
An Empirical Study on Performance Bugs in Deep
Learning Frameworks

Tarek Makkouk∗, Dong Jae Kim∗, Tse-Hsun (Peter) Chen∗
∗Software PEformance, Analysis and Reliability (SPEAR) Lab,

Concordia University, Montreal, Canada
{t makkou, k dongja, peterc}@encs.concordia.ca

Abstract—Machine Learning (ML) and Deep Learning (DL)
applications are becoming more popular due to the availability
of DL frameworks such as TensorFlow and PyTorch. Therefore,
the quality of DL frameworks is essential to ensure DL/ML
application quality. Given the computationally expensive nature
of DL tasks (e.g., training), performance is a critical aspect of
DL frameworks. However, optimizing DL frameworks may have
its own unique challenges due to the peculiarities of DL (e.g.,
hardware integration and the nature of the computation). In this
paper, we conduct an empirical study on the performance bugs
in DL frameworks. We conduct our study on TensorFlow and
PyTorch by identifying the performance and non-performance
bugs by mining the GitHub repositories. We find that 1) the
proportion of newly reported performance bugs increases faster
than fixed performance bugs, and the ratio of performance bugs
among all bugs increases over time; 2) performance bugs take
more time to fix, have larger fix sizes, and more community
engagement (e.g., discussion) compared to non-performance bugs;
and 3) we manually derived a taxonomy of 12 categories and 19
sub-categories of the root causes of performance bugs by studying
all performance bug fixes. Finally, we present some actionable
implications for researchers and developers.

Index Terms—empirical, software engineering, machine learn-
ing, deep learning, performance bugs

I. INTRODUCTION

Deep Learning (DL) has gained tremendous popularity in
recent years in academia and in numerous industrial and
commercial settings due to the availability of big data, im-
proved hardware, and its capability to produce high predic-
tive accuracy. One crucial stepping stone in DL adoption in
practice is the availability of open-sourced DL frameworks,
which abstract complex mathematical formulas and empower
developers to implement DL models efficiently in practice.
Unfortunately, as DL applications become an integral part of
our everyday lives, the quality of both the DL applications
and DL frameworks, especially their performance, becomes
of utmost importance. For example, a small delay in the time
it takes to make an inference can lead to life-threatening
situations (e.g., self-driving cars).

Many previous works have focused on characterizing and
resolving performance issues in traditional software settings.
However, there are new challenges that arise when developing
DL software due to its difference from traditional software
applications [1]–[3]. DL requires communication amongst nu-
merous hardware components (e.g., GPU, CPU), finer-grained
memory management, is data-driven, and is primarily based on

gradient computations, requiring countless iterations through
large datasets to improve model accuracy. Such characteristics
of DL frameworks and the repetitiveness of DL tasks risk the
quality assurance of DL applications and frameworks. While
prior research aims to understand and study the characteristics
of bugs in DL frameworks [4]–[6], many studies focus on bugs
in a single DL framework, and there is a lack of detailed
empirical studies on characterizing performance issues in
DL systems. We believe that studying performance issues
in the DL framework is of paramount importance for both
researchers and framework developers: (1) it can direct future
research efforts toward developing better test oracles to detect
better performance issues; (2) it can provide new evidence on
how performance issues arise and are fixed in DL systems for
future tool development; and (3) it can help prevent future
encounters of performance bugs.

While there are prior studies that study bugs or performance
bugs in deep learning frameworks, there are no studies in
the literature comparing performance bugs in two of the most
popular frameworks simultaneously. Furthermore, no previous
studies conducted a detailed empirical study on performance
bugs in DL frameworks and provided finer-level insights on
the cause of performance bugs. To fill this gap, we conducted
an empirical study of performance bugs in two of the most
popular DL frameworks: TensorFlow [7], and PyTorch [8].
We collect performance and non-performance bug to study the
trend of open and fixed performance bugs over time and the
differences between performance and non-performance bugs
across different dimensions (i.e., complexity and community
engagement). Finally, we build a detailed taxonomy of per-
formance bugs in DL frameworks by manually studying 141
fixed true performance bugs. In particular, we seek to answer
the following research questions (RQs):
RQ1: What is the trend of fixed and reported performance
bugs over time? We investigate how the prevalence of per-
formance bugs in DL frameworks evolves through time. We
find that despite increasing efforts to fix performance bugs in
DL frameworks over time, their prevalence is still increasing.
RQ2: What are the differences between performance and
non-performance bugs in terms of fixes and community
engagement? We compare performance and non-performance
bugs across two dimensions (i.e., the complexity of the bugs
and the amount of engagement the bugs attract). We find that
performance bugs take more time to fix (median is 20 vs 10



days), and the fixes are larger (median is 38 vs 28 LOC) than
non-performance bugs. We also find that performance bugs
attract more discussions and involve more distinct developers.
RQ3: What are the causes of performance bugs in DL
frameworks? We manually study all fixed performance bugs
(141 bugs) in the two DL frameworks and derive a compre-
hensive and detailed taxonomy of the root causes of the bugs.
Our taxonomy contains 12 categories and 19 sub-categories.

In summary, we highlight the potential research directions
in developing better test oracles and differential testing to im-
prove performance. Our findings also reveal both differences
and similarities between the performance bugs in traditional
and DL systems. Finally, we highlight best practices to fix
trivial bugs to assist developers in practice.

Paper organization. Section II presents the background of
DL frameworks and related work. Section III describes our
data collection process. Section IV presents the results to the
research questions. Section V discusses the implications of our
findings. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

An Overview of DL Frameworks. Machine Learning (ML)
is a branch of Artificial Intelligence (AI) that focuses on
learning patterns from data to solve complex problems. Deep
Learning (DL) is a subcategory of ML that uses a neural net-
work and gradient-based computations to extract patterns by
continuously iterating through a large dataset while adjusting
parameters. Unlike traditional ML, DL allows for automated
feature selection and increases model precision and accuracy
[9]–[12]. However, the DL model is notoriously complex and
colossal, which introduces a new set of challenges, such as
optimizing a wide range of configurations [1].

DL frameworks aim to abstract the complex mathematical
details of DL algorithms (e.g., gradient computations) to allow
ease of DL implementation in practice. Moreover, DL frame-
works implement performance optimizations by representing
gradient computations as computational graphs. These are
directed graphs where each node represents a mathematical
computation, and each edge represents a tensor (i.e., a multi-
dimensional array) [8]. Such representation allows DL frame-
works to distribute the model training and inference processes
across many CPU or GPU cores for better performance.
Finally, DL frameworks abstract the underlying hardware so
that ML developers can train and run DL models on various
devices (e.g., CPU or GPU) and environment settings (e.g.,
different operating systems).

While many DL frameworks have been released (e.g., Ten-
sorFlow, PyTorch, Caffe2, MxNet), TensorFlow and PyTorch
have become the most popular DL frameworks [13]. Google’s
Brain team developed TensorFlow [7], and PyTorch was
developed by Facebook’s AI research group [8]. Therefore, in
this paper, we focus our study on TensorFlow and PyTorch.

Since DL frameworks have become prevalent in various do-
mains of industry and commercial settings, it is of utmost im-
portance to validate their quality to avoid severe consequences.

Hence, prior research has studied tremendously characterizing
bugs in DL frameworks (e.g., [5], [6], [14]). Among those
bugs are performance bugs, which may significantly impact the
downstream tasks. Despite this, prior research has identified
performance bugs as the most difficult type of bug to address
in DL systems [15], and there have been few detailed studies
on the characteristics of performance bugs in DL frameworks.
Hence, in this paper, we conduct a detailed empirical study
on the performance bugs in TensorFlow and PyTorch, the
two most widely used DL frameworks today. As an essential
first step, we quantitatively analyze how the performance bugs
in DL frameworks compare to non-performance bugs. We
then do a detailed qualitative study to derive a taxonomy of
performance bugs and their causes. Our study highlights the
key characteristics of performance bugs in DL frameworks and
may inspire future research to address performance problems.

Related Work. Bugs in DL Systems and Frameworks. Many
works investigated bugs in DL systems, with a focus on the
use of DL framework APIs. For example, Zhang et al. [14] and
Humbatova et al. [16] analyze common mistakes that happen
when using DL frameworks from Stack Overflow (SO) and
GitHub projects. Islam et al. [17] studied the characteristics
of common bug patterns in DL systems and their impact.
Chen et al. [18] built a taxonomy of bug symptoms related
to the deployment of DL systems on mobile applications.
Cao et al. [19] study performance issues in using APIs from
DL frameworks from SO. Zhang et al. [15] conducted an
empirical study on 715 DL-related questions from SO. Their
research shows that there are five main reasons why users
are having problems: improper use of APIs; wrong choice of
hyper-parameters; computation on GPUs; static graph compu-
tation; and lack of support for debugging and profiling. The
main difference between those studies and ours is that they
investigate DL framework API misuses in DL systems, while
our paper focuses on performance bugs in the DL frameworks
themselves.

There are also some studies that look into bugs in DL
frameworks. Jia et al. [4] studied the symptoms and causes of
bugs in TensorFlow by analyzing the bug reports.The authors
later extend their work [5] by also studying the fixes and multi-
language bugs. Chen et al. [6] conducted a larger-scale study
by collecting and analyzing the root causes and symptoms
of 800 bugs from different popular DL frameworks (i.e.,
TensorFlow, PyTorch, MXNet, and DL4J). While these studies
focus on general bugs that occur in DL frameworks, we take
a finer-grained approach by studying a specific type of bug
(i.e., performance bugs). Performance bugs in DL frameworks
may have different characteristics and require special attention
from the research community.
Empirical Studies on Performance Bugs. There are many prior
studies that try to understand the characteristics of perfor-
mance bugs in traditional software systems. For example, Jin et
al. [20] conducted a comprehensive study on 109 performance
bugs from five systems (i.e., Apache, Chrome, GCC, Mozilla,
and MySQL). Similar studies on bug reports from Android and



TABLE I: Breakdown of the bugs we collected for each
framework.

Performance bugs Non performance bugs
Open Closed Fixed Open Closed Fixed

PyTorch 405 603 113 3,919 11,357 2,675
TensorFlow 301 952 47 1,874 14,766 1,348

Total 706 1,555 160 5,793 26,123 4,023

iOS applications have been conducted by Liu et al. [21] and
Afjehei et al. [22]. They developed a static analysis tool based
on the patterns they observed, and were able to detect previ-
ously unknown performance bugs. Zaman et al. [23] compared
400 performance and non-performance bugs collected from
Firefox and Google Chrome. Nistor et al. [24] studied over
420 performance and non-performance bugs and studied how
the bugs are discovered, reported, and fixed by developers.
Many prior studies focus on the characteristics of performance
bugs in traditional systems. They found that performance bugs
have different characteristics (e.g., different fix sizes), and the
empirical findings allow researchers to develop bug detection
tools. In this paper, we focus on performance bugs that occur
in DL frameworks, which feature new challenges that are
unknown to traditional software systems. Our findings may
inspire future research to further help developers improve the
performance of DL frameworks.

III. DATA COLLECTION

In this section, we discuss our data collection process.
Collecting the Bug Reports. Our goal is to study the char-
acteristics of performance issues that exist in DL frameworks.
For our study, we consider TensorFlow and PyTorch as the
most widely used DL frameworks [13], as other DL frame-
works are no longer maintained. To achieve this goal, we
implemented a crawler to collect all the bug reports in PyTorch
(i.e., 19,098 bug reports) and TensorFlow (i.e., 29,941 bug
reports) up to February 2021. We then filter out the bug reports
that are labeled as non-bugs (e.g., feature requests). After this
step, 17,893 bug reports remain from TensorFlow and 16,284
remain from PyTorch, for a total of 34,177 bug reports.
Collecting Bug Fixing Commits. The next step is to identify
the fixed bugs and collect their fixing commits. We collect the
fixes to compare the characteristics between performance and
non-performance bugs (e.g., fix size), and to manually derive a
taxonomy of the causes of performance bugs in deep learning
frameworks. To collect the bug fixing commits for a given
bug, we implemented a web crawler that checks whether there
exists a commit whose log contains a URL link to the bug
report. If such a commit exists, then the commit is considered
to be the bug-fixing commit. There may be some cases where
developers are not following the standard practice of providing
the link to the bug report in the commit log. To mitigate this
concern, we follow a similar process to that done by prior
studies [25]–[29] and use a regular expression to capture the
fixing commits based on bug report IDs (e.g., a commit that
mentions the bug with ID 1234 in TensorFlow is considered to
be a fixing commit for TensorFlow#1234). We found a fixing
commit for a total of 5,578 bugs. Note that some bugs may

have more than one fix commit. For such bugs, we consider
all fixing commits to be a single fixing patch.
Identifying Performance Bugs. Next, we aim to identify
performance bugs from their non-performance counterparts
among the bug reports collected. As aforementioned, some of
the bug reports may be categorized through labels. Thus, we
consider bug reports whose labels suggest an association with
the performance of the framework (e.g., the performance label)
as performance bug reports. However, those labels are optional
and may not be used for all bug reports. To increase the
recall of identifying the performance bug reports, we follow
prior studies and use a keyword-search (e.g., slow, laggy) to
further identify performance-related bug reports [20], [21],
[23], [30], [31]. We make the list of the full list of keywords
used publicly available online [32]. In total, we collect a
total of 2,261 performance bugs and 31,916 non-performance
bugs. We manually investigate the fixed performance bugs and
discover that 141 out of 160 bugs identified as performance-
related are true positives, implying that our heuristic had a
precision of around 88.13%, which is consistent with previous
work that used a similar heuristic (e.g., [23]).

IV. CASE STUDY RESULTS

In this section, we first conduct a quantitative study to
compare performance and non-performance bugs, and to better
understand their prevalence and differences in characteristics.
Then, we conduct a qualitative study and derive a taxonomy
for the causes of the performance bugs.

RQ1: What is the trend of reported and fixed performance
bugs over time?

Motivation. The performance of DL frameworks may in-
fluence all the applications that use them. Notably, perfor-
mance bugs in DL frameworks may exacerbate the infamously
lengthy training process of DL models and their inference
time, which may be critical in certain applications (e.g.,
self-driving cars). In this RQ, we study the prevalence of
performance bugs in DL frameworks and how it changes over
time. An increasing trend may indicate the need for more
attention from the research community to assist DL framework
developers in addressing performance bugs.
Approach. We study the trend of reported and fixed perfor-
mance bugs across the studied time periods. We considered all
bugs (both fixed and open) from February 2016 to February
2021 for TensorFlow, and from December 2016 to April 2021
for PyTorch. We chose the start date as three months after the
release of each framework to make sure the frameworks had
enough bugs reportedto be studied.

We compute the percentage of fixed and open perfor-
mance bugs among all fixed and open bugs (including non-
performance bugs). For each month, we calculate the per-
centage based on all the bugs reported in the prior months
(e.g., we compute the percentage of fixed performance bugs
in September 2018 by considering all the bug reports that are
fixed up to September 2018). We use the right-sided Cox-
Stuart statistical test [33] to investigate the existence of an



(a) TensorFlow (b) PyTorch

Fig. 1: Percentage of open and fixed performance bugs among ALL open and fixed bugs in DL frameworks, respectively

increasing trend. To quantify the significance of the observed
data, we report the p-values obtained from the statical tests we
conduct (i.e., the lower the p-value, the higher the probability
that a significant increasiing trend exits).

Results. Despite increasing efforts to fix performance
bugs in DL frameworks over time, their prevalence is still
increasing. Figure 1 shows the trend of the percentage of open
and fixed performance bugs against all bugs in the two studied
DL frameworks. We obtain low p-values for both the rate
of open (i.e., p-value < 0.0001 for TensorFlow and p-value
< 0.005 for PyTorch) and fixed (i.e., p-value < 0.0001 for
TensorFlow and p-value < 0.0001 for PyTorch) performance
bugs. In short, for both DL frameworks, the percentage of
performance bug reports (either open or fixed) continues to
rise, which shows the prevalence and increased concern on
performance issues.

The performance bugs are fixed at a higher rate compared to
non-performance bugs. Namely, the percentage of fixed bugs
in TensorFlow was 0.54% in February 2016 and increased to
3.37% in February 2021 (i.e., an increase of around 2.83%).
However, TensorFlow’s percentage of open performance bugs
shows a much higher increase. For example, there is an
increase of 9.1% between February 2016 and February 2021
(i.e., from 4.79% to 13.89%). The finding may indicate that
the rate of new performance bug reports increases much faster
than the rate at which developers fix performance bugs.

We observe a similar trend in PyTorch. The percentage
of open performance bugs increased by 9.37% between De-
cember 2016 and April 2021 (i.e., from 0.0% to 9.37%).
The percentage of fixed performance bugs is higher initially,
then stabilized and started to increase steadily to around 4%
in April 2021. After some manual investigation, we found
that the higher percentage of fixed performance bugs at the
beginning of the studied period is due to PyTorch having fewer
bug reports. Similarly, there were fewer open bug reports in
PyTorch around the end of 2017 and the beginning of 2018,
causing the percentage of open performance bugs to be higher.
Nevertheless, we observe a trend where the percentage of
performance bugs (either open or fixed) continues to increase.

The rate of newly reported performance bugs increases
faster than fixed performance bugs. Moreover, the ratio of
performance bugs among all bugs also increases, which
shows that performance problems may be an increasing
concern in DL frameworks.

RQ2: What are the differences between performance and non-
performance bugs in terms of fixes and community engage-
ment?

Motivation. Prior studies have shown that performance bugs
in traditional systems have different characteristics (e.g., bug
fixing time) than non-performance bugs [20], [23], [24], [34],
[35]. Traditional software systems and DL frameworks have
major differences. Namely, DL tasks are computation-heavy
and require hardware integration [1], [3]. In this RQ, we
quantitatively study the characteristics of performance bugs
in DL systems by studying the differences between perfor-
mance and non-performance bugs along different dimensions
(i.e., their complexity and the community engagement they
attract). The findings may provide preliminary insights on the
characteristics of performance bugs in DL frameworks.

Approach. We compare performance and non-performance
bugs by analyzing two dimensions: the complexity of the bugs
and the engagement they receive from the community.
Bug complexity. We calculate two metrics as proxies to mea-
sure bug complexity [36]:
Bug fixing time. We compute the time difference between the
initial report date and the close date. For the bugs that have
been re-opened, we consider the latest date on which the bugs
were closed. A longer fixing time may be indicative of more
complex bugs.
Bug fix size. We compute the total number of lines of code
deleted, added, and modified in every bug fix as a proxy for the
fix complexity [36], [37]. Note that if a bug fix is composed
of multiple commits, we take the sum of all the commits.
Community engagement. Developers may focus on bugs that
impede their progress in a specific use-case [38]. A higher
community engagement in a particular category of bugs may
indicate that those bugs have a wider impact. Thus, we
calculate three metrics as proxies for community engagement:



TABLE II: The median values and effect size of the computed metrics for performance and non-performance bugs. The larger
distributions are indicated by a (*).

Complexity of bugs Engagement
Fix time (in days) Fix size Time before first comment (hours) Number of comments Number of commentators

Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta
Performance bugs 20.34* 0.248 (small) 38.0* 0.111 (negligible) 14.7* 0.034 (negligible) 5.0* 0.191 (small) 3.0* 0.168 (small)Non-performance bugs 10.46 28.0 12.1 3.0 2.0

Time before first comment. We compute the time difference
between the bug report’s creation date and the date of the first
comment (i.e., how fast the community reacts to the bug). We
only consider bug reports that have at least one comment when
computing this metric, and the first comment cannot be posted
by the user who created the bug report.
Number of comments. We compute the total number of
comments posted for a given bug as a proxy to measure
the amount of associated discussion. A higher amount of
discussion may indicate a higher engagement with the given
bug and may correlate with more complex bugs [23], [39].
Number of commentators. We consider the number of distinct
commentators in each bug report. More distinct commentators
may reflect more interest from the community [39].

We use the Wilcoxon rank-sum test to determine whether
there is a statistically significant difference between the perfor-
mance and non-performance bugs, as it is a non-parametric test
that does not make any assumptions about the underlying data
distribution. To quantify the significance of the observed data,
we report the p-values from the statistical tests we obtain (i.e.,
the smaller the p-value, the higher the probability that there
exits a difference between performance and non-performance
bugs).We also apply Cliff’s delta [40] to measure the effect
size. We quantify the effect size by using the thresholds
proposed by Romano et al. [41] (i.e., effect size is negligible
if |d| ≤ 0.147, small if 0.33 < |d| ≤ 0.474, medium if 0.33
< |d| ≤ 0.474 and large if 0.474 < |d| ≤ 1).

Results. Performance bugs require 94.46% more time to
fix compared to non-performance bugs, and their fix sizes
are also 35.71% larger. Table II shows the median of the
computed metrics for performance and non-performance bugs
and their statistical test to compare distributions. Namely, the
performance bugs take more time to fix (median of 20.34 v.s.
10.46 days, with a p-value < 0.0001 and a small effect size),
and the fix sizes are larger (median is 38 v.s. 28 LOC, with a p-
value = 0.024 and a negligible effect size). In short, the median
fix time and fix size for performance bugs are 94% larger and
35% more, respectively, and all the metrics are statistically
significant (i.e., p-value ≤ 0.05). Although we do not compare
the results with bugs in traditional software systems, a prior
study by Nistor et al. [24] found that performance bugs in
traditional systems (e.g., Mozilla) take only, on average, 37%
more time to fix compared to non-performance bugs. The
finding may provide an initial hint that performance bugs in
DL frameworks may have unique characteristics and require
more attention from the research community.

While the first comments on performance bug reports
take around 15.75% longer to be posted compared to non-
performance bugs, the discussions involving performance

bugs have around 66.67% more comments and 50% more
commentators than non-performance bugs. As shown in
Table II, the first comments take approximately 14.7 and 12.1
hours (median) for performance and non-performance bugs,
respectively. While the differences are statistically significant
(i.e., p-value < 0.001), the effect size is negligible. However,
we find performance bugs have significantly more comments
than non-performance bugs (median is 5 v.s. 3 comments,
with a p-value < 0.0001 and a small effect size). Moreover,
the discussions for performance bugs have significantly more
distinct commentators than for non-performance bugs (median
is 3 v.s. 2 commentators, with a p-value < 0.0001 and
a small effect size). Our findings show more community
engagement on performance-related bugs, which may reflect
the community’s interest in the problem.

Performance bugs take more time to fix, and the fix sizes are
often larger. Moreover, there is a higher level of community
engagement in discussing performance bugs. Our findings
show initial evidence of performance bugs’ complexity and
importance in DL frameworks.

RQ3: What are the causes of performance bugs in DL frame-
works?

Motivation. Traditional software suffers from frequent and
costly performance issues [20], [21], [23], [24], [35]. In DL
frameworks, such performance bugs may have different char-
acteristics and may scale many-fold due to the repetitiveness
of the training loop (e.g., involving many epochs through the
same input data). Our goal is to derive a comprehensive
and detailed taxonomy of the causes of performance bugs
in DL frameworks. We believe our taxonomy will inspire
future research and provide insights into the maintenance of
performance problems in DL frameworks.
Approach. We conduct a comprehensive qualitative study on
the causes of performance bugs in deep learning frameworks.
Our manual study is composed of the following phases:

Phase I: To create the taxonomy for the performance bugs,
we manually study all the fixed performance bugs that we
identified in Section III. The first two authors of the paper
(A1 and A2) independently derived an initial list of the
causes by manually inspecting the relevant commit messages,
source code, and bug reports. We found 12 main categories of
performance bugs in DL frameworks.

Phase II: Authors A1 and A2 unified the derived reasons and
compared the assigned reason for each performance bug. Any
disagreement was discussed until a consensus was reached.
The list of categories remains unchanged in this step. The
inter-rater agreement of the coding process has a Cohen’s
kappa of 0.92, indicating almost a perfect agreement level [42].



TABLE III: Qualitative Analysis: Taxonomy of Performance Bugs in Deep Learning Frameworks [32].
Cause Description Impact (speed,

memory, both)
Frequency

Memory inefficiency (4, 31, 2) 37/141 (26.24%)
Unreleased memory resources Memory resources not released after serving their purpose (e.g., stream not cleared, object reference count mishandling). (1, 23, 0) 24/141 (17.02%)
Unnecessary memory allocation Allocating unnecessary memory resources/references to implement the same functionality in the implementation. (3, 8, 2) 13/141 (9.22%)

Traditional SE inefficiency Traditional coding errors found in traditional software systems can result in downstream performance-related faults (e.g., inefficient loops,
unnecessary copy when converting a read-only array to a tensor without flagging as read-only array, unnecessary caching caused by incorrect
cache index, inefficient API usage).

(22, 6, 1) 29/141 (20.57%)

Threading inefficiency (11, 2, 1) 14/141 (9.93%)
Lack of parallelization Failure to reap the full benefits of multithreading (e.g., excessive usage of atomic operators resulting in unnecessary device synchronization. (7, 0, 0) 7/141 (4.96%)
Excessive usage of multithreading Making use of too many threads may lead to adverse consequences (e.g., thread starvation). (1, 1, 1) 3/141 (2.13%)

Challenges in fine-tuning the op-
timum number of threads

Some tasks (e.g., iterating over a dataset) require the work to be divisible among the cores to fully utilize them. In some cases, if not done
correctly, task division can lead to performance degradation.

(2, 0, 0) 2/141 (1.42%)

Excessive usage of thread-local
variables

Thread-local variables are variables that are created and can only be accessed by the same thread. The excessive usage of such variables
may lead to excessive memory consumption during forward propagation.

(0, 1, 0) 1/141 (0.71%)

Thread not returning on time Certain multithreaded tasks need to wait for a thread to return before continuing the computation (e.g., loading data during training process).
In those cases, if a thread does not return as soon as it can, this will cause a performance degradation.

(1, 0, 0) 1/141 (0.71%)

Matrix computation inefficiency (9, 2, 1) 12/141 (8.51%)
Trade-off of using different linear
libraries/operators

Failure to use the appropriate linear algebra library/operator (e.g., the trade-off of using Magma and cuBlas for certain sizes of input) (3, 0, 0) 3/141 (2.13%)

Use of intermediate matrices Making use of temporary intermediate matrices in the implementation of certain linear algebra operations, leading to extra operations or
extra memory consumption.

(2, 1, 0) 3/141 (2.13%)

Inefficiency for specifc sizes
and/or shapes

Failure to optimize execution for inputs of specific sizes and/or shapes. (1, 1, 0) 2/141 (1.42%)

Inefficient broadcasting Broadcasting is usually done so that two matrices, involved in an operation, have compatible shapes. However, when done inefficiently
(e.g., through the usage of an expensive expand operation, which is used to expand a tensor to a larger size).

(1, 0, 1) 2/141 (1.42%)

Lack of vectorization Vectorization is the process of transforming a scalar program into a vectorized program. Given the prevalence of linear algebra operations
in DL applications, not vectorizing inputs in those operations can cause a performance degradation.

(2, 0, 0) 2/141 (1.42%)

Inefficient AI algorithm implementation Inefficient implementation of certain core algorithms (e.g., wrong choice of sampling algorithms). (7, 1, 0) 8/141 (5.67%)
Inefficiency for certain input data types Slowdown occurring for certain input data types (e.g., using half-precision data types (e.g., float16) on GPU may result in slowdowns). (6, 0, 0) 6/141 (4.26%)
Unnecessary computation (0, 3, 2) 5/141 (3.55%)

Unnecessary gradient computation Computing the gradient of inputs that are not needed to implement the wanted functionality. (0, 2, 1) 3/141 (2.13%)
Unnecessary node creation Unnecessarily root node creation in a computational graph that has only one node. (0, 1, 0) 1/141 (0.71%)
Unnecessary operation Unnecessary matrix multiplication by 1. (0, 0, 1) 1/141 (0.71%)

Inefficient hardware optimization (4, 1, 0) 5/141 (3.55%)
Wrong device placement Incorrectly or inadvertently executing a task on the wrong device (e.g., executing the training process on CPU when GPU is available). (2, 1, 0) 3/141 (2.13%)
Lack of support for hardware op-
timization libraries

Not making use of hardware optimization libraries due to a lack of support for the libraries. (2, 0, 0) 2/141 (1.42%)

Hardware components communication overhead (6, 0, 0) 6/141 (4.26%)
Local communication overhead Overhead associated with communication between hardware components on the same local machine (e.g., transferring a sequence from

CPU to GPU locally).
(4, 0, 0) 4/141 (2.84%)

Remote communication overhead Overhead associated with the communication between different components in a distributed runtime (e.g., overhead associated with workers
communicating with a remote server).

(2, 0, 0) 2/141 (1.42%)

Inefficient caching Inefficiently making use of cache (e.g., lack of caching or excessive usage of caching). This includes the unnecessary caching of certain
gradient values.

(2, 2, 0) 4/141 (2.84%)

C/C++ abstraction Bugs caused by the abstraction of the C/C++ backend using a higher level language (e.g., Python). (1, 2, 0) 3/141 (2.13%)
Other Performance bugs that do not fit into any of the categories identified (e.g., user-end bugs, not enough discussion). (8, 4, 0) 12/141 (8.51%)

We make the taxonomy and the corresponding bug report IDs
publicly available online [32].

Results. Table III shows the taxonomy of performance bugs
in DL frameworks. Below, we discuss each category in detail.
– Memory inefficiencies (37/141, 26.24%). Memory inef-
ficiencies are the most common performance bugs in DL
frameworks. One potential reason may be that a large part of
DL frameworks are implemented in the C/C++ and CUDA
programming languages for performance gains and finer-
grained memory management. However, such memory re-
source management is often manual and may more likely
result in performance bugs. Notably, DL requires a constant
exchange of in-memory data between the different components
(i.e., RAM, CPU, GPU, etc.), which makes those memory
inefficiencies ever more frequent.

Unreleased memory allocations (24/141, 17.02%) is the
most frequent cause of memory-related performance bugs. For
example, when an error happens, developers may forget to
free up memory resources, which can lead to a memory
leak (e.g., (e.g.,TensorFlow#14800 [43]). In some cases (e.g.,
PyTorch#50522 [44]), in a distributed runtime, Remote Pro-
cedure Calls (RPCs), which allow users to communicate and
train models across multiple machines, are only cleared from
memory once when timed out. This causes PyTorch to use
memory resources for needlessly long periods (i.e., memory
bloat). The severity of this bug depends on the number of
RPCs used. If the number of RPCs used is small, the memory
bloat may be too insignificant to detect. Developers also often

discuss the importance of using various grain sizes to expose
inefficient memory handling that only manifests under specific
workloads (e.g., PyTorch#50522 [44]). This highlights the
need for better test oracles that consider different workloads
to improve the detection of memory bugs in DL frameworks.

Another type of memory-related performance bug is un-
necessary memory allocations (13/141, 9.22%). Such bugs
are caused by unnecessarily copying or creating objects. For
example, in TensorFlow#14572, loading datasets and check-
points from Amazon Web Services (AWS) cloud storage ser-
vice caused unnecessary copies of the retrieved data, causing
both a slowdown and memory bloat. Other examples include
unnecessary copies of a tensor because developers wrongly
assumed that a function would return a new tensor (e.g.,
PyTorch#5611 [45] and PyTorch#6222 [46]).

Our findings show that DL frameworks are prone to
memory-related bugs due to the usage of lower-level program-
ming languages and the constant exchange of in-memory data
between the different components at play. Hence, developers
may benefit from the creation of automatic tools for better
memory management mechanisms, especially for heteroge-
neous computation environments.

Many memory-related performance bugs are related to the
usage of low-level languages and the complex exchange
of in-memory data between the different components or
external resources.

– Traditional SE inefficiency (29/141, 20.57%). Despite



the fundamental differences between DL-based and traditional
software systems, the performance bugs that affect traditional
software systems, such as function misuses, inefficient usage
of APIs or unnecessary conditions [20], [47], are also common
in DL frameworks. Specifically, many trivial bugs may cause a
significant slowdown due to the repetitive nature of the training
loops and the prevalence of large datasets in DL frameworks.
For example, in PyTorch #10851 [48], using a profiler is
particularly slow due to the usage of the += operator for string
concatenation, which causes repeatedly copying a new string
object, instead of a more efficient append call. Many previous
works have investigated these performance bugs [20], [23],
[24], [34], [35]. More work is needed to adopt prior tools to
help improve the performance of DL frameworks.

Traditional performance bugs are common in DL frame-
works. Such bugs may be exacerbated by the repetitive and
resource-hungry nature of the model training process. Future
research may adapt existing tools to further analyze and
improve the performance of DL frameworks.

– Threading inefficiency (14/141, 9.93%). While multi-
threading is critical for improving DL framework performance
for resource-intensive tasks, inefficient thread usage can cause
performance issues. Some issues include not being able to
compute the optimal number of threads for a given task
and/or adopting threading configurations based on the runtime
environment (e.g., the libraries used and CPU vs GPU).

Lack of parallelization (7/141, 4.96%) is the most prominent
cause of threading inefficiencies, which happens when a low
number of threads is being used or when the runtime becomes
sequential. We find that this issue is commonly found in GPU-
related code due to the prevalence of parallelization in GPU
computations. One example is the excessive use of atomic op-
erations. These operations help developers manage concurrent
variable accesses and are thus asynchronous. For example, in
PyTorch#9646 [49], the excessive use of atomic operations
when managing CUDA streams causes the runtime to be
synchronized and, hence, causes a performance degradation.
Developers fixed the bug by overhauling the stream creation
process to implement a priority system.

Another common cause is the excessive usage of multi-
threading (3/141, 2.13%). Using too many threads to execute
a task may lead to performance degradation due to overheads
associated with multithreading (e.g., context switches). For
example, in TensorFlow#3470 [50], an excessive number of
threads are used for training in a distributed environment due
to the creation of an unbounded number of threads that do not
depend on the completion of the previous ones.

The final causes are the challenges in fine-tuning the op-
timum number of threads (2/141, 1.42%). We find that fine-
tuning the optimum number of threads for a given task may
be challenging in some cases, and a suboptimal number of
threads could lead to performance degradation. Deciding the
optimal number of threads depends on numerous factors, such
as the number of available CPU/GPU cores or the workload
associated with the task. For example, in PyTorch#24080

[51], developers found that the calculation for the number
of threads varied across different multithreading frameworks.
Such imprecision led to performance degradation during DL
training tasks. There are also other threading issues (i.e.,
excessive usage of thread-local variables and threads not
returning on time) that we found in the DL frameworks.
Although the number of instances is small, these issues still
caused significant performance impacts.

While parallelization can help circumvent the
computationally-demanding nature of certain DL tasks,
there are challenges associated with determining the most
efficient threading configuration (e.g., number of threads)
based on different factors (e.g., across a varying number
of CPU/GPU cores). Future studies may assist developers
in automatically tuning those configurations based on the
environment to improve performance.

The optimum threading configurations depend on numerous
factors, including the environment and the task at hand.
Developers may benefit from future works that focus on
automating such configurations.

– Matrix computation inefficiency (12/141, 8.51%). Ma-
trices represent the multidimensional containers of algebraic
elements and the data structure used in model computation
(e.g., training and inference). Therefore, computations associ-
ated with matrices and their efficiency play a crucial role in
DL frameworks. Some bugs in this category are the result of a
trade-off of using different linear algebra libraries/operators
(3/141, 2.13%). Such cases occur when certain linear algebra
operators from diverse libraries have different performances
under specific conditions (e.g., slower on GPU/CPU or a
particular matrix size). For example, in PyTorch#42265 [52],
a specific matrix operation during inference suffers from a
performance slowdown when using GPU when the input is
a small matrix. This is because of the developers’ usage of
cuBlas [53], which executes the entire operation on GPU. For
such small workloads, the overhead of transferring the data to
GPU may outweigh the benefits of using GPU acceleration.

On the other hand, Magma [54] executes such operations on
the CPU before moving the output to GPU. The developers
were not aware of the differences between the libraries and
used the libraries inefficiently (i.e., not using each library in
their best-suited scenario). To fix the issue, developers added a
manual condition to choose the most optimal library to use at
runtime. Another example is TensorFlow#17246 [55], where
the memcpy operator, which is used to copy tensors around
different memory addresses in linear algebra operations, is
slower for large tensors on the Linux OS. Developers did
not find an explanation for this behavior, and instead used a
different operation (i.e., memmove) to prevent the slowdown.

We also find some matrix computation inefficiencies for
specifc sizes and/or shapes (2/141, 1.42%). For example, in
PyTorch#12006 [56], a large batch size results in low GPU
utilization. To fix this, the developers opted to transpose and
reshape the inputs when the batch size for this operation
exceeds a certain number. These bugs highlight the need for



more thorough testing that involves different libraries and
operators alongside different input sizes and shapes.

Moreover, matrices of different dimensions and sizes cannot
be added, subtracted or used in most arithmetic operations. In
such cases, developers often use broadcasting, which dupli-
cates a smaller matrix across the larger matrix’s dimension
so that their shapes are compatible. We find that one cause
for matrix computation inefficiencies is the inefficient imple-
mentation of the broadcasting process (2/141, 1.42%). For
example, in PyTorch#17206 [57], the use of extra expand and
reshape operations, instead of making use of broadcasting,
results in a computation time of almost nine minutes, when it
was supposed to take seconds.

We find that many performance bugs related to matrix
computations are caused by incorrect library usage and the
peculiarities of linear algebra operations. While many previous
works have benchmarked DL frameworks (e.g., [58]–[60]),
there is little empirical evidence that discusses the trade-offs
between using different linear algebra libraries and operators.
Given the number of available libraries and the wide variety of
hardware, future studies may further assist developers in un-
derstanding the trade-offs of using the different tools available
across different situations. Future studies may also investigate
potential code smells or optimization opportunities when doing
matrix computation (e.g., choosing the optimal input shape) to
further improve the performance of DL frameworks.
Performance bugs associated with linear algebra operations
may lead to exacerbated effects. Future studies may focus on
more exhaustively testing these operations and on helping
developers abstract complex linear algebra optimization and
parallelization.

– Inefficient AI algorithm implementation (8/141, 5.67%).
DL is an active research area, with new and more efficient
AI algorithms constantly being proposed. However, developers
may not keep up with the latest research and may use less
efficient AI algorithms. For example, in PyTorch#7883 [61],
the the short-time Fourier transform is slower on PyTorch than
on Librosa [62]. This is due to the fact that, unlike PyTorch, Li-
brosa’s implementation is based on the fast Fourier transform
[63]. Another example is PyTorch#11931 [64], where sampling
numerous elements with no replacement from a multinomial
distribution is slow. To fix this, the developers implemented a
fast-path inspired by the NumPy [65] implementation and the
weighted random sampling algorithm [66].

We observe that these bugs were discovered by comparing
the performance of different implementations of the same
operation. This suggests approaches such as performance
differential testing may help uncover possible performance
bugs or help developers choose more efficient libraries.

Developers may use less efficient algorithms in their imple-
mentations. In addition to adopting the newest algorithms,
developers compare similar implementations across libraries
to uncover performance bugs and optimization opportunities.

– Inefficiency for certain input data types (6/141, 4.26%).

DL frameworks support various data types [67]. We find that
there may be performance bugs specific to certain data types.
The majority of such bugs are concerned with using half-
precision data types (e.g., float16) on GPU. Using these data
types for the training and inference processes should result in
faster execution time with lower memory consumption, at the
expense of some precision in the outputs. However, in some
cases, using these data types may lead to a performance degra-
dation. For all the manually studied bugs, developers do not
know why such performance bugs occur. As a workaround,
developers cast half-precision inputs to a single-precision data
type (e.g., float32) and then cast the output back to half-
point (e.g., TensorFlow#41715 [68]). Such flakiness reveals
the need for further work to better understand the advantages
and disadvantages of using different data types and their
expected and actual performance on different configurations
(e.g., CPU/GPU and Windows/Linux).

There is unexpected performance degradation when running
certain data types on different configurations. There may
be opportunities for performance optimization when train-
ing/applying the models using different data types.

– Unnecessary computation (5/141, 3.55%). Unnecessary
computations are a common cause of performance degrada-
tion in traditional software systems [69]. We find that such
issues also exist in DL frameworks but for DL-specific con-
texts. The most prevalent cause of these bugs is unnecessarily
gradient computations (3/141, 2.13%), where gradients are
calculated through backward propagation when not required.
For example, in PyTorch#7261 [70], the unnecessary gradient
calculation of an argument in the spectral normalization im-
plementation increased the memory consumption and caused
an Out-of-Memory exception. Another cause of such bugs
is an unnecessary creation of nodes (1/141, 0.71%) in com-
putational graphs. In PyTorch and TensorFlow, computational
graphs are the foundations of backward propagation in calcu-
lating the gradients of neural networks. Our study finds cases
where nodes in the graph are unnecessarily created, causing
additional computation and memory consumption.

Similar to traditional software systems, unnecessary compu-
tations may also affect the performance of DL frameworks,
especially during backward propagation.

– Inefficient hardware optimization (5/141, 3.55%). DL
frameworks enable users to use numerous types of devices
(e.g., CPU and GPU). Typically, the CPU is used for the
data preprocessing tasks, while the GPU is preferred for the
computationally demanding training tasks. However, we find
cases where a wrong device placement (3/141, 2.13%) causes
performance degradation. For example, in TensorFlow#32138
[71], iterating through a dataset automatically places the com-
putation on CPU due to the assumption that iterating through
the data must be for preprocessing. Such assumption is false
for customized training loops, where iterating through a dataset
is done to train a model. In such cases, the computation (i.e.,
the training) was inadvertently moved to CPU, resulting in



performance degradation. Another cause of such bugs is a lack
of support for hardware optimization libraries (2/141, 1.42%).
Many hardware manufacturers (e.g., Nvidia) develop libraries
that optimize DL computations on their devices. However, DL
frameworks may not support some of those libraries, which
results in suboptimal performance. For example, PyTorch does
not support Intel’s MKL-DNN [72] for the average pooling
operation (PyTorch#19797 [73]). Thus, despite having the
compatible hardware (i.e., an Intel CPU) to benefit from the
library’s improved performance, the user was still unable to do
so for such operation. Future studies should help developers
automatically integrate various hardware optimization libraries
for optimal performance across multiple platforms.

Failing to properly integrate the usage of hardware opti-
mization libraries specific to certain hardware devices may
cause performance degradations. Future research may focus
on aiding developers in properly supporting those libraries
for optimal performance across various platforms.

– Hardware components communication overhead (6/141,
4.26%). Some bugs are due to the overhead associated with the
communication between the numerous hardware components
in DL (i.e., RAM, CPU, GPU, etc.). These bugs may be associ-
ated with a local communication overhead (4/141, 2.84%). For
example, in PyTorch#158 [74], the process of creating a tensor
on GPU from a sequence on CPU, suffers from a slowdown,
due to the sequence not being buffered. These bugs may
have exacerbated adverse consequences on the performance
of DL frameworks, notably due to some DL tasks involving
large amounts of data or a constant exchange of data between
different hardware devices (e.g., CPU and GPU). These bugs
may also be associated with a remote communication overhead
(2/141, 1.42%). For example, in TensorFlow#11411 [75], there
is an overhead associated with different workers fetching data
from remote servers. The performance degradation that ensues
is exacerbated by using GPU-acceleration due to the overhead
associated with the data being serialized on CPU before
being passed on GPU. Future studies should focus on further
enabling efficient communication between these components
and on better understanding the performance bugs that are
caused by these interactions.

Efficient communication between different hardware com-
ponents is important for ensuring the performance of DL
frameworks. Future studies may focus on these interactions
and on the performance bugs they may cause.

– Inefficient caching (4/141, 2.84%). Some performance bugs
are due to the inefficient usage of caching techniques, which
are used to speed up data access operations. For example, in
PyTorch#33334 [76], concatenating a sequence of tensors is
slow due to the input being consistently loaded instead of
being loaded once and then cached. This bug only occurs
when using a single core on CPU. This may highlight the
need for comprehensive DL testing, which considers different
sets of environment configurations. Moreover, such bug may
be exacerbated by the use of large datasets (i.e., tensors).

Failing to efficiently store data in DL frameworks may cause
significant performance degradation. This is partly due to
the data-intensive nature of certain DL tasks. We also find
that these bugs may only occur in specific conditions (e.g.,
certain environment configurations).

– C/C++ abstraction (3/141, 2.13%). Interactions and clashes
in behavior between C/C++ and higher-level languages (e.g.,
Python) are also the cause of some performance bugs in
DL frameworks. For example, in TensorFlow#40758 [77],
a clash of behaviour between TensorFlow’s C/C++ backend
and its GO implementation led to a cache blow-up. Previous
research has focused on software systems that use the polyglot
architecture (i.e., systems written in multiple programming
languages) (e.g., [78]). However, no such studies have been
conducted on the adoption of the polyglot architecture for DL
frameworks. These bugs highlight the need for such works.
This may also highlight the need for tools that may aid
developers in addressing such bugs.

The abstraction of the C/C++ backend using a higher-level
language may cause erroneous behaviour, leading to huge
performance degradation. This highlights the need for future
research into the effects of using the polyglot architecture
for DL frameworks.

– Other (12/141, 8.51%). The bugs under this category do not
correspond to the aforementioned categories. The bugs include
user-end bugs (e.g., PyTorch#18853 [79]), bugs that were not
discussed enough (e.g., Pytorch#18405 [80]) and bugs that are
due to bugs in third-party libraries (e.g., PyTorch#82 [81]).

V. IMPLICATIONS AND FUTURE WORK

Based on our empirical findings, we present actionable
implications and future work for two groups of audiences:
1) researchers and 2) framework developers.

A. Researchers

R1: There may be unexpected performance differences
when DL frameworks are used with different combinations
of environment configurations (e.g., the data type used
at runtime). Future studies should further explore such
unexpected performance differences under different com-
binations of configurations. As seen in RQ3, there were cases
where performance bugs only occur under certain conditions.
For example, we find cases where using the float16 data
type causes a slowdown instead of a performance improve-
ment. In this case, flakiness in the slowdown was difficult to
rationalize, and for the inefficacy of data types, developers
applied a workaround to bypass them (e.g., temporary conver-
sion). While there is tremendous research studying flakiness
in traditional systems, there is a lack of research studies
in DL systems in benchmarking performance trade-offs for
different configurations [58], especially in detecting flakiness
in performance. Our study raises new research opportunities
for better configuration recommendations in future DL systems
by studying their trade-offs.



R2: Similar libraries may have different performances, es-
pecially when operating in different environments. Future
research should help DL framework developers choose the
most performant library given various scenarios. We found
that there were several scenarios where a lack of understanding
of the performance differences between external libraries led to
performance degradation. For example, the trade-offs between
linear algebra libraries (e.g., cuBlas v.s. Magma) cause matrix
inefficiencies. We also find cases where particular hardware
optimization libraries are not supported by the DL frame-
work, leading to suboptimal performance. Managing external
libraries is a known challenge in many traditional systems.
Similarly, in DL frameworks, we find that while there may
be multiple external libraries that offer many similar function-
alities (e.g., matrix solver), each library may have different
performance optimization based on factors such as the OS
and the underlying hardware. Hence, creating a performance
benchmark on how different libraries perform under different
environments, hardware devices, or even versions may help
DL framework developers make better decisions in choosing
the libraries. Future research may also help DL frameworks
automatically choose or recommend libraries that have better
performance given an environment setting.
R3: There are future research opportunities for finding
the optimal number of threads for different workloads.
As we found in RQ3, parallelization can help circumvent the
resource-intensive nature of DL tasks. However, there are chal-
lenges associated with determining the most efficient threading
configuration (e.g., number of threads) based on different
factors (e.g., across many CPU/GPU cores and workloads).
Future studies may assist developers in automatically tuning
the threading configuration based on the environment.
R4: Future studies should help DL framework developers
improve and optimize hardware utilization (i.e., CPU
and GPU usage) from the perspective of linear algebra
operations. We find that specific matrix sizes and shapes
may cause hardware underutilization, resulting in performance
degradation. For example, we observe cases where certain
batch shapes lead to a low GPU usage and hence, sub-optimal
performance. In this case, while DL developers manipulate
the matrix into different shapes (e.g., reshape) to allow higher
GPU utilization, the issue is partially fixed, and problems re-
occur in the future. In another case, we find slowdowns caused
by matrix reshaping when dealing with matrix operations for
different shapes and sizes. Our study opens an interesting
direction for future research to optimize matrix operations
involving calculating and reshaping matrices to improve and
optimize hardware utilization. Notably, future research is re-
quired to identify and remove code smells related to inefficient
matrix operations to improve the performance of DL systems.

B. Framework Developers

F1: DL framework developers may benefit from a bet-
ter understanding of the state-of-the-art in SE research.
We find that traditional SE programming errors (e.g., String
append v.s. += operator) also appear in DL systems. Such

problems are more susceptible to performance slowdown due
to large data usage and the repetitiveness of computations (e.g.,
gradients) in certain DL tasks. Many cutting-edge studies in
SE research have already investigated such performance bugs
and how to better address them. Hence, we find that developers
can benefit tremendously from having a better understanding
of the state-of-the-art in SE research in order to improve the
quality of DL frameworks.

VI. THREATS TO VALIDITY

External Validity. We conducted our study on TensorFlow
and PyTorch. Thus, our findings may not generalize to all
DL frameworks. However, these two are the most popular DL
frameworks [13], well-maintained, consistently updated, and
used in various commercial settings.
Internal Validity. We conducted our study based on the
performance bug reports on GitHub repositories. To increase
the precision and recall of finding the bug reports, we follow
prior studies [20], [21], [23], [30], [31] and use both developer-
provided labels and performance-related keywords (e.g., slow,
laggy) to identify performance bugs. Our manual verification
found that the precision of our approach is above 88%, which
is similar to what was reported in a prior study [23].
Construct Validity. DL frameworks are undergoing continu-
ous development, so some studied issues may be related to
certain releases/versions of hardware or libraries. However,
with constant hardware innovations (e.g., new Nvidia GPUs)
and software changes, such new releases would always be
part of DL framework evolution. Hence, we believe our trend
analysis (RQ1), which includes around five years of data,
should reflect such patterns to a certain degree. Our manual
study may have biases on the causes of the performance
bugs. Thus, two authors independently examined all available
software artifacts. The inter-rater agreement was high between
the two authors. We do not claim to find all performance bugs.
However, we show the existence of such issues and identify
further research opportunities.

VII. CONCLUSION

Deep Learning (DL) has gained tremendous popularity in
recent years due to the availability of open-sourced DL frame-
works, which empower developers to implement DL models
efficiently. However, optimizing DL frameworks may have its
unique challenges due to the peculiarities of DL. In particular,
fixing performance bugs is vital to avoid severe life-threatening
consequences. In this work, we collected the performance bug
reports from the TensorFlow and PyTorch GitHub repositories
and studied their characteristics and prevalence compared to
non-performance bugs. We find that: 1) performance bugs
may increasingly become a concern in DL frameworks; 2)
performance bugs take significantly more time and necessitate
significantly larger fixes; and 3) we build a comprehensive
and detailed taxonomy of the root causes of performance bugs
in DL frameworks. We hope our findings can inspire future
research that focus on improving the qualiy of DL frameworks
and DL systems.
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