
MLOLET - Machine Learning Optimized Load and Endurance
Testing

An industrial experience report

Arthur Vitui∗
RedHat Inc.

Montreal, Quebec, Canada
avitui@redhat.com

Tse-Hsun (Peter) Chen
Software PErformance, Analysis and Reliability (SPEAR)

Lab
Concordia University

Montreal, Quebec, Canada
peterc@encs.concordia.ca

ABSTRACT
Load testing is essential for ensuring the performance and stability
of modern large-scale systems, which must handle vast numbers of
concurrent requests. Traditional load tests, often requiring exten-
sive execution times, are costly and impractical within the short re-
lease cycles typical of contemporary software development. In this
paper, we present our experience deploying MLOLET, a machine
learning optimized load testing framework, at Ericsson. MLOLET
addresses key challenges in load testing by determining early stop
points for tests and forecasting throughput and response time trends
in production environments. By training a time-series model on key
performance indicators (KPIs) collected from load tests, MLOLET
enables early detection of abnormal system behavior and provides
accurate performance forecasting. This capability allows load test
engineers to make informed decisions on resource allocation, en-
hancing both testing efficiency and system reliability. We document
the design of MLOLET, its application in industrial settings, and the
feedback received from its implementation, highlighting its impact
on improving load testing processes and operational performance.

ACM Reference Format:
Arthur Vitui and Tse-Hsun (Peter) Chen. 2024. MLOLET - Machine Learning
Optimized Load and Endurance Testing: An industrial experience report. In
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3691620.3695258

1 INTRODUCTION
Today’s modern large-scale systems need to handle a very large
number of concurrent requests. Any malfunctions or service degra-
dation resulting from a spike in the load may cause companies
losses in the millions or even billions of dollars [10]. Therefore, it is

∗Arthur Vitui is a Senior AI Specialist Solutions Architect at RedHat Canada. The work
described in this paper was done when Arthur was a Senior Solution Architect at
Ericsson, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695258

crucial for the IT operations teams to be able to load test the system
to ensure its performance and monitor the production system to
ensure smooth operation.

Understanding system behavior under varying loads is typically
achieved through load testing and endurance testing. These tests
yield critical metrics, such as the number of requests processed per
unit time (e.g., seconds) and the corresponding average response
times. Such data is invaluable for load test engineers in defining
service-level agreements and determining the optimal system con-
figurations, including the number of nodes required to handle the
anticipated load effectively. Once systems are deployed in produc-
tion, load test engineers must collaborate with IT operators to
continuously monitor the system. This ongoing vigilance is nec-
essary to identify and respond to sudden spikes in load, such as a
surge in requests, by potentially increasing computing resources to
maintain performance and stability.

However, there are two main challenges in running such load
tests and monitoring production system performance. First, load
tests often require extended execution times to accurately as-
sess system behavior. In the context of modern software devel-
opment, where release cycles are typically only a few weeks, con-
ducting long-running load tests can be costly and time-consuming,
especially if the load test engineers need to test the performance
under different configuration settings. Therefore, if a load test is
likely to fail, it is more economical to terminate the test early. Sec-
ond, it is crucial for load test engineers to forecast the system’s
performance trends in production. Accurate forecasting enables
engineers enough time to take proactive measures, such as increas-
ing the number of nodes, to ensure the system maintains optimal
performance and stability during sudden load spikes.

In this paper, we present our experience deploying a time-series-
based load testing framework, MLOLET, developed to assist load
test engineers at Ericsson. MLOLET addresses two main challenges:
1) determining early stop points for load tests and 2) forecasting
throughput and response time trends in production. For both cases,
we focus on detecting and forecasting spikes in KPIs. Detecting
an excessive number of spikes during a load test may mean the
test is failing and needs to be stopped (i.e., spike detection), while
forecasting spikes in production helps take preventative actions by
adding more computing resources (i.e., spike forecasting). We train
a time-series model using the key performance indicators (KPIs)
collected periodically from load tests conducted with a limited set
of configurations. This model is then applied to load tests with

https://doi.org/10.1145/3691620.3695258
https://doi.org/10.1145/3691620.3695258

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Arthur Vitui and Tse-Hsun (Peter) Chen

varying configurations to detect abnormal system behavior, such as
significant spikes in certain KPI values over time. We also apply the
model to monitor and forecast spikes in production environments
under different configurations.

This experience report is a result of working on a large-scale
mission-critical system developed by Ericsson Inc, which handles
millions of concurrent users around the world everyday. During the
short six-week release cycle1, load test engineers at Ericsson need
to assess the robustness of the software ecosystem by observing the
system’s behavior under specific loads. The systems at Ericsson are
composed of several components with millions of lines of code, fea-
turing complex configurations, including functional, performance,
and environmental settings. These components can run under the
same application server or be distributed across multiple compute
nodes, with configurations that may include local and geographi-
cal redundancy. Due to the scale and complexity of these systems,
it is challenging to conduct comprehensive load and endurance
tests within the limited six-week release cycle. Moreover, cover-
ing different combinations of configuration parameters is nearly
impossible due to their complexity and sheer number. Hence, by
leveraging MLOLET, load test engineers can enhance the efficiency
and effectiveness of load testing, ensuring that systems are robust
and capable of handling dynamic load conditions under different
configurations.

Due to the non-disclosure agreement (NDA), we can only dis-
close limited details about the experiment results and about the
functionality of the enterprise system. We discuss, however, the
techniques and algorithms we used for spike detection as well as for
system throughput and response time trend forecasting. We also
discuss the data processing pipeline, including the hyper-parameter
tuning case studies. For reproducibility, we conducted experiments
on an open-source system, with setup guides and source code avail-
able in a GitHub repository [28].

In summary, the paper makes the following contributions:

• We discuss the challenges our industrial partner encounters
during load testing and share the design of our approach to
resolve these challenges.
• We present the evaluation of MLOLET on both an industrial
system and an open-source system. We also share our expe-
rience with our industrial partner’s adoption of MLOLET.
• We review various open-source technologies that practition-
ers can use to implement a load testing framework similar
to MLOLET.

We hope that MLOLET’s blueprint provides valuable insights to
both researchers and practitioners. We also hope that practitioners
may adopt MLOLET to help improve their load testing processes.
Paper organization. Section 2 describes the studied system and
the case study setup. Section 3 describes our methodology. Section
4 presents the results. Section 5 discusses the lessons learned and
our experience from the industrial environment. Section 6 discusses
threats to the validity. Section 7 discusses related work. Section 8
concludes the paper.

1https://www.Ericsson.com/en/press-releases/2017/9/Ericsson-offers-continuous-
software-updates

2 STUDIED SYSTEMS
In this section, we present the studied enterprise system and the
available metrics that can be monitored to implement our proposed
framework, within the limits of the NDA boundaries. Due to NDA
restrictions, we also test our hypothesis on an open-source system.

2.1 Studied Industry System
The evaluated industry system contains many components and is
maintained by a large number of software developers. The system
provides Business-to-Business (B2B) and Business-to-Consumer
(B2C) messaging functions and has integrated Ericsson’s in-house
developed products, open-source software, and third party com-
mercial products. As the provided functions are business critical,
the system is designed for high availability with local as well as
geographical redundancy across several datacenters. The system
is used on a daily basis by millions of users around the world and
processes tens of millions of requests.

2.2 Studied Open Source System
To verify our findings and ensure reproducibility, we also conducted
our experiments on an open-source software system. For data gen-
eration purposes, we use a custom-developed load generator, for
which the source code and description are available online [25].
We created our custom load generator to have better control over
the load, including spike-emitting capability and the collection of
near-real-time metrics.

The test subject is a WireMock [45] mock application extended
with the Prometheus [30] metric generator and a global random
string payload ResponseTransformer. Depending on the deploy-
ment configuration, the test subject application may recursively call
itself multiple times. This approach generically models numerous
business applications using a black box method, reflecting their
common characteristics: receiving a request, processing it, and re-
turning a response. The source code and full description for the
test subject application are available online [46]. The test results
related to MLOLET and the Machine Learning model prototypes
used by MLOLET are also available online [28].

2.3 Measuring System Performance
In general, many metrics are available to measure a complex sys-
tem’s performance during load testing. Common performance met-
rics include CPU, memory, and disk usage and application-specific
metrics such as throughput per unit of time (transactions per sec-
ond—TPS and transactions per minute—TPM) and the associated
average component response time for the selected unit of time. Due
to the nature of the industry system, we measure system perfor-
mance using two primary metrics: 1) Throughput: How many
requests the software component can process within a desired time
unit. 2) Response Time: How fast the software component pro-
cesses those requests.

In this paper, we focus onmodeling spike detection (both upward
and downward) and trend forecasting for throughput and process-
ing request response time as our main performance metrics. These
metrics are generic system capacity indicators applicable to a wide
range of systems. They also depend on the system’s internal and
hardware configurations, providing a comprehensive view of the

MLOLET - Machine Learning Optimized Load and Endurance Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

overall system performance generally applicable to many software
systems.

3 THE MLOLET FRAMEWORK
In this section, we present MLOLET (Machine Learning Optimized
Load and Endurance Testing), which aims to assist our industry
partner with the load testing process by addressing the previously
mentioned challenges.

To address the first challenge (i.e., long running load tests), we
propose detecting spikes in the load test data using an online de-
tection approach and acting upon them as quickly as possible. The
approach needs to detect spikes on the fly, without having access
to the entire test result, to stop a test early. A load test may fail for
several reasons. One such case is when the system’s response time
is outside of the normal distribution, within a given period. If the
response time is much higher than usual, it indicates the system is
taking more time to process information, suggesting an overload
that could lead to an imminent system crash. Conversely, if the
response time is much lower than usual, it could mean another sys-
tem within the business processing flow has failed and is no longer
accessible, thus shortening the measured component response time.
This does not necessarily mean the measured component is failing;
however, the overall business logic may be compromised. Having
this insight allows load test engineers to stop failing tests, saving
time and cost in the testing process.

To solve this challenge, we work with our industry partner to
develop a configurable component in the load testing practice that
provides the following functions:
• Alert the load testing team (via email or on a central moni-
toring system dashboard) if the number of spike events in
the load or endurance test exceeds a certain threshold.
• Stop the load or endurance test if the number of spike events
in the test exceeds a certain threshold.
• Begin a new load testing cycle if the number of spike events
in the test exceeds a certain threshold.

It is noteworthy that counting the number of spike events may
be global (meaning over the entire duration of the load test) or
windowed (meaning that the counter is reset after a certain time
has passed).

To address the second challenge (spike forecasting), we propose
a time-series based load testing framework that:
• Forecasts the trend of the system in an on-line setting.
• Increases the efficiency and project economics of the load
testing team.
• Improves the operational performance and economics of
the operations team with regards to service up-keeping and
associated SLA fulfillment.

Next, we describe the design of MLOLET in details.

3.1 The Overall Process and the Building Blocks
of MLOLET

The industry system is composed of multiple interconnected compo-
nents, and the components may be tested independently or jointly
(depending on the applicable user stories and use cases). Hence, to
increase the efficiency and reproducibility of the tests, we need a

Figure 1: MLOLET framework overview.

base framework for data collection and analysis that is portable
and flexible to adapt to the various software components (between
environments and projects). Figure 1 depicts the overall process
used in our setup.

One of the most important building blocks of the framework
is the ‘Real Time Spike Detection‘ one. The pseudo-code for this
procedure is detailed in Algorithm 1.

Several different tools are available for each stage of the process
blueprint. Due to the NDA with our industrial partner, we cannot
disclose which tools were used in each phase. Nevertheless, we
provide a general depiction of the process and suggest tools that
may be used at each stage.

The configuration generator is a component-specific tool that
may be written by software engineers (testers and/or developers
alike) using any available scripting or programming language (e.g.,
C/C++, Python, bash-scripting, Java, Ruby). Its purpose is to provide
a base set of configurations. The generated configurations may
be stored in a repository, which may be a database (relational or
NoSQL), a git repository, or a simple folder with text-like documents
(YAML, CSV, XML, or JSON formatted documents).

Subsequently, the controlled load generator will use the configu-
ration repository to select available configurations, apply them to
the tested components, and then initiate a load test. Automation
is key in this case, and several specialized tools are available to
accomplish the necessary steps. For example, specific component
configuration settings (i.e., the parameters of the tested software

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Arthur Vitui and Tse-Hsun (Peter) Chen

Algorithm 1 Real Time Spike Detection
Require: 𝑌_𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛 ⊲ The list of predictions on the train data
Require: 𝑌_𝑡𝑟𝑢𝑒_𝑡𝑟𝑎𝑖𝑛 ⊲ The true values of the train data
Require: 𝑒𝑟𝑟𝑜𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 ⊲ The error function selector
Require: 𝑦_𝑝𝑟𝑒𝑑_𝑡𝑒𝑠𝑡 ⊲ The prediction of the test/new data
Require: 𝑦_𝑡𝑟𝑢𝑒_𝑡𝑒𝑠𝑡 ⊲ The true value of the test/new data
Require: 𝑖𝑠_𝑡𝑟𝑎𝑖𝑛_𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑓 𝑙𝑎𝑔 ⊲ Is 1 if the test values

are from the training set
function calculate_error(𝑌_𝑡𝑟𝑢𝑒 , 𝑌_𝑝𝑟𝑒𝑑)

if 𝑒𝑟𝑟𝑜𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 is 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝐸𝑟𝑟𝑜𝑟 then
𝑒𝑟𝑟𝑜𝑟𝑠 ←| 𝑌_𝑡𝑟𝑢𝑒 − 𝑌_𝑝𝑟𝑒𝑑 |

else if 𝑒𝑟𝑟𝑜𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 is 𝑆𝑞𝑢𝑎𝑟𝑒𝑑_𝐸𝑟𝑟𝑜𝑟 then
𝑒𝑟𝑟𝑜𝑟𝑠 ← (𝑌_𝑡𝑟𝑢𝑒 − 𝑌_𝑝𝑟𝑒𝑑)2

return 𝑒𝑟𝑟𝑜𝑟𝑠

𝑒𝑟𝑟𝑜𝑟𝑠 ← calculate_error(𝑌_𝑡𝑟𝑢𝑒_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑝𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛)
𝑒𝑟𝑟_𝑚𝑒𝑎𝑛 ←𝑚𝑒𝑎𝑛(𝑒𝑟𝑟𝑜𝑟𝑠)
𝑠𝑡𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑛_𝑒𝑟𝑟 ← 𝑠𝑡𝑑 (𝑒𝑟𝑟𝑜𝑟𝑠)
𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑒𝑟𝑟_𝑚𝑒𝑎𝑛 + 3 ∗ 𝑠𝑡𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟
𝑙𝑜𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑒𝑟𝑟_𝑚𝑒𝑎𝑛 − 3 ∗ 𝑠𝑡𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟
repeat

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ← calculate_error(𝑦_𝑡𝑟𝑢𝑒_𝑡𝑒𝑠𝑡,𝑦_𝑝𝑟𝑒𝑑_𝑡𝑒𝑠𝑡)
if 𝑖𝑠_𝑡𝑟𝑎𝑖𝑛_𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑓 𝑙𝑎𝑔 ≠ 1 then

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ← 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑠𝑡𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟
if 𝑙𝑜𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≤ 𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑠𝑝𝑖𝑘𝑒𝑠 ← 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

else
𝑠𝑝𝑖𝑘𝑒𝑠 ← 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑

until there is new data.

component) and component scalability values within the test envi-
ronment may be controlled by specialized tools such as Ansible [1],
Chef [5], or Puppet [31], or in-house automated scripts or configu-
rator applications. Selecting the right tool for the job depends on
the specific behavior of a software component regarding reconfigu-
ration: some software components may expose a reconfiguration
interface (e.g., JMX interface) where they accept commands that
lead to the internal parameter setting. Other software components
require setting specific values in a configuration file and may need
a restart (if the configuration is not automatically reloaded upon a
detected file change).

The load testing step may be accomplished using either custom-
developed applications or specialized tools such as JMeter [20],
Jenkins [19], Soap-UI [37], etc. To ensure the system is as portable
as possible, we collect the desired metrics – both the computing
nodes’ resources and the application’s processing metrics (through-
put per unit of time and associated average response time)–in a
non-intrusive fashion. Such methods include log parsing and ag-
gregation using tools such as LogStash [26] or ElasticSearch [8], or
even by in-house scripts. A wide range of modern tools aid in the
collection and storage of application metrics in the form of time-
series data, such as InfluxDB [17], Prometheus [30], LogStash [26],
or ElasticSearch [8]. It is noteworthy that each independent load
test will generate independent time-series data sets. These data sets
are split into test and training sets and used later by MLOLET for
spike detection and forecasting.

MLOLET applies machine learning to help solve the two afore-
mentioned challenges. For data preprocessing andmachine learning-
based modeling, there are many libraries and platforms available
such as Apache Spark [2], TensorFlow [41], PyTorch [32], or DeepLearn-
ing4J [7]. The model serving can be achieved using any of the
following: Apache Spark [2], DeepLearning4J [7], TensorFlow-
Serving [42], Seldon [35], Flask [11], etc. This step is, however,
conditioned, to a certain extent, by the modeling tools and approach
selected in the previous step.

Noteworthy is the fact that MLOLET’s spike detection relies
on an online detection approach. Machine learning offers several
architectures that function in an online setting; however, this is not
a prerequisite as other techniques may be used as long as they func-
tion in an online setting (e.g., the VARMA statistical method [27]).
The process we described should be general enough to be executed
in any type of environment: physical, virtualized, or containerized
(e.g., in a Kubernetes [22] based setup).

3.2 Running Load Tests
We run load tests with different configurations. During the load
tests, we kept track of the system configuration variables, which
included both internal configuration parameters of the components
and deployment variables (e.g., the number of instances of various
components). We also monitored the actual load applied to the
system for each configuration.

With these settings, we obtained a pool of time series data for
each of the targeted, generalizable application metrics (throughput
per unit of time and associated average response time) after running
multiple load tests with different workload types and configurations.
This allowed us to study whether we could train a time-series model
using data from one particular test and evaluate themodel on similar
tests with different configurations.

3.3 Model Classes in MLOLET
Based on the online testing/evaluation requirement of MLOLET,
there are two types (classes) of spike detection algorithms for time
series analysis that may be used here: traditional (also known as
statistical) models, and, artificial neural network based models. The
MLOLET process does not impose the use of a specificmodel. In fact,
as the process is horizontally extensible, several different models
may be used simultaneously (if needed) for different scenarios.

3.3.1 Traditional (or statistical) models. We use the Vector Auto-
Regression Moving Average (VARMA) [27] as our traditional ref-
erence model for time series analysis. The VARMA method is a
generalized version of the ARMA model for multivariate stationary
time series. It uses a combination of Vector Auto-Regression and
Vector Moving Averages together with ARMA to model the next
step in the multivariate time series. We have selected VARMA as a
reference model for two of its characteristics that help it compare
with newer deep learning based algorithms.

Similar to a deep neural network (DNN [48]), the VARMA al-
gorithm can accept an ad-hoc defined input time series sequence
to predict the next value. Also, similar to a DNN, the length of
the input sequence used by VARMA may be adjusted (as a hyper-
parameter) in the training process. These two similarities with
neural network based algorithms make it easy to use VARMA in an

MLOLET - Machine Learning Optimized Load and Endurance Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

online prediction setting much like a DNN-based model would be
used. Because of this similarity it is more straightforward to make
a comparison between the results of the models from these two
classes of algorithms.

3.3.2 Artificial Neural Network (ANN) based models. Artificial neu-
ral networks have proven to be very good in generalizing any type
of dataset and modeling time series makes no exception. Prior
studies [18, 24, 40] showed that there are certain types of neural
networks better suited for time series analysis. In our tests, we eval-
uated the following architectures: Convolutional Neural Networks
(CNN) [48], classical Recurrent Neural Networks (RNN) [48] and
variants such as Long Short-Term Memory network (LSTM) [48]
as well as Bidirectional Recurrent Neural Network [4]. For more
advanced architectures, we have also evaluated ResNet [15] type
and LSTM-AutoEncoder [50] based approaches.

A Recurrent Neural Network is a ANN where connections be-
tween nodes form a directed graph along a temporal sequence.
They are derived from feed forward neural networks and have an
internal state that is used as memory to process sequences of vari-
able length. An LSTM is an RNN variant that, during the training
process, remembers the order of the data from the sequences [9, 47].

A major shortcoming of the standard RNN is that they have
access to past information but not to a future context. The Bidirec-
tional Recurrent Neural Network [33] provides a solution to this
problem by using two separate recurrent hidden layers on the input
sequence. One layer operates in forward direction and the second
one in the backward direction and with both layers connected to
the same output they provide context to both input directions. Bidi-
rectional LSTM (B-LSTM), combines the principles of bidirectional
networks and LSTM [4].

As pointed out by Zhu and Laptev [50], neural networks may suf-
fer from prediction uncertainty, and they proposed an autoencoder-
based architecture to mitigate false anomaly alerts. For an analogy
to our case, we consider spikes as an anomaly, although techni-
cally they are not. The purpose of the encoder-decoder layer is
to extract representative embeddings from the input time series,
as autoencoders are used to perform either dimensionality reduc-
tion or feature extraction [3]. In short, the autoencoder acts as an
intelligent feature extraction blackbox [50].

Another type of network which is very good in feature extraction
is the Convolutional Neural Network due to its automatic capability
of detecting important features without human supervision [12, 21].
This property of a CNN network helps extracting and learning
patterns from any sequential data and can therefore be leveraged
to perform both spike detection as well as forecasting. ResNet
(or Residual Networks architecture) was proposed by Microsoft
Research in 2015 [15] and it is an advanced CNN type of network as
it addresses the vanishing/exploding gradient problem. According
to the research conducted by He et al. [15], the ResNet model is one
of the top advanced CNN based architectures. It has been proven
to perform well in time series analysis by Fawaz et al. [18].

We tested the efficiency of the different models using the same
input length sequence, while each of the models was optimized
according to their own set of hyper-parameters.

3.4 Defining Spikes
As previously mentioned, by spike detection, we are identifying
those points in the datasets that differ from the majority of the
data. Generally speaking, a spike is an event that does not fit in any
determined pattern or data cluster. However, when we talk about
spike detection for time series, one value may be considered a spike
due to the time it appeared and the values before it. For example, if
the typical value of the CPU load is around 10% for an application,
an extreme event may cause the CPU load to jump to, say, 70%. On
the other hand, if the load stabilizes around 70%, then this jump is
no longer suspicious but is part of normal behavior. This leads to
the fact that spike detection is very context-dependent.

Moreover, different loads may exert different average KPI values
and spikes for a given configuration set. For instance, a configu-
ration set X with an average load of 100 TPS might result in an
average CPU utilization of 60%, accompanied by spikes of specific
amplitude and duration. In contrast, increasing the average load
to 150 TPS with the same configuration could lead to an average
CPU utilization of 70%, with spikes that differ in both duration and
amplitude. Similarly, the same average load of 100TPS may produce
different (spike) data for configuration sets Y, Z, etc.

Following these examples, we found that simple threshold based
monitoring is inadequate to handle complex situations in practice,
andmore advancedmethods are required. One suchmethod is based
on the 3-sigma statistical rule (also known as the empirical rule) to
determine whether the next point in the time series is a spike or
not. The 3-sigma rule of thumb is considered in empirical science a
conventional heuristic where most of the typical values lie within
the three standard deviations of themean (also known as the normal
distribution) [16, 39, 49]. Therefore, first, we measure the mean and
the standard deviation (𝜎) of the data points in the training data.
Then, we define our error threshold as: 𝜖 =𝑚𝑒𝑎𝑛 + /−3𝜎 . Any data
point value larger than the threshold is considered a spike. This
approach lets us apply the method to a large number of systems,
without having any special domain knowledge about the underlying
system’s characteristics. Note that, we normalize the metrics when
calculating the thresholds using the 3-sigma rule. Hence, we can
apply the threshold on other tests after normalizing the metrics.

3.5 Data Preprocessing and Tuning Machine
Learning Models

Prior studies found that inputs to neural network inputs are scale
sensitive [36, 38]. Thus, we used several normalization methods:
MinMaxScaler and StdScaler provided by the scikit-learn [34] li-
brary and logarithmic based scaling (i.e., log transformation). Fur-
thermore, we also apply grid search optimization for hyperparame-
ter tuning in the case of the neural network based models, where
parameters are randomly chosen from a given range. We report the
model that achieves the best performance in Section 4.

We used the same range of values for all the parameters in both
hyperparameter tuning methods. We considered tuning common
neural network parameters such as the number of neurons per
layer [100 - 250], the learning rate [10e-4, 10e-3, 10e-2], and the
number of hidden layers [1 - 10]. In time series analysis, additional
hyperparameters include the input data window, the offset, and the
signal dimensionality. Since our data consists of single point KPIs,

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Arthur Vitui and Tse-Hsun (Peter) Chen

the feature set dimension is always 𝐷 = 1. The input data window
(T) represents the number of time steps used to predict the next
value in the series. For each pass, we consider different data window
sizes in the range [5 - 120]. The offset denotes the number of steps
ahead we forecast from the chosen data window, (e.g., an offset of
one predicts one step ahead). This concept is depicted in Figure 2.
Additionally, we refer to offset 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 1 as 1-step forecasting, and
𝑜 𝑓 𝑓 𝑠𝑒𝑡 > 1 as n-step forecasting.

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Input width = 6 offset = 1

Label width = 1

Total width = 7

Figure 2: Data windowing.

3.6 Evaluating ML Models
We evaluated our time-series forecasting models using several met-
rics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean
Absolute Percentage Error (MAPE) and the Pearson Correlation
Coefficient (PCC) value:
TheMean Absolute Error (MAE) is the average of the absolute
errors, in other words it is the mean value of the absolute difference
between the next predicted value and the actual value from the
time series. Having 𝑛 points in the testing set, it is calculated using
the following formula:

𝜎 =

√︄∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2

𝑛 − 1 (1)

𝜇 =

∑𝑛
𝑖=1 𝑥𝑖

𝑛
(2)

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
| 𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 | (3)

TheMean Squared Error (MSE) is a measure of the average of the
squared distance between the next predicted value and the real data.
Having 𝑛 points in the testing set, it is defined by the following
formula:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2 (4)

The Mean Absolute Percentage Error (MAPE) is also known as
the mean absolute percentage deviation (MAPD). It is a statistical
forecasting measure of the prediction accuracy of a model. It mea-
sures the size of the error in percentage terms and, for 𝑛 points in

the testing set, it is calculated by the following formula:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
| 𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝑎𝑐𝑡𝑢𝑎𝑙𝑖
| (5)

The Pearson Correlation Coefficient (PCC) is a measure of the
linear correlation (in other words dependence) between two data
sets (in our case the true values and the predicted ones). It is defined
as the ratio between the covariance of the two variables and product
of their standard deviations:

𝜌𝑎𝑐𝑡,𝑝𝑟𝑒𝑑 =
𝑐𝑜𝑣 (𝑎𝑐𝑡, 𝑝𝑟𝑒𝑑)
𝜎𝑎𝑐𝑡𝜎𝑝𝑟𝑒𝑑

=

E[(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝜇𝑎𝑐𝑡) (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝜇𝑝𝑟𝑒𝑑)]
𝜎𝑎𝑐𝑡𝜎𝑝𝑟𝑒𝑑

(6)

In “(6)” 𝜇, 𝜎 represent the standard deviation and the mean respec-
tively for the actual (act) and the predicted (pred) sets, 𝑐𝑜𝑣 repre-
sents the covariance which can also be described with the help of
the expectation function E of the product between the actual and
predicted values adjusted by their respective means. The PCC is a
measure of synchronicity of the variation of the two data sets: the
actual and the forecasted values.

4 CASE STUDY RESULTS
In this section, we discuss the evaluation results of MLOLET. Due to
space constraints, while we present the open source system results,
we discuss only the results from the industry system. The complete
results for the open-source system are available on GitHub [28].
The general results observed on the open-source system are the
same as those for the industry system.

RQ1: How do different models compare in
one-step forecasting?
Motivation: In order to implement the early stopping mechanism
proposed by the MLOLET framework, we need to identify a perfor-
mant forecasting model. The best performing model becomes the
baseline for the subsequent research questions.
Approach: We evaluate different machine learning models imple-
mented in MLOLET using a randomly selected load testing event.
We use the same time series data for each model evaluation, as
described in Section 3. We are interested in the 1-step time fore-
casting accuracy of the different machine learning algorithms and
architectures.
Results: We find that, in general, all the models provide good 1-
step forecasting results. Tables 1 and 2 summarize the best 1-step
forecasting results for each type of model we experimented with
on the enterprise and open source systems, respectively. We used
the normalized values of the datasets (e.g., KPIs) when calculating
the model results. We find that VARMA achieves the worst results
in terms of all the evaluated metrics (i.e., MAE is 0.1156 and MSE is
0.0743). On the other hand, LSTM-based models achieve the best
results (i.e., MAE ranges from 0.0386 to 0.0804, and MSE ranges
from 0.0131 to 0.0207). In contrast, CNN and ResNet have a slightly
higher MAE and MSE than Autoencoder LSTM. Our findings with
regard to the performance of Autoencoder LSTM architectures
follow the findings of Laptev and his team [23].

MLOLET - Machine Learning Optimized Load and Endurance Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Enterprise System - One step forecasting results
(RQ1).

Model MAE MSE MAPE (%) PCC
VARMA 0.1156 0.0743 8.290 0.5965
RNN 0.0644 0.0227 1.347 0.8217
LSTM 0.0756 0.0207 1.641 0.8611

Bidirectional LSTM 0.0804 0.0254 1.720 0.843
Autoencoder LSTM 0.0386 0.0131 1.0826 0.8999

CNN 0.07173 0.0282 1.494 0.8094
ResNet 0.0687 0.0177 1.457 0.8851

Table 2: Open Source System - - One step forecasting results
(RQ1).

Model MAE MSE MAPE (%) PCC
VARMA 0.0303 0.0236 26.6544 0.9888
RNN 0.0058 0.0010 3.5584 0.9888
LSTM 0.0072 0.0010 3.4166 0.9887

Bidirectional LSTM 0.0083 0.0010 6.0844 0.9887
Autoencoder LSTM 0.0078 0.0010 12.7623 0.9890

CNN 0.0086 0.0010 6.9289 0.9894
ResNet 0.0177 0.0013 55.3107 0.9854

Our results show that the ML models, in general, are able to
predict the normalized KPIs in the next time window with good
accuracy.

Although VARMA achieves the worst results, its training and ex-
ecution time is significantly faster than that of DNN models. Since
training and applying the model online may require substantial
computing resources, VARMA may still be a good candidate model
when such resources are limited. Nevertheless, advanced neural
networks are still better at providing more accurate 1-step forecast-
ing. Although we cannot show the ML model configuration values
we found due to NDA (we describe our ML model configuration
search/tuning in Section 3.5), we found that selecting the right time
window size, T, is very important.

We find that LSTM-Autoencoder achieves the best results. It
is noteworthy that, depending on the required accuracy of
the detection and the project perspective, simpler models like
VARMA may still provide reasonable results.

RQ2: What is the generalizability of the
forecasting model when system deployment
settings change?
Motivation: Typically, spike mechanisms are put in place for static
systems. By static, we mean the internal configuration of a system
remains unchanged for different loads applied to that system and
does not account for the number of nodes added for redundancy or
capacity scaling purposes. In the practice of load testing, an appli-
cation or an ecosystem of several applications requires parameter
tuning. It would be impractical for load test engineers to retrain the
model every time the internal configuration changes. Hence, in this

Table 3: Enterprise System - Forecasting results in an online
setting using a previously trained model on new system con-
figurations (RQ2).

Model MAE MSE MAPE (%) PCC
VARMA 0.1236 0.0775 8.376 0.5825
RNN 0.2231 0.1534 7.213 0.7339
LSTM 0.9777 0.9218 2.603 0.8008

Bidirectional LSTM 0.9752 0.1354 1.928 0.7941
Autoencoder LSTM 0.0610 0.1179 3.7872 0.7524

CNN 0.8649 0.0785 10.885 0.8458
ResNet 0.3561 0.1604 6.721 0.8023

research question (RQ), we compare the forecasting capabilities
of each model we used for two use cases: 1) when the internal
configuration of the system has changed, and 2) when the business
request type has changed.
Approach: As described in Section 3.2, each load test varies either
the system configuration or the applied load or both. For this re-
search question, we take a model trained with one of the randomly
selected load tests data and verify the forecasting capabilities on all
the remaining data sets. In other words, we take the model trained
on a specific configuration and apply it to all other configurations
and request types.
Results: Tables 3 and 4 summarize the prediction metrics for each
model, on each studied system, respectively. Similar to RQ1, we
normalize the values of the dataset when calculating the prediction
metrics. Overall, we find that the errors increase compared to the
results of RQ1. However, we find that the mean errors are still rela-
tively small and most models yield similar result. Similar to RQ1, we
find that, even though VARMA has one of the worst performances,
the prediction results are still reasonable (i.e., MAE of 0.1236 and
MSR of 0.0775). Hence, practitioners may still consider VARMA if
they have limited resources to train more complex DNN models.
We also see an increase in percentage error in convolution-based
models (CNN and ResNet). This may be because these models re-
quire more training data to correctly recognize the patterns in the
datasets. Finally, we find that LSTM-based models still achieve the
best results. Our findings indicate that practitioners should consider
LSTM-based models if they are concerned with prediction accuracy.

Similar to RQ1, we find that LSTM-based models produce the
best result. In contrast, we observed a larger decrease in fore-
casting results of the CNN-based models.

RQ3: How far in time can MLOLET forecast
future trends?
Motivation: In this RQ, we aim to determine how far into the future
the baseline model can predict. Such forecasting ability provide
load test engineers with insights on whether they should add more
resources in advance to account for increased load.
Approach: To solve this problem, a large number of model coeffi-
cients must be determined alongside the size of the sliding window.
This is crucial in defining a model that uses the last X time steps

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Arthur Vitui and Tse-Hsun (Peter) Chen

Table 4: Open Source System - Forecasting results in an on-
line setting using a previously trained model on new system
configurations (RQ2).

Model MAE MSE MAPE (%) PCC
VARMA 0.0401 0.0779 6.2584 0.9613
RNN 0.0690 0.0880 12.4745 0.9529
LSTM 0.0154 0.0037 4.7358 0.9525

Bidirectional LSTM 0.0124 0.0038 3.8204 0.9519
Autoencoder LSTM 0.0129 0.0036 3.8595 0.9528

CNN 0.0258 0.0044 8.5224 0.9451
ResNet 0.0751 0.0190 24.6865 0.8659

to predict the next N number of time steps. If a model can accu-
rately forecast far enough into the future, the operations team may
gain important insights that help them manage the software sys-
tem more efficiently by scaling it up or down based on projected
traffic requirements. A high-level view of the implied process is
presented in Figure 3, where we can see that engineers may test
how different models perform trend forecasting by comparing with
the ground truth after every N step. Based on conclusions drawn
from the comparison, engineers may devise new or update existing
operational procedures to ensure the SLAs of the software systems
are maintained within the desired boundaries.

N-step Forecasting
Results Analysis

+ Operational
Procedures Updates

Ground Truth
Comparison

Time Series Data
Pre-processing

Test Data
Trained Model

Selector

Figure 3: Traffic forecasting process overview.

Results: Although we cannot show the detailed results due to
NDA, we share our findings on the maximum forecast steps (in
seconds) that can still have a reasonable accuracy in our experiment
(Table 5). The cutoff values were determined by system experts of
the enterprise systems through visual inspection of the prediction
plots. We provide, however the MAE and MSE details for the open
source system. For our subject system, our test results show that
most of themodels have difficulties forecasting beyond 5-15 seconds
in the future. One exception is the AutoEncoder-LSTM model, for
which we obtained acceptable forecasts up to 120 seconds, followed
by the B-LSTM architecture, for which we obtained forecasts up to
30 seconds. Although the forecasting capabilities of some models
may seem limited (5-15 seconds), they still may be usable in practice.
Many industry systems support features for online reconfiguration
(e.g., JMX-based systems) or can be started in under 5 seconds,
especially in containerized/Kubernetes-based environments. The
open source system has similar results as seen in Table 6.

We also noticed that increasing the size of the input data window
T (i.e., the number of time steps used to predict the next value in
the series) does not always improve accuracy. Moreover, a larger
size T usually results in a more complex network, often requiring
more hidden layers rather than more neurons per layer.

Table 5: Enterprise System - Results of forecasting capabili-
ties for different model architectures (RQ3).

Model Name Max Forecast Steps (seconds)
VARMA 5
RNN 10
LSTM 10

Bidirectional LSTM 30
AutoEncoder LSTM 120

CNN 10
ResNet 15

Table 6: Open Source System - Results of forecasting capabil-
ities for different model architectures (RQ3).

Model Name Max Forecast MAE MSE
Steps (seconds)

VARMA 15 0.2827 0.3178
RNN 30 0.1198 0.0369
LSTM 30 0.1072 0.0342

Bidirectional LSTM 45 0.1228 0.0330
AutoEncoder LSTM 120 0.5149 0.3170

CNN 15 0.1717 0.0441
ResNet 10 0.1572 0.0395

We find that the LSTM-Autoencoder model can forecast the
trend with acceptable results up to 120 seconds for the indus-
trial test subject system. We also find that using more time
steps in the training process may not always help improve the
model’s accuracy.

5 DISCUSSIONS
In this section, we discuss the lessons that we learned from con-
ducting the experiments and the feedback we received from our
industrial partner.

5.1 Spike Effects and Online Spike Detection
Observations

Dealing with spike misclassification is part of the model training
where different metrics may be used to determine the dynamic
thresholds, using the Mean Absolute Error or the Mean Squared
Error. These two metrics provide a way to control the sensitivity of
the spike detection with regard to the previous point (or sequence
of points) observed by the model and are used to predict the next
value in the sequence. In our experiments, we noticed that using
the Mean Absolute Error as a measure of the prediction deviation
provided better results for KPI spike detection.

In addition, software systems under load may exhibit spikes for
various metrics. Neglecting spikes have often become more serious,
causing outages [13]. Thus, it is important to understand the nature
of the spike, its cause, and possible ripple effect in the system. In
other words, having a good spike detection system in place and
performing detection for various KPIs simultaneously can help

MLOLET - Machine Learning Optimized Load and Endurance Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

correlate events among the different components of a software
ecosystem and make it easier to isolate them to study their effects.

These aforementioned factors play an important role in the soft-
ware development lifecycle (SDLC) and solution operational pro-
cesses. In the SDLC, the execution of the load test cycle becomes
more efficient, and developers gain accurate insights into when
an event occurred. This aspect is extremely useful when spikes
cause ripple effects that destabilize later parts of the ecosystem, as
those events are hard to reproduce without knowing the starting
condition (e.g., some spike in the load of some component may have
caused a buffer overrun, leading to loss of messages or corruption
of other data).

Another important factor about spikes and their ripple effect is
knowing when to act on them and what count threshold determines
that a load test is failing, necessitating the decision to stop it. This
may require expert knowledge of the software system to make
correlations between the different data points and logs collected
from the software system. The challenge here is to understand,
for example, how the ripple effects of the spikes may propagate
through a specific component or other components. For example,
let’s assume that during a load test, three detected problems do
not occur at the same time. If the load test was stopped early after
detecting the first problem, would the other two problems still occur
in subsequent load test runs, or were they a consequence of the first
error? By correcting the first error, would we never encounter the
other ones? This problem does not easily generalize, and in the case
of our industrial partner, it was often determined that by detecting
a certain problem, using expert knowledge, test engineers could
predict where the next problem might occur. Therefore, performing
an early stop was more beneficial to project economics overall.

5.2 Transferable Models and Operational
Insights

When referring to reducing load testing time while increasing pro-
cess efficiency by using spike detection-based techniques, it is best
to have a model that can be used across different configurations and
multiple business case scenarios. In our experiments, we demon-
strate that it is possible to train a model using load testing data
from one system configuration and then use that trained model for
spike detection in other configurations and business scenarios. We
observe that when using different configurations, the signal recon-
struction (from the time series data) is better when the predictions
are adjusted with the mean of the training data.

Overall the outcome of these tests meant two very important
things for our industrial partner:

• For future iterations, it is not required to train a spike detec-
tion model for each scenario, thus lowering the overall effort
of the load testing process and improving project economics.
• The trained model may be used in production by the opera-
tions team, provided the load test data resembles production
load conditions.

Continuing to refer to the operational insights, having a model
capable of making forecasts for a sufficiently long future window
(offset) can accommodate automatic scaling (sufficient time to start
additional service instances). This effort may lower the overall

energy consumption of the software ecosystem, which has two
major benefits:
• It lowers the overall capital expenditure (CAPEX) cost in the
data center by keeping the compute resources tuned to the
forecasted load. Unfortunately, we are unaware of the actual
cost reductions achieved, as determining such information
requires immense effort and should be the subject of a future
study.
• It aligns with our industrial partner’s efforts in sustainability
and corporate responsibility.

Several discussion points remained open with the industrial
partner regarding the model’s ability to forecast future load: how
far into the future is long enough to predict, and how can false
positive spikes affect the operational decisions to scale up or down
the software ecosystem components.

To mitigate the first case, some components may require less
time to act upon a scaling decision, while others may require more
time. This could lead to having different model architectures for
different components and perhaps even create new requirements
for the development team to improve the application start-up SLAs.

To mitigate the second case, the frequency and spacing out be-
tween predicted spikes may be a decision factor for accepting the
forecasting model, which is monitored with the help of a spike
detection model. The two models may be different as they may use
different input window sizes for making the next prediction. This
area may warrant further investigation in the future, as creating
the scaling rules can be very complex with many parameters to
consider for making a scaling decision.

6 THREATS TO VALIDITY
Internal validity. The enterprise system continuously evolves.
Therefore, from one release to another, the overall throughput of
the system may be affected, depending on the particular changes
made to the source code. In our tests, we used the same release of
to avoid side effects introduced by such code changes.
External validity.We conducted our experiments on a large enter-
prise system composed of many components with different business
functions. For reproducibility, we also tested our assumptions on
one open-source system that models, in a generic way using a black
box approach, a very large number of business applications given
their common characteristic: receiving a request, processing it, and
returning a response. Future studies may be needed to evaluate our
approach on other more specific systems.
Construct validity. Prior studies [14, 29] show that model perfor-
mance is very closely tied to the machine learning parameters. In
our experiments, we used grid search as technique to tune these
parameters to reduce the bias. While we mitigated multicollinearity
and over-fitting by splitting the data into training, validation, and
testing sets it may be possible that the models may still suffer from
overfitting. However, in our experiments on external validation
(RQ2), we find that models still perform well. We evaluated the ML
models that we implemented and provided in MLOLET. However,
there may be other models that can achieve better results. In our
case, the models that we implemented could already help solve the
challenges that we encountered. Future studies may include other
ML models to evaluate their effectiveness.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Arthur Vitui and Tse-Hsun (Peter) Chen

7 RELATEDWORK
Events forecasting and spike detection have been of great interest in
the research community over the years. However, they have rarely
been studied and applied in industrial settings simultaneously due
to their different characteristics. For the general use case, there
are studies that address the idea of anomalies in time series. While
spikes could be treated as anomalies in the generic sense of time
series data, they are also different in that a spike may have a long
duration and could be natural behavior of the system, whereas
anomalies are short in nature and not considered part of the normal
operation of a software system.

Time series spike detection can be achieved through a number
of methods, both offline and online. Given the business require-
ments from our industrial partner, our research focuses solely on
online detection methods. Below, we discuss related work in two
areas: time-series forecasting using deep learning models, and spike
detection for time series in load test data.

7.1 Time Series Forecasting Using Deep
Learning Models

Event forecasting is a current everyday challenge that has many
business applications. Modern machine learning model architec-
tures have been created and evaluated by prior research trying to
solve various business problems. Wei et al. [43] used LSTM based
auto-encoders (AE) in order to predict road traffic flow. Their exper-
iments show that AE-LSTMs outperform other model architectures.
Similarly, Laptev et al. [23] and Zhu and Laptev [50] use an AE-
LSTM architecture to forecast the number of trips during special
events such as Christmas or New Year’s eve at Uber. In addition
to forecasting, they use the model to also predict anomalies if the
forecast falls outside of the predicted interval (during real-time data
collection).

Our work differs from these prior studies in that we focus on
a different domain of problem—load testing of software systems.
Similar to the above-mentioned work, we also try different archi-
tectures and come to a similar conclusion that, in general, advanced
ANN networks perform better than traditional approaches.

7.2 Spike Detection for Time Series in Load Test
Data

Chen et al., [6] proposed SPIKE as a method based on regression
trees to predict cloud resource usage spikes. They use a supervised
learning method to classify anything above given threshold as an
anomaly therefore contributing to a spike. While Chen and his
team make use of similar features for modeling (i.e., response time
for a service, transaction throughput, etc.), our work is different
as we are performing an unsupervised learning approach for spike
detection. As pointed out in Section 3.4, using a static threshold
for spike detection may not be sufficient in today’s ever increasing
complex IT systems.

Wen and Keyes [44] discuss the criticality of anomaly detection
in automated monitoring systems. Their work focuses on CNN
architectures and they show the importance of transfer learning
combined with CNN to extend models’ utilization to other systems.
In our work, we test how models trained with specific time series
data perform when the system conditions have changed, however

we use this information for unsupervised spike detection instead of
supervised anomaly detection. More precisely, we verify a model’s
spike detection capabilities and new traffic forecasting on a new,
never seen system configuration. Moreover, in our research, we
test perform these verification on several model architectures in
addition to CNNs.

8 CONCLUSIONS
Load testing is a critical activity in the software development life-
cycle (SDLC) as it ensures the software system behaves correctly
within defined SLA ranges under loads as close as possible to real
world usage. As a result, it is recommended that load test engineers
run as many tests as possible using different loads and system con-
figurations. In this paper we propose an approach called MLOLET
to:
• Help load test engineers overcome budget restraints (time
and costs) by increasing the efficiency of the load test cycle
with an early stopping mechanism for failing load tests.
• Increase operational efficiency and service level agreements
(SLAs) by forecasting traffic trends

The process we propose is extensible and offers the flexibility
to use a wide variety of tools for each step. It also provides the
flexibility to select one or more machine learning models to address
the two important challenges mentioned above.

We evaluated MLOLET on a large-scale enterprise system de-
veloped by our industrial partner and verified our assumptions
formulated in our research questions regarding spike detection
and time series signal reconstruction using load test data from
the enterprise system. Additionally, we evaluated MLOLET on an
open-source system by following a black box approach to model in
a generic way a large number of business applications that have
similar characteristics to the studied enterprise system: receiving a
request, processing it, and returning a response.

By using MLOLET our industrial partner was able to:
• Speed up the load testing setup and execution processes by
over 50% by implementing load test automation.
• Double the number of load and endurance tests by using the
early stopping rules following 3-sigma/z-scores based spike
detection process.
• Reduce the amount of time spent on load test data analysis
with respect to spikes by 65%.

ACKNOWLEDGEMENT
We want to thank Ericsson for providing access to the enterprise
systems that we used in our case study. The findings and opinions
expressed in this paper are those of the authors and do not neces-
sarily represent or reflect those of Ericsson and/or its subsidiaries
and affiliation. Our results do not in any way reflect the quality of
Ericsson’s products.

REFERENCES
[1] Ansible 2022. Ansible Automation Platform. https://www.ansible.com/.
[2] ApacheSpark 2022. Apache Spark - Unified Engine For Large Scale Data Analytics.

https://spark.apache.org.
[3] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations

and Trends® in Machine Learning 2, 1 (2009), 1–127. https://doi.org/10.1561/
2200000006

https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006

MLOLET - Machine Learning Optimized Load and Endurance Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[4] Raymond Brueckner and Björn Schuller. 2014. Social signal classification using
deep blstm recurrent neural networks. 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2014), 4823–4827.

[5] Chef 2022. Chef Automation Platform. https://chef.io/.
[6] Jianfeng Chen, Joymallya Chakraborty, Philip V. Clark, Kevin Haverlock, Snehit

Cherian, and Tim Menzies. 2019. Predicting breakdowns in cloud services (with
SPIKE). Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(2019).

[7] DeepLearning4J 2022. DeepLearning4J - A suite of tools for running deep learning
on the JVM. https://deeplearning4j.konduit.ai/.

[8] ElasticSearch 2022. ElasticSearch - A Distributed Free and Open Search and
Analytics Engine. https://elastic.co.

[9] Tolga Ergen and Suleyman S Kozat. 2017. Online training of LSTM networks
in distributed systems for variable length data sequences. IEEE transactions on
neural networks and learning systems 29, 10 (2017), 5159–5165.

[10] FastCompany. 2016. How one second could cost Amazon 1.6 billion
sales. http://www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-sales. Last accessed March 3 2016.

[11] flask 2022. Flask - A micro web Python framework.
https://flask.palletsprojects.com/.

[12] Dario García-Gasulla, Ferran Parés, Armand Vilalta, Jonathan Moreno, Eduard
Ayguadé, Jesús Labarta, Ulises Cortés, and Toyotaro Suzumura. 2018. On the
Behavior of Convolutional Nets for Feature Extraction. J. Artif. Intell. Res. 61
(2018), 563–592.

[13] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud Stop
Computing?: Lessons from Hundreds of Service Outages. Proceedings of the
Seventh ACM Symposium on Cloud Computing (2016).

[14] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network. In Proceedings of the
41st International Conference on Software Engineering (ICSE ’19). 1095–1106.

[15] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), 770–778.

[16] Xiaolei Hua, Lin Zhu, Shenglin Zhang, Zeyan Li, Su Wang, Dong Zhou, Shuo
Wang, and Chao Deng. 2022. GenAD: General Representations of Multivariate
Time Seriesfor Anomaly Detection. ArXiv abs/2202.04250 (2022).

[17] InfluxDB 2022. InfluxDB - An Open Source Timeseries Database.
https://influxdata.com/.

[18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[19] Jenkins 2022. Jenkins Automation Server. https://www.jenkins.io/.
[20] JMeter 2022. Apache JMeter Load Testing Tool. https://jmeter.apache.org/.
[21] Manjunath Jogin, Mohana, M S Madhulika, G D Divya, R K Meghana, and S

Apoorva. 2018. Feature Extraction using Convolution Neural Networks (CNN)
and Deep Learning. In 2018 3rd IEEE International Conference on Recent Trends in
Electronics, Information Communication Technology (RTEICT). 2319–2323. https:
//doi.org/10.1109/RTEICT42901.2018.9012507

[22] Kubernetes 2019. Kubernetes - An open-source system for automat-
ing deployment, scaling, and management of containerized applications.
https://kubernetes.io.

[23] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. 2017. Time-series
extreme event forecasting with neural networks at uber. In International confer-
ence on machine learning, Vol. 34. sn, 1–5.

[24] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning:
a survey. Philosophical Transactions of the Royal Society A 379, 2194 (2021),
20200209.

[25] Load Generator 2023. Load Generator - load testing controller with spike load
capability. https://github.com/eartvit/load-generator.

[26] Logstash 2022. Logstash - An Open Source Data Collection Engine.
https://elastic.co.

[27] Helmut Lütkepohl. 2005. Specification and Checking the Adequacy of VARMA
Models. Springer Berlin Heidelberg, Berlin, Heidelberg, 493–514. https://doi.
org/10.1007/978-3-540-27752-1_13

[28] MLOLET 2023. MLOLET: Machine Learning Optimized Load and Endurance
Testing example implementation on Openshift. https://github.com/eartvit/mlolet.

[29] Andrew Y. Ng. 2004. Feature Selection, L1 vs. L2 Regularization, and Rotational
Invariance. In Proceedings of the Twenty-First International Conference on Ma-
chine Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing
Machinery, New York, NY, USA, 78. https://doi.org/10.1145/1015330.1015435

[30] Prometheus 2022. Prometheus - Monitoring System and Timeseries Database.
https://prometheus.io/.

[31] Puppet 2022. Puppet Automation Platform. https://www.puppet.com/.
[32] Pytorch 2022. Pytorch - An open source machine learning framework that

accelerates the path from research prototyping to production deployment.
https://pytorch.org.

[33] M. Schuster and K.K. Paliwal. 1997. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681. https://doi.org/
10.1109/78.650093

[34] SciKit-Learn 2022. SciKit Learn - Machine Learning in Python.
https://pypi.org/project/psutil.

[35] Seldon 2022. Seldon - Deploy, Monitor and Explain Machine Learning Models.
https://seldon.io.

[36] Bikesh Kumar Singh, Kesari Verma, and A. S. Thoke. 2015. Investigations on
Impact of Feature Normalization Techniques on Classifier’s Performance in Breast
Tumor Classification. International Journal of Computer Applications 116 (2015),
11–15.

[37] SoapUI 2022. SoapUI API Testing Tool. https://soapui.org/.
[38] J. Sola and Joaquin Sevilla. 1997. Importance of input data normalization for the

application of neural networks to complex industrial problems. Nuclear Science,
IEEE Transactions on 44 (07 1997), 1464 – 1468. https://doi.org/10.1109/23.589532

[39] Siwoon Son, Myeong-Seon Gil, Yang-Sae Moon, and Hee-Sun Won. 2016. Anom-
aly Detection of Hadoop Log Data Using Moving Average and 3-Sigma.

[40] Yang Syu, Chien-Min Wang, and Yong-Yi Fanjiang. 2018. A survey of time-aware
dynamic QOS forecasting research, its future challenges and research directions.
In International Conference on Services Computing. Springer, 36–50.

[41] TensorFlow 2022. TensorFlow - An End-to-end Machine Learning Platform.
https://tensorflow.org.

[42] TFX 2022. TensorFlow Serving - A high-performance serving system for machine
learning models. https://tensorflow.org.

[43] Wangyang Wei, Honghai Wu, and Huadong Ma. 2019. An AutoEncoder and
LSTM-Based Traffic Flow Prediction Method. Sensors (Basel, Switzerland) 19
(2019).

[44] Tailai Wen and Roy Keyes. 2019. Time Series Anomaly Detection Using Convo-
lutional Neural Networks and Transfer Learning. ArXiv abs/1905.13628 (2019).

[45] WireMock 2022. WireMock: Mock the APIs You Depend On.
https://wiremock.org/.

[46] WireMock Metrics 2023. WireMock Metrics - extended WireMock with
Prometheus metrics and global random string payload ResponseTransformer.
https://github.com/eartvit/wiremock-metrics2.

[47] Martin Wöllmer, Florian Eyben, Björn Schuller, Ellen Douglas-Cowie, and Roddy
Cowie. 2009. Data-driven clustering in emotional space for affect recognition
using discriminatively trained LSTM networks. In Proc. Interspeech 2009, Brighton,
UK. 1595–1598.

[48] Giancarlo Zaccone, Md. Rezaul Karim, and Ahmed Menshawy. 2017. Deep Learn-
ing with TensorFlow. Packt Publishing Ltd.

[49] Chunkai Zhang and Ao Yin. 2019. Anomaly Detection Algorithm Based on
Subspace Local Density Estimation. Int. J. Web Serv. Res. 16 (2019), 44–58.

[50] Lingxue Zhu and Nikolay Pavlovich Laptev. 2017. Deep and Confident Prediction
for Time Series at Uber. 2017 IEEE International Conference on Data Mining
Workshops (ICDMW) (2017), 103–110.

http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://doi.org/10.1109/RTEICT42901.2018.9012507
https://doi.org/10.1109/RTEICT42901.2018.9012507
https://doi.org/10.1007/978-3-540-27752-1_13
https://doi.org/10.1007/978-3-540-27752-1_13
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/23.589532

	Abstract
	1 Introduction
	2 Studied Systems
	2.1 Studied Industry System
	2.2 Studied Open Source System
	2.3 Measuring System Performance

	3 The MLOLET Framework
	3.1 The Overall Process and the Building Blocks of MLOLET
	3.2 Running Load Tests
	3.3 Model Classes in MLOLET
	3.4 Defining Spikes
	3.5 Data Preprocessing and Tuning Machine Learning Models
	3.6 Evaluating ML Models

	4 Case Study Results
	5 Discussions
	5.1 Spike Effects and Online Spike Detection Observations
	5.2 Transferable Models and Operational Insights

	6 Threats to Validity
	7 Related Work
	7.1 Time Series Forecasting Using Deep Learning Models
	7.2 Spike Detection for Time Series in Load Test Data

	8 Conclusions
	References

