found that it takes a longer period of time to dis-
cover performance bugs compared to that of functional bugs.
Nistor et al. studied the characteristics of performance bug
fixes, and how performance bugs are reported [18]. All of
the above studies examine bugs of a specific type based on
the impact that such bugs can have on the software system.
Similar to these studies, we study a specific type of bug (i.e.,
dormant bugs) in this paper.

Zaman et al. [19] compared various characteristics of per-
formance and security related bugs. They compared the
resolution time, the number of fixers and the complexity of
those fixes for both, performance and security bugs. They
found that the fixers of performance bugs have more experi-
ence and that the fixes involve more changes. Our study is
different since we compare dormant and non-dormant bugs.
We use a similar but more comprehensive set of metrics when
comparing dormant and non-dormant bugs, and we conduct
a manual study on their root causes.

3. DORMANT BUGS
In this section, we define dormant bugs and describe our

approach to identify such bugs in our case study systems.

3.1 Definition of Dormant Bugs
We define a dormant bug as a bug that was introduced

in one version (e.g., Version 1.1) of a system, yet
it is NOT reported until AFTER the next immedi-
ate version (e.g., is reported against Version 1.2 or
later).

Figure 1 shows an example to illustrate the definition of
dormant bugs. Assuming there are three bugs being intro-
duced in version 1 (v1), and Bug 1 is in File A, and Bug 2
and 3 are in File B. Bug 1 is considered a non-dormant bug,
because it is discovered after v1 but before v2 is released.
Bug 2 and 3 are both considered as dormant bugs, because
they is discovered after v2 (next immediate version of v1).

The perceived software quality may be misjudged if we
only look at non-dormant bugs. For example, File A is found



Table 1: Summary of the collected issues. Issues
without affected version are excluded in the fifth and
sixth columns.

System Language # Bug # Fixed & # # Non- Lines
Issues Resolved Dormant Dormant of Code

Collected Bug Issues Bugs Bugs (K)

Abdera Java 197 139 12 76 74
Accumulo Java 619 471 73 129 180
Axis C/C++ 2,636 1,228 194 565 388
Bookkeeper Java 331 237 15 83 148
Camel Java 2,031 1,710 562 919 912
Cassandra Java 2,984 2,055 622 888 213
Cocoon Java 1,685 1,109 106 762 1,451
CouchDB Erlang 989 531 184 282 176
CXF Java 3,030 2,440 438 1,578 789
Derby Java 3,596 2,326 450 1,618 733
Felix Java 2,091 1,604 822 274 651
Hive Java 2,424 1,353 151 336 785
OpenEJB Java 552 432 103 199 520
OpenJPA Java 1,481 932 249 502 502
Pig Java 2,004 1,403 98 887 383
Qpid Java 2,873 2,195 245 1,381 623
Shiro Java 150 119 34 62 61
Thrift Multiple 1,034 719 87 303 163
Wicket Java 3,163 2,192 772 1,195 280
Wink Java 192 144 4 35 137

Total — 34,062 23,339 5,113 12,074 9,169

to be buggy in v1. However, File B actually contains two
bugs, but they are just not yet being discovered. If Bug 2
is discovered, then v2 may be considered to have one bug,
although Bug 2 was introduced in v1. As a result, dormant
bugs may affect how researchers and developers quantify the
quality of a version. We have a detailed discussion about the
importance of dormant bugs in Section 4.

3.2 Approach to Determine Dormant Bugs
We study dormant bugs from 20 different Apache open-

source systems. These 20 systems vary in size and languages
(shown in Table 1), and many of them are widely used in
commercial settings. Table 1 shows a summary of the JIRA
issues that we crawled from the JIRA repository [20] (a bug
tracking and project management system) for each of these
20 systems. In total, we crawled 34,062 JIRA issues of the
type Bug, which we call bug issues (third column in Ta-
ble 1). Since bug issues may contain a large amount of noise
(e.g., bug issue’s resolution is Not a Problem or Invalid in
JIRA) [21], we only study bug issues that have a resolution
of Fixed (fourth column in Table 1). Note that we use all
versions of the studied systems when calculating the number
of dormant bugs. The total numbers of dormant and non-
dormant bugs that we studied are shown in the fifth and
sixth column of Table 1, respectively.

Each JIRA issue has several fields that contain important
information about the issue. We use created date, version
release date, and affected version in JIRA issues to determine
the bug-introducing time and dormant time.

Bug-introducing Time. We use the version time of the
affected version as the bug-introducing version. If a bug af-
fects multiple versions, we use the earliest affected version
among all of the affected versions to define when the bug was
introduced. Since lower version numbers may not always in-
dicate earlier versions, we use the actual version release date
of the affected version to determine the release order of the
versions. If a JIRA issue does not specify an affected ver-
sion, we exclude it in our analysis, regardless of whether it
is a dormant or non-dormant bug (about 26% of the bug
issues were excluded, as shown in Table 1).

Dormant Time. When a bug issue is created in JIRA, a
created date field is automatically generated. To compute
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(b) % of bugs reported in a version but
introduced earlier.

Figure 2: Version-level analysis of dormant bugs.

the dormant time of a bug (i.e., how long has the bug been
undiscovered), we use the time difference between created
date and the release date of the earliest affected version.

4. MOTIVATION: WHY STUDY DORMANT
BUGS?

In this section, we present an initial analysis to show why
dormant bugs are important. We examine the introducing
and discovery time of dormant and non-dormant bugs in
each version of the studied systems.

Since some bugs may not be reported till much later, us-
ing only non-dormant bugs to evaluate the overall quality
of a version of a system may be inaccurate. If many bugs
are reported in a version, but these bugs were introduced
in previous version, then the quality of that version may be
misjudged. Thus, we are interested in knowing the number
of bugs that are reported in a version and which were intro-
duced much earlier; and how many bugs that are introduced
in a version and which may not be reported till much later.

We first perform our analysis at the version level. We
examine the reported and introduced bug issues in each ver-
sion. We find that a median of 33% of the bugs introduced
in a version are not reported till much later, and that a me-
dian of 18.9% of the bugs reported in a version are not even
introduced in that version. Figure 2a is a box plot of the
percentage of bugs that are introduced in one version but
are not reported till later versions (i.e., bugs that appear
as dormant bugs in future versions). Figure 2b shows the
percentage of bugs that are reported in a version but which
have been introduced in earlier version (i.e., dormant bugs).
In short, the use of reported bugs (without considering dor-
mant bugs) to judge the quality of a specific version might
be misleading.

We further study the impact of dormant bugs on the per-
ceived software quality at the file-level. In order to do this,
we map the bug issues to the associated files by using the
commit messages. Previous studies have shown that the
commit messages in Apache systems are usually complete
and have a high quality [22, 23, 24]. If a commit message
contains a bug issue key, the files that are associated with
the commit are related to the bug [22]. In total, we obtain
84,260 files with at least one dormant or non-dormant bug
in our studied systems.

We look at files that only have dormant bugs, which im-
plies that these files were initially “bug-free” after a version
is released, but they actually contain bugs that are just not
yet discovered. Figure 3a shows the distribution of the per-
centage of such files across the studied versions. A median
of 29.4% of the files that are not considered buggy in a ver-
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Figure 3: File-level analysis of dormant bugs.

sion, actually contain bugs that will be reported later (i.e.,
are buggy files). Furthermore, we find that given a particu-
lar version, 17% of the files that are reported buggy in that
version are actually bug-free files for that version (instead
the bugs that they contain are dormant bugs introduced in
prior versions) (Figure 3b). Our file-level analysis shows
that current quality models (e.g., logistic and classification
models) are most likely missing to capture the true rationale
for the introduction of bugs since many of the files that are
marked as buggy in a version are due to activities that oc-
curred in much earlier versions, and files that are marked as
bug-free do have bugs in them. We believe that the median
between Figure 2a and Figure 2b, and the median between
Figure 3a and Figure 3b are very different because a file may
have cumulated dormant bugs from many previous versions.

We also find that files with only dormant bugs are found
in more directories (13,524 files found in 2,990 directories,
on average 4.5 files per directory) than the files with only
non-dormant bugs (67,114 files found in 7,148 directories, on
average 9.39 files per directory), which implies that dormant
bugs are scattered across more directories and may require
more testing effort across multiple components.

5. CASE STUDY RESULTS
In this section, we present each research question along

three parts: the motivation of the research question, the
approach that we use to address the research question, and
our experimental results.

RQ1: How Quickly are Dormant Bugs Fixed?

Motivation. Bugs may exist in software systems and re-
main undiscovered for a long time. Such bugs often catch
developers off guard. We conjuncture that dormant bugs
are assigned and fixed faster than other types of bugs, be-
cause they have a higher impact on the software quality of
the system [25]. Once they are discovered, such important
bugs need to be addressed as early as possible (i.e., fixed
faster) to reduce their negative impact. Also, it is impor-
tant that the right developer is assigned to these important
bugs so these bugs can be fixed quickly, without having to
be tossed several times (i.e., passed around from one devel-
oper to another), which largely increases the time to fix the
bug [26]. Finally, a bug needs to be fixed completely (with
no re-opening) to reduce its impact on software quality.

However, if a bug has been dormant for years, it is not
clear if such bugs are still considered to be important to de-
velopers. A long dormant period may simply be due to the

fact that a piece of code is rarely executed, or that the num-
ber of users of that part of the system is small. Therefore,
in this research question, we study the bug fix characteris-
tics that impact the time to fix dormant bugs, and compare
them to non-dormant bugs.

Approach. To answer this research question, we compute
the following four software metrics. Each of the four metrics
aims to represent a specific dimension of the time to fix a
bug, in order to shed light on the key differences between
dormant bugs and non-dormant bugs.

Fix time. Bug fix time is the time taken for a bug to be
fixed once it is discovered. The bug fix time is calculated
as the time period between the dates when a bug issue is
created till its resolution date (resolution = fixed in JIRA).
For example, if a bug was reported in 2012/6/14 and was
resolved on 2012/6/17, then the fix time for this bug is 3
days. We calculate the fix time for all dormant and non-
dormant bugs that have at least one affected version listed in
the bug issue. For the bugs that are re-opened, we calculate
the entire time period until the bug is fully fixed (i.e., we
aggregate the time for every fix attempt).

Number of times a bug issue is reopened. A bug issue
may be reopened due to many reasons (e.g., the bug cannot
be reproduced due to lack of information, the bug cannot be
fixed entirely, or the fix causes other bugs [27]). Reopened
bugs take longer to fix, increase maintenance costs, and can
possibly affect users’ perception about software quality [28].
If dormant bugs are reopened more often but are fixed faster
than non-dormant bugs, then it may indicate that develop-
ers are really concerned about dormant bugs. We measure
the number of times a bug is reopened by crawling the JIRA
repository of all the studied systems. The life cycle of a bug
issue in JIRA can change from created to closed, and may
change to reopened if necessary. This metric counts the num-
ber of times a bug issue is reopened.

Number of bug tosses. Bug tossing happens when a bug
is reassigned to another developer. For example, tossing may
happen when the developer who was initially assigned to the
bug, does not have enough knowledge about the relevant
components to resolve the bug. Other reasons may be that
fixing the bug requires changing different components of the
system, or the developer may be busy at that time. The
longer a bug gets tossed, the longer it takes to fix it. We
calculate the number of bug tosses by counting how many
times the assigned developers have been changed.

We exclude bug issues where the information about the
assigned developer is not recorded in JIRA. Out of a to-
tal of 17,187 bug issues studied (Section III), we excluded
2,692 bug issues where no developer was assigned. In total,
we ended up with 14,495 bug issues that have at least one
developer assigned to them. Of which, 4,548 (31%) are dor-
mant bugs (i.e., bugs that were introduced in a prior release
and reported in their corresponding release) and 9,947 (69%)
are non-dormant bugs (i.e., bugs that were introduced and
reported in the same release).

Bug triage time. A bug issue needs to be reviewed and
understood in order to be assigned to the right developer.
The bug triage time is the review time required to change
the status of a bug issue from unassigned to assigned. Bug
triage time is different from bug-fixing time, because bug-
fixing time includes the bug triage time, possible bug tossing
time, and the time to reproduce, debug, and fix the bug.
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Results. Dormant bugs are fixed faster than non-
dormant bugs, regardless of their dormant time. Fig-
ure 4 shows the cumulative density function (CDF) plot of
the fix time for dormant and non-dormant bugs. There is
about 50% chance that a dormant bug is fixed within 7.4
days, and about 50% chance that a non-dormant bug is
fixed within 12 days. We log-transformed the X-axis, yet we
show the unlogged values in the Figure (e.g., log(7.4days) =
2log-scaled days) for all CDF plots for ease of understand-
ing. Based on Figure 4, we find that dormant bugs have a
smaller fix time than non-dormant bugs (since the area un-
der the CDF for dormant bugs is larger than the area under
the CDF of non-dormant bugs). Once discovered, dormant
bugs are fixed faster than non-dormant bugs.

To determine if the fix time for dormant bugs is statisti-
cally significantly smaller than that of non-dormant bugs, we
use the Wilcoxon rank-sum test (also called Mann-Whitney
U test) to compare the fix time of the dormant and non-
dormant bugs. We choose the Wilcoxon rank test over the
Student’s t-test, because our dataset is highly skewed, and
the Wilcoxon rank-sum is a non-parametric test, which does
not have any assumptions about the distribution of the sam-
ple population. A p-value ≤ 0.05 means that we can reject
the null hypothesis (i.e., there is a statistically significant dif-
ference between the fix time of dormant and non-dormant
bugs). By rejecting the null hypothesis, we can then ac-
cept the alternative hypothesis, which gives us statistical ev-
idence that the values of one population are larger or smaller

than the other. We set the alternative hypothesis to greater
or less according to the context (e.g., we set it to less if we
want to show that dormant bugs have a shorter fix time).
We find that the p-value of the Wilcoxon rank-sum test for
the fix time of dormant and non-dormant bug is << 0.001.
This indicates that the fix time for dormant bugs is statis-
tically significantly smaller than that of non-dormant bugs.

Table 2 shows the mean and five-number summary of bug
fix time for both dormant and non-dormant bugs. Dormant
bugs have a fix time that is less than or equal to non-dormant
bugs in every quantile, which further supports our finding
that dormant bugs are fixed faster than non-dormant bugs.

Since dormant bugs may have a wide range of dormant
times (e.g., some bugs may be dormant for years, and some
bugs may dormant for months), we use a Hexbin plot to
better visualize the relationship between dormant time and
fix time (Figure 5). We apply a log-transformation to both
dormant time and fix time to better visualize the data. In
Figure 5, the data points (i.e., dormant bugs) are bounded
by hexagons, and the color of the hexagon represents the
frequency of the data points. A red hexagon means that
there are more data points within the range, and a purple
hexagon means that there are only a few data points within
the range. We can see that many dormant bugs have a dor-
mant time of around 30 to 403 days, and are fixed within a
small number of days (0 to 3 days). In addition, some bugs
with a very long dormant time are still being fixed within
a few days. We also compute the correlation between dor-
mant time and fix time. We find that the correlation value
is very low (0.073 across all systems, and a mean correlation
of -0.08 when computing the correlation for each system sep-
arately), which indicates that dormant time does not have
any relationship with fix time. In other words, the length of
time a bug has been dormant does not influence its fix time.

One possible reason for the fast fix time of dormant bugs
is they are “surprises” to developers [5]. Thus, developers
rush to fix them as soon as possible.

Dormant bugs have reopened statistically significant
higher reopen counts than non-dormant bugs, although
both types of bugs are rarely reopened. Figure 6 shows
a CDF plot of the number of bugs that have been reopened.
Both dormant and non-dormant bugs are rarely reopened,
and about 90–92% of the bugs are never reopened (these
bugs are all fixed and have a resolution of Fixed in JIRA).
We perform a Wilcoxon rank-sum test for the number of
times a bug is reopened for dormant and non-dormant bugs.
The results show that dormant bugs are reopened more fre-
quently than non-dormant bugs (p-value of 0.02).

Table 2 shows the mean and five-number summary of the
reopen counts of dormant and non-dormant bugs. We see
that although dormant bugs have a statistically significant
larger reopen counts than non-dormant bugs, the difference
is small. In fact, 99% of both dormant and non-dormant
bugs were reopened at most once (see Figure 6).

One possible reason that dormant bugs are reopened more
often is, as time passes, dormant bugs may be highly coupled
with the system. Thus, fixing dormant bugs may be more
complex and may cause some unexpected problems. We
manually inspect 20 reopened dormant bugs to study the
reasons for reopening. We found the reasons are: incomplete
fixes (7), need to push the fix to other versions (5), improve
the fix (3), cannot reproduce the bug in the beginning (2),
and the fix causes other bugs (3).



Table 2: Mean and five-number summary of metrics
in RQ1 for dormant and non-dormant bugs.

Type Mean Min. 1st Qu. Median 3rd Qu. Max.

Fix Time (days)
Dormant 79 0 1 5 42 3127

Non-dormant 113 0 1 8 71 3081

Reopen (counts)
Dormant 0.10 0.00 0.00 0.00 0.00 4.00

Non-dormant 0.08 0.00 0.00 0.00 0.00 3.00

Toss (counts)
Dormant 0.86 0.00 0.00 0.00 0.00 7.00

Non-dormant 0.09 0.00 0.00 0.00 0.00 6.00

Triage (days)
Dormant 39 0 0 1 9 2923

Non-dormant 49 0 0 1 10 3081
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Figure 6: Cumulative Density Function (CDF) of
the number of bugs reopened. The y-axis shows the
cumulative density.

Dormant bugs do not have a statistically significant
different toss rate than that of non-dormant bugs, al-
though both types of bugs are rarely tossed. Table 2
shows that both dormant and non-dormant bugs have very
a low toss rate (0 for up to the third quantile), and the dis-
tribution is similar. The result of the Wilcoxon rank-sum
test shows that there is no statistically significant difference
between the number of bug tosses for dormant and non-
dormant bugs (p-value of 0.21).

There is no statistically significant difference between
the bug triage time of dormant and non-dormant bugs.
We find that both dormant and non-dormant bugs have very
similar triage time distributions. In Table 2 we see that
although non-dormant bugs have a slightly higher average
triage time, the triage time in each quantile is very similar.
The result of the Wilcoxon rank-sum test shows that there
is no statistically significant difference in the triage time for
dormant and non-dormant bugs (p-value of 0.80).�
�

�
�Dormant bugs are fixed faster than non-dormant bugs.

RQ2: What is the Size of a Dormant Bug Fix?

Motivation. In RQ1, we found that dormant bugs are
fixed faster compared to non-dormant bugs. We wish to
investigate whether the short fix time is due to dormant
bugs having simpler (i.e., involve less files or less code) fixes.

Approach. We measure the complexity of a bug fix using
the following two metrics:

• Total number of lines inserted/deleted to fix the bug,

• Total number of files modified to fix the bug,

The two above-mentioned metrics are used as an approx-
imation for the complexity of bug fix in previous study [19].

Table 3: Mean and five-number summary of metrics
in RQ2 for dormant and non-dormant bugs.

Type Mean Min. 1st Qu. Median 3rd Qu. Max.

LOC Dormant 401 0 0 19 107 955,800
modified Non-dormant 572 0 0 10 100 531,800

Files Dormant 7 0 1 2 5 4,032
modified Non-dormant 13 0 1 2 5 5,822
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Figure 7: CDF of total lines modified for fixing dor-
mant and non-dormant bugs. X-axis shows the num-
ber of lines/files modified for fixing a bug issue in
log-scale, and y-axis shows the cumulative density.

To obtain the bug fix information, we crawl the Apache
JIRA repository for the bug issue keys of the studied sys-
tems. We search for the issue key in the GIT commit logs,
and associate the bug issue to a commit if the issue key is
found in the commit log. The studied systems require de-
velopers to link GIT commits to their corresponding JIRA
issues, so the links between the JIRA bug issues and their
commits are fairly accurate as shown in recent work [22].

To calculate these two metrics, we count the total number
of files that are modified and the total number of lines in-
serted and deleted for each bug fix. In the case where a bug
is fixed by multiple commits, we aggregate the metric values
for all the commits. For example, if one commit changes 10
files, and a second commit changes 15 files, then fixing this
bug requires a modification to a total of 25 files.

Results. Dormant bug fixes involve modifying more
lines of code and more files. Figure 7 shows the CDF
of total lines of code and files modified in each bug fix, re-
spectively, and Table 3 shows the mean and five-number
summary of the metrics discussed above. We see that dor-
mant bug fixes involve modifying a higher number of lines.
However, in Table 3 we see that although dormant bug fixes
modify more lines of code than non-dormant bugs, the dif-
ference is small (i.e., 9-line difference in the median) yet it
is relatively large (almost double) with a median fix size of
10 vs 19 lines. We also find that both dormant and non-
dormant bug fixes modify a similar number of files (the two
CDF curves almost overlap in Figure 7 and the value for
each quantile is the same in Table 3).

To obtain statistical evidence, we run the Wilcoxon rank-
sum test, and the results show that dormant bug fixes are
statistically significantly more complex (i.e., modify more
lines of code and involve more files) than non-dormant bug
fixes (p-value << 0.001 for total lines modified and p-value
= 0.001 for total files modified). Therefore, although the
difference is small, dormant bug fixes are statistically signif-
icantly more complex than non-dormant bug fixes.



Table 4: Mean and five-number summary of experi-
ence metrics for dormant and non-dormant bugs.

Type Mean Min. 1st Qu. Median 3rd Qu. Max.

Prior Commit
Dormant 1,676 0 56 748 2,243 12,600

Non-dormant 973 0 0 278 1,364 12,550

Contributed Dormant 468 0 9 147 486 7,076
JIRA issues Non-dormant 289 0 0 62 217 6,999�




�

	

Dormant bug fixes are more complex in terms of lines
touched and files modified, when compared to non-
dormant bugs. However, the difference between number
of files modified is small (median dormant bug fixes mod-
ify 9 more lines of code and same number of files than
non-dormant bugs).

RQ3: Who Fixes Dormant Bugs?

Motivation. Dormant bugs are fixed faster compared to
non-dormant bugs (based on RQ1), even though fixes for
dormant bugs are larger (based on RQ2). In this RQ, we
investigate whether the short fix time is due to dormant
bugs being assigned to more experienced developers.

Previous studies show that developers’ experience is the
most important factor when bugs are assigned (e.g., [29]).
Since dormant bugs may have existed in the software for
a long period of time, fixing such bugs may require more
extensive knowledge. Experienced developers most likely
posses such in-depth knowledge.

Approach. For each bug fix, we determine the developer
who worked on it then look up the developer’s experience
at that moment in time. If multiple developers worked on
a bug (e.g., due to the bug being reopened or tossed – both
very rare events in our data set), we then use the average
experience of all the involved developers.

Prior studies have shown that the number of commits
and issues assigned to a developer can be used to derive
and quantify the code ownership and experience of a de-
veloper [12, 29, 30, 31]. Hence we measure a developer’s
experience using the following metrics:

• Number of prior commits by the developer;

• Number of contributed JIRA issues by the developer.

We count all types of JIRA issues (e.g., bug, new feature,
and improvement) to measure the experience of the develop-
ers, because similar to bug issues, the other types of JIRA
issues can also reflect the developers’ experience.

Each developer in the Apache JIRA issue repository has
two different user names: a display name and a user name.
The display name usually shows the actual name of the de-
veloper, and the user name usually shows the JIRA or GIT
user name. However, developers may use either a display
name or user name when committing changes to the GIT
repository. Therefore, for each developer we obtain both
his/her display name and user name from JIRA, and link
the changes in GIT associated to one of the names [32].

Results. Developers who fix dormant bugs are more
experienced. Table 4 shows the mean and five-number
summary of the experience metrics for dormant and non-
dormant bugs. We see that in every quantile, developers who
fix dormant bugs have higher experience than developers
who fix non-dormant bugs. Figure 8a and 8b shows the
CDF of the log-transformed total number of prior commits
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Figure 8: Cumulative Density Function (CDF) of
the number of prior commits and number of JIRA is-
sues contributed by the developers who are assigned
to fix dormant and non-dormant bugs. X-axis shows
the number of commits and issues resolved in log-
scale, and y-axis shows the cumulative density.

and contributed JIRA issues, respectively. From the CDF
plots, we see that less-experienced developers are assigned
to fix non-dormant bugs more often, while more experienced
developers are assigned to fix dormant bugs more often.

To determine if the differences are statistically significant,
we perform a Wilcoxon rank-sum test to compare the expe-
rience of these two groups of developers. For both metrics,
we find that the developers who are assigned to fix dormant
bugs have a statistically higher experience than those who
are assigned to non-dormant bugs (both p-value << 0.001).�
�

�
�Dormant bugs are fixed by more experienced developers.

RQ4: What are the root causes of dormant bugs?

Motivation. Our prior RQs were primarily quantitative.
They helped shed light into the dormant bug phenomena.
However, we still do not have a good understanding as to
why dormant bugs occur. In this RQ, we use qualitative
analysis to unravel the root causes of dormant bugs and
whether such causes differ from non-dormant bugs. Such
in-depth understanding will assist future researchers in de-
veloping techniques to help practitioners cope and avoid dor-
mant bugs.

Approach. We randomly sampled 357 dormant bug issues
to reach a confidence level of 95% and a confidence interval
of 5% [33]. We also randomly sampled the same number of
non-dormant bug issues for comparison. The first author of
the paper then manually examined each issue and classified
them into one of the root cause categories.

We follow prior bug characterization studies [17] and clas-
sify the root cause of a bug as: Semantic, Concurrency,
and Memory categories broadly. For the Semantic bugs,
we further classify the bugs into one of 10 sub-categories.
Table 5 shows the summary of our sub-categories. The sub-
categories are borrowed from [17, 11] with modifications.
For example, we include additional sub-categories that we
found during our manual study and that are related to the
characteristics of dormant bugs, such as Incorrect Documen-
tation and Design Issue.

Results. Concurrency bugs are more common in dor-
mant bugs. Table 6 shows the distribution of the main cat-
egories of root causes for the manually studied dormant bugs



Table 5: Sub-categories of semantic bugs. The dimensions and categories are borrowed from [11, 17] with
some modifications. Our modifications are marked using new.

Sub-category Description Abbr.

Corner Cases Some boundary cases are considered incorrectly or ignored. Corner
Wrong Control Flow The control flow (sequences of function calls) is incorrectly implemented. CtrlFlow
Design Issue (new) The design of API or function is incorrect. DesignIssue
Incorrect Documentation (new) The documentation of the software is incorrect or inconsistent with the code. IncDoc
Exception Handling Do not have proper exception handling. ExceptHandle
Missing Cases A case in a functionality is not implemented. MissC
Missing Features A feature is supposed to be but is not implemented. MissF
Processing Processing such as evaluation of expressions and equations is incorrect. Process
Typo Typographical mistakes. Typo
Other Wrong Functional Implementation Any other semantic bug that does not meet the design requirement. FuncImpl

Table 7: Distribution (in percentage) of the manually studied semantic dormant and non-dormant bugs in
each sub-category.

Corner CtrlFlow DesignIssue ExceptHandle IncorrectDoc MissCases MissFeatures Processing Typo FuncImpl Other

Dormant 25.08 26.01 6.50 2.79 4.02 0.31 2.48 4.64 3.72 24.15 0.31
Non-dormant 3.49 7.26 5.65 4.84 2.96 0.54 1.08 1.34 0.00 47.04 17.74

Table 6: Distribution of the manually studied dor-
mant and non-dormant bugs among the root cause
categories.

dormant non-dormant

concurrency 6.02 3.08
memory 1.43 1.12
semantic 92.55 95.80

and non-dormant bugs, respectively, in percentages. We find
that both dormant and non-dormant bugs are mostly caused
by semantic errors (92.55% and 95.8%), and that memory
bugs are not very common in both types of bugs. One pos-
sible reason is that most of the studied software systems are
implemented in modern programming languages (e.g., Java,
and C#) that handle memory allocation issues automati-
cally, and there are many tools for detecting memory issues
(e.g., Valgrind). Concurrency bugs, on the other hand, are
found in about 6% of the total studied dormant bugs and
3% of the total studied non-dormant bugs. It might be the
case that such concurrency bugs tale longer to uncover since
they need more varied use cases. Further in depth studies
are needed to better understand this finding.
Dormant bugs are mostly caused by corner cases and
wrong control flow. Since most of the studied bugs are
semantic bugs, we further sub-categorize them into 10 differ-
ent categories. Table 7 shows the distribution (in percent-
ages) of the manually studied semantic dormant and non-
dormant bugs in each sub-category. Semantic dormant bugs
are mostly caused by corner cases, wrong control flow, and
wrong functional implementation. We find that some cor-
ner cases happen only when the system is under heavy load.
For example, a dormant bug in Derby was found when a
user tried to create indices on a very large table (18 million
rows) and with many open files [34]. Some dormant bugs
are related to design errors. A dormant bug in Wicket was
caused by an API design problem, and resulted in changes
to the actual API to fix the bug [35].

Non-dormant bugs, on the other hand, are usually caused
by incorrect function implementation (47.04%) and build
problems (Other sub-category). For example, we find that
developers in OpenJPA forgot to include a library in the
system, which causes exceptions when users executing some
features [36]. We also see design errors in non-dormant bugs,
but they are less frequent than dormant bugs. In contrast

to dormant bugs, Control flow and corner case problems are
less common in non-dormant bugs.�




�

	

Our manual analysis shows that dormant bugs are caused
more often by control flow and corner case problems,
when compared to non-dormant bugs. Since such prob-
lems are harder to debug, dormant bugs may be assigned
to more experienced developers. The results from our
manual study can help researchers design better dormant
bug detection techniques, by focussing on specific sub-
categories of root causes.

6. THREATS TO VALIDITY
We now discuss the threats to validity of our study.

Internal Validity. In this paper, we empirically study dor-
mant bugs, and see how they differ from non-dormant bugs
in terms of fix time, complexity of the fix, and developers
who fix them. We do not claim any causal relationship in
the findings. There may be confounding factors that influ-
ence the fix time of dormant bugs (e.g., shorter fix time may
be because the dormant bug fixers are more experienced).
Nevertheless, more experiments (e.g., interviews with the
developers, or controlled experiment) are needed to find the
actual casual relationship. In order to reduce this threat, we
performed manual analysis to understand the root causes of
dormant and non-dormant bugs. Moreover, some of our
metrics may not always reflect the reality (e.g., larger fixes
may not always be more complex).

External Validity. In this paper, we studied 20 different
open-source systems. Although these open source systems
have high code quality and are commonly used in commer-
cial settings, our results may not generalize to all software
systems. However, 20 case study systems are far more than
typical bug prediction studies [37]. While all these systems
are under the Apache Foundation, they are very varied sys-
tems (with different teams, development processes, program-
ming languages, user base, and system type1).

Construct Validity. We use information in JIRA such as
affected version and created date for our metric calculations.
This information is manually labeled by developers, and may
contain some manual errors. However, Apache developers

1http://www.apache.org/dev/



maintain high accuracy in the JIRA issues, and other re-
searchers also use JIRA as a gold-set for their studies [22,
23, 24]. Additionally, if the affected version is not listed, we
exclude the issue in our study (about 26% are excluded).
JIRA repositories are constantly changing, and some of the
issues that we studied may, for example, be reopened in the
near future. However, by studying all the issues since the
beginning of the development time, most of the JIRA issues
that we studied are fairly stable and are not likely to change.

Since we use versions to determine whether a bug has been
dormant, if the release cycles between versions are very short
(e.g., a few weeks or even days), then the reported bug may
be defined as dormant even though it was only introduced a
few days earlier. After checking the time difference between
the releases of the studied systems, we find that most sys-
tems have a release cycle of one to several months, or even
a year. One exception is Wicket, in which developers may
release a version within one or two weeks. These versions
only fix some minor bugs introduced in earlier versions. For
other systems, the time gap between versions is relatively
sufficient, for users to discover and report bugs. We choose
to use versions to determine dormant bugs, instead of us-
ing a fixed time period, is we want to obtain system-specific
results, since the release cycle is different for each system.

Potentially we can use commands such as git blame to
find the exact introducing time of these bugs. However,
git blame also has it limitation (e.g., it cannot find the
bug-introducing change if the change is a newly added piece
of code, or design errors that cause bugs). We choose to
use JIRA issues instead of using the popular heuristic-based
SZZ algorithm [38], because information in JIRA is manually
entered by experts, which contain less noise [22]. In addition,
SZZ only works when the newly added code is buggy, and not
when the missing changes cause a bug. We plan to compare
the dormant time calculated using our approach with the
dormant time calculated using git blame in the future.

Our experiment results are based only on the fixed bugs,
so there may be more dormant bugs in the systems. This
problem exists in all studies that study bug reports. How-
ever, we are the first to highlight the importance of missing
such data.

Prior studies suggested reporting effect sizes along with t-
tests to quantify the difference between two populations [39].
We found that except the experience of the fixers, all other
metrics have a small to trivial effect size. Nevertheless, the
differences are statistically significant.

7. CONCLUSION AND FUTURE WORK
Dormant bugs are bugs that were introduced in earlier

versions of a system but not found until much later. Lit-
tle is known about such bugs and their impact on studies
of software quality. We find that a median of 33% of the
bugs introduced in a version is not reported till much later
(i.e., they are reported in future versions as dormant bugs).
Moreover, we find that a median of 18.9% of the reported
bugs in a version is not even introduced in that version (i.e.,
they are dormant bugs from prior versions). In short, the
use of reported bugs to judge the quality of a specific ver-
sion might be misleading. Our analysis of such dormant
bugs at the file-level leads to similar conclusions about the
risks of not considering such dormant bugs when modeling
the quality of source code files.

We empirically study the characteristics of dormant bug
fixes along two different dimensions:

1. Bug fix time: we found that dormant bugs take less
time to fix and are reopened more frequently compared
to non-dormant bugs.

2. The personnel assigned to fix dormant bugs: we found
that more experienced developers are assigned to fix
dormant bugs.

On further analysis, we found that dormant bugs fixes
are more complex (i.e., modify more files and more lines of
code) than non-dormant bugs. Through a manual in-depth
analysis of the root causes of dormant bugs, we find that
they are mainly related to corner cases, wrong control flows,
while non-dormant bugs are not (they are mostly related
to incorrect functional implementations). In the future, we
plan to study the impact of missing to consider dormant
bugs when building bug prediction models. We also plan to
study how we can help developers avoid dormant bugs.
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