
Noname manuscript No.
(will be inserted by the editor)

Demystifying the Challenges and Benefits of
Analyzing User-Reported Logs in Bug Reports

An Ran Chen · Tse-Hsun (Peter) Chen ·
Shaowei Wang

Received: date / Accepted: date

Abstract Logs in bug reports provide important debugging information for
developers. During the debugging process, developers need to study the bug re-
port and examine user-provided logs to understand the system executions that
lead to the problem. Intuitively, user-provided logs illustrate the problems that
users encounter and may help developers with the debugging process. How-
ever, some logs may be incomplete or inaccurate, which can cause difficulty
for developers to diagnose the bug, and thus, delay the bug fixing process.
In this paper, we conduct an empirical study on the challenges that develop-
ers may encounter when analyzing the user-provided logs and their benefits.
In particular, we study both log snippets and exception stack traces in bug
reports. We conduct our study on 10 large-scale open-source systems with a
total of 1,561 bug reports with logs (BRWL) and 7,287 bug reports without
logs (BRNL). Our findings show that: 1) BRWL takes longer time (median
ranges from 3 to 91 days) to resolve compared to BRNL (median ranges from
1 to 25 days). We also find that reporters may not attach accurate or sufficient
logs (i.e., developers often ask for additional logs in the Comments section of
a bug report), which extends the bug resolution time. 2) Logs often provide a
good indication of where a bug is located. Most bug reports (73%) have over-
laps between the classes that generate the logs and their corresponding fixed
classes. However, there is still a large number of bug reports where there is no
overlap between the logged and fixed classes. 3) Our manual study finds that
there is often missing system execution information in the logs. Many logs only
show the point of failure (e.g., exception) and do not provide a direct hint on
the actual root cause. In fact, through call graph analysis, we find that 28%

An Ran Chen · Tse-Hsun (Peter) Chen
Software PErformance, Analysis, and Reliability (SPEAR) Lab, Concordia University, Mon-
treal, Canada
Shaowei Wang
Department of Computer Science, University of Manitoba, Manitoba, Canada
Email: {anr chen, peterc}@encs.concordia.ca, shaowei@cs.umanitoba.ca

2 An Ran Chen et al.

of the studied bug reports have the fixed classes reachable from the logged
classes, while are not visible in the logs attached in bug reports. In addition,
some logging statements are removed in the source code as the system evolves,
which may cause further challenges in analyzing the logs. In short, our findings
highlight possible future research directions to better help practitioners attach
or analyze logs in bug reports.

Keywords bug report, log, stack trace, empirical study.

1 Introduction

Software debugging is an important and challenging task in software main-
tenance. As the complexity of modern software systems increases, developers
need to spend more time on understanding system execution in order to locate
the problem. A prior study (LaToza and Myers, 2010) finds that developers,
on average, spend 33% of their time on debugging. To assist developers with
debugging, prior studies (Bianchi et al., 2017; Hassani et al., 2018; Jin and
Orso, 2012; Li et al., 2020a; Soltani et al., 2018; Wu et al., 2014; Yuan et al.,
2010, 2011) propose approaches to analyze crash reports or system logs. How-
ever, these prior approaches often assume that developers have access to the
entire system-generated logs or instrumented system runtime data. In prac-
tice, such information may not always be available due to privacy or technical
concerns (Cao et al., 2014; Satvat and Saxena, 2018; Shang et al., 2013). For
instance, users usually only attach a portion of the logs in their bug reports,
since the size of the entire log file is often several gigabytes or even larger (Chen
et al., 2017; Shang et al., 2013).

Bug reports provide important information for developers to fix the prob-
lems that users encounter (Anvik et al., 2006; Bettenburg et al., 2008b). Typ-
ically, when reporters create a bug report, they need to provide a title, the
severity (e.g., major or minor), the description of the problem, and system-
generated logs (e.g., log messages or stack traces) which illustrate the system
execution paths when the problem occurs. In particular, such logs may con-
tain valuable debugging information for developers (Bettenburg et al., 2008b;
Schroter et al., 2010; Zimmermann et al., 2010). Based on the user-provided
information, developers then diagnose the problem and resolve the issue. In
general, developers first look at the description of the bug report and man-
ually examine the attached logs. Then, developers investigate where the logs
were generated in the source code to find out where the bug might be. Finally,
developers manually examine the source code and the corresponding logs, try-
ing to understand how the system was executed when the bug happened and
resolve the bug.

Intuitively, user-provided logs in bug reports illustrate the problems that
users encounter and may help developers with the debugging process (Bet-
tenburg et al., 2008b). However, some logs may be incomplete or inaccurate,
which can cause difficulty for developers to diagnose the bug, and thus, de-
lay the bug fixing process. In this paper, we study the usefulness of logs in

Title Suppressed Due to Excessive Length 3

bug reports and the challenges that developers may encounter when analyzing
such logs. We conduct our study on 10 open-source systems (i.e., ActiveMQ,
AspectJ, Hadoop Common, HDFS, MapReduce, YARN, Hive, PDE, Storm,
and Zookeeper), which are commonly used in prior log-related studies (Chen
and Jiang, 2017; Li et al., 2020a, 2019; Yuan et al., 2014). In particular, we
seek to answer the following research questions:

– RQ1) Are bug reports with logs resolved faster than bug reports
without logs?
Different from prior studies, our results suggest that bug reports with logs
take longer time to resolve (median ranges from 3 to 91 days) than those
without logs (median ranges from 1 to 25 days). Our further analysis shows
that developers often ask for more logs in the Comments section of a bug
report, which extends bug resolution time.

– RQ2) Are there overlaps between logged classes and fixed classes?
We find that 73% (995/1,370) of the bug reports with logs have overlaps
between the logged classes and fixed classes. Although the logged classes
can locate up to 51.6% (44% on average) of the fixed classes, there is still
an average of 56% of the fixed classes that have no overlap with the logged
classes.

– RQ3) Why do some fixed classes have no overlap with the logged
classes?
We conduct a manual study on the bug reports where there is no overlap
between the logged classes and fixed classes. We find that most logs only
record the unexpected behavior of the system (e.g., exception) but do not
show the root cause of a bug nor the execution that led to the failure. We
also find that some logging statements are removed during code evolution,
so the logs can no longer be mapped to the source code.

In summary, our findings show the benefits of user-reported logs in de-
bugging bug reports and potential challenges. Future studies should assist
reporters to attach logs that can more accurately show the execution that
lead to the root cause of a bug. In addition, our manual study finds that ap-
proaches that can help developers recover the system execution by connecting
the logs may be also helpful. To facilitate the reproducibility, we have made
the data available online1.

Paper Organization. Section 2 provides an overview on the background. Sec-
tion 3 explains our case study setup. Section 4 answers our research questions.
Section 5 summarizes the implications of our findings. Section 6 discusses the
threats to validity. Section 7 surveys related work. Finally, Section 8 concludes
this paper.

1 https://github.com/SPEAR-SE/LogInBugReportsEmpirical Data

4 An Ran Chen et al.

 Attachments

 Summary

 Description

 Comments

 ID

 Details

 Reporter

 Assignee

 Dates created,
updated and

resolved

Logs

Fig. 1: An example bug report (HADOOP-4426) on Jira.

2 Background

In this section, we give a brief overview of the types of information that is
available in a bug report.

2.1 Bug Reports

Bug reports contain information to help developers diagnose reported bugs.
A prior study (Bettenburg et al., 2008b) points out that from the developers’
perspective, a good bug report should have a clear description and other im-
portant debugging information, such as logs. On bug tracking systems such
as Jira, bug reports typically contain the following fields: Summary, Status,
Details (including Type, Status, Priority, Resolution, Affects Versions, and
Fix Versions), Assignee, Reporter, Description, Attachments, and Comments.
Figure 1 shows an example of a bug report from the Hadoop Common system.
The Summary section gives an overview of the bug. The Description section
provides an explanation to the bug, and may contain the logs for debugging
hints and some user-specific runtime information (e.g, describe the specific
use case or hardware environment). The Status field provides the status of
the bug report in the workflow. The Resolution field indicates the final resolu-
tion assigned to the reported bug (e.g., FIXED, DUPLICATE, WON’T FIX).

Title Suppressed Due to Excessive Length 5

2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker:
Task attempt_200902120746_0297_r_000033_0 is in COMMIT_PENDING

2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker:
attempt_200902120746_0297_r_000033_0 0.33333334% reduce > sort

Fig. 2: An example of log snippets. (HADOOP-5233)

17/07/14 13:31:58 INFO hdfs.DFSClient: Exception in createBlock
-OutputStream java.io.EOFException:

at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PB
-Helper.java:2280)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.create
-BlockOutputStream(DFSOutputStream.java:1318)
...

Fig. 3: An example of exception logs. (HDFS-8475)

The Affects Versions field is usually provided by the reporter, whereas the
Fix Versions field is added by the assignee after bug fixes. Sometimes, either
the reporter or the assignee might attach patches or tests in the Attachments
section. In the Comments section, developers may further discuss the bug,
provide opinions, and potentially ask for additional technical details. To note
that the same idea applies for bug reports on Bugzilla, although they do not
contain the Fix Versions field.

2.2 Logs in Bug Reports

To assist developers to diagnose and fix bugs, reporters may attach logs in
their bug reports. Typically, there are two types of logs in bug reports: log
snippets, which record software system execution at run time; and exception
logs, which record the stack traces when an exception happens. Figure 2 and
Figure 3 show an example of log snippets and exception logs, respectively. A
log snippet is an ordered set of log messages generated by logging statements
during runtime. Each log is often composed of the timestamp, verbosity level
(e.g., debug, info, error, or fatal), class name, and detailed log message. An
exception log contains information on multiple sets of stack frames (i.e., stack
trace) when an exception happens. Exception logs are recorded together with
log snippets to provide a more detailed view of the system execution when an
exception happens (Fu et al., 2014). Exception logs often contain the times-
tamps, thrown exceptions (e.g., NullPointerException), and the fully-qualified
file names, method signatures, and line numbers for the method calls on the
stack frames. In this study, we refer to logged classes as the classes that gen-
erate the logs, either log snippets, exception logs, or both.

In bug reports, logs may be attached in the Description and Comments
sections. Reporters often open a bug report and report the failing stack traces

6 An Ran Chen et al.

Fig. 4: An example of a bug report (ZOOKEEPER-2982) highlighting the
discussions between the reporter and developer (assignee). The bug report
addresses a server problem when resolving for the host address on Zookeeper
clusters. In the Comments section, the developer asked the reporter to provide
some server logs to help the bug fix (higlighted in red).

or log snippets in the Description to assist developers in bug fixing. Occasion-
ally, developers may discuss the bug report and request more logs from the
reporter in the Comments section. Figure 4 shows such an example, where the
developer first asked for a step-by-step instruction to reproduce the bug, then
demanded server logs.

A number of prior studies aim to debug or reproduce bugs using system
execution information (Jin and Orso, 2012; Soltani et al., 2018; Wu et al., 2014;
Yuan et al., 2010, 2011). However, these prior approaches often assume that
developers have access to the entire system-generated logs or instrumented
system runtime data. Such debugging data may not always be available to
developers. In many cases, developers need to rely on data in bug reports
for debugging, which may be incomplete or inaccurate (Bettenburg et al.,
2008b). Without helpful debugging data, it is difficult for developers to fully
understand the bug and thus, quite often delay the bug fixes (Bettenburg et al.,
2008b). Thus, in this paper, we intend to explore whether user-provided logs

Title Suppressed Due to Excessive Length 7

provide valuable debugging hints to developers. Our findings provide an initial
insight on leveraging readily-available information in bug reports to assist
developers with debugging, and provide a deeper understanding of the reasons
and potential solutions to the challenges that developers may encounter when
analyzing user-provided logs in bug reports.

3 Data Collection and Case Study Setup

In this section, we first discuss the studied systems. Then, we describe our
data collection process and data characteristics.

3.1 Studied Systems.

Table 1 shows an overview of the studied systems. We conduct our case study
on 10 Java-based open source systems: ActiveMQ, AspectJ, Hadoop Common,
HDFS, MapReduce, YARN, Hive, PDE, Storm and ZooKeeper. The size of
the studied systems ranges from 144K to 1.7M lines of code. These studied
systems are widely used in prior log-related studies and have high-quality
logs (Chen and Jiang, 2017; Li et al., 2019; Yuan et al., 2014). The studied
systems also cover different domains, varying from virtual machine deployment
systems to data warehousing solutions. Most of the systems have more than
10 years of code development. We choose these systems because they are large
in scale, actively maintained, well-documented, and have many bug reports
that contain logs (Chen and Jiang, 2017; Li et al., 2019).

3.2 Collecting and Filtering Bug Reports.

We collect all the bug report data that is available on the Jira repository (Apache,
2019) of each studied system from 2008 (or the earliest bug creation date) to
January 2019, and compute the lines of code (LOC) on the master branch
(data collected in January 2019). To collect the bug reports, we built a web
crawler that sends REST API calls to the Jira repositories. We select the bug
reports based on the criteria that are used in prior bug report studies (Chen
and Jiang, 2017; Chen et al., 2014; Yuan et al., 2014). Namely, we select bug
reports of the type “Bug”, whose status are “Closed” or “Resolved”, with the
resolution “Fixed” and priority marked as “Major” or above. Additionally, we
only select the bug reports that have corresponding code changes in the code
repository (i.e., having commit messages that contain the bug report ID), so
we can verify that the bugs are indeed fixed. At the end of this process, we
collected a total of 8,848 bug reports.

8 An Ran Chen et al.

Table 1: An overview of the studied systems.

System LOC Type Code maturity Selected bug
history range

ActiveMQ 480k Messaging server > 10 years 2008-01-01
to 2019-01-19

AspectJ 447k Aspect-oriented > 10 years 2008-01-01
extension to 2019-01-19

Hadoop Common 364K Common utilities > 10 years 2008-01-01
to 2019-01-19

HDFS 560K Distributed storage > 10 years 2008-01-01
to 2019-01-19

MapReduce 291K Distributed processing > 10 years 2008-01-01
system to 2019-01-19

YARN 313K Resource manager > 5 years 2012-07-18
to 2019-01-19

Hive 1.7M Data warehouse > 5 years 2008-10-15
to 2019-01-19

PDE 369k Tools for plug-ins > 10 years 2008-01-01
development to 2019-01-19

Storm 346k Distributed processing > 5 years 2013-12-11
system to 2019-01-19

Zookeeper 144k Configuration service > 10 years 2008-06-10
to 2019-01-19

Total 5.0M - - -

Table 2: Bug reports in the studied systems. BR represents bug reports; BRNL
represents bug reports with no logs and BRWL represents bug reports with
logs (i.e., either contain log snippets, stack traces, or both).

System BR with BR with BR with Total Total Total
only log only stack both BRWL BRNL BR
snippets traces

ActiveMQ 10 55 27 92 (15%) 502 (85%) 594
AspectJ 0 42 3 45 (24%) 140 (76%) 185
Hadoop Common 23 71 58 152 (21%) 573 (79%) 725
HDFS 29 99 74 202 (17%) 964 (83%) 1,166
MapReduce 27 100 66 193 (34%) 382 (66%) 575
YARN 29 147 96 272 (47%) 304 (53%) 576
Hive 4 109 16 129 (6%) 2,102 (94%) 2,231
PDE 23 342 0 365 (17%) 1,763 (83%) 2,128
Storm 7 44 13 64 (17%) 316 (83%) 380
Zookeeper 9 20 18 47 (16%) 241 (84%) 288

Total 161 1,029 371 1,561 (18%) 7,287 (82%) 8,848

3.3 Identifying Bug Reports that Contain Logs

In this paper, we consider two types of logs: log snippets and stack
traces. We refer log snippets as the system-generated logs and refer stack
traces as the reported messages in stack frames (i.e., in the case of excep-
tion). These two types of logs are often the only information that is avail-
able for debugging production problems (Fu et al., 2014; Yuan et al., 2010,
2012a). A log snippet is composed of consecutive log messages generated at
runtime. Log messages often contain a static message (e.g., in Java, in the fol-

Title Suppressed Due to Excessive Length 9

low code, Logger.info("static_message" + method()), static mes-
sage is an example of a static message), values for dynamic variables, and the
log verbosity level (e.g., info, warning, or error). An example log message is:
“2018-08-29 15:37:47.891 Utils [INFO] Interrupted while waiting for fencing
command: cd”, where it shows the timestamp of when the event happened,
the executed class (i.e., Utils), the log level (i.e., INFO), and the log message
(i.e., Interrupted while waiting for fencing command: cd). Note that such log
messages usually contain system execution information and may not always
be an indication of an error (Chen et al., 2017; Yuan et al., 2010). The second
type of logs is the system generated exception message and stack trace. Stack
traces show the stack frame of the system when exceptions occur. Typically,
reporters attach logs in the bug description or as comments.

Since the studied systems use specific logging conventions on the structure
of the log snippets (e.g., ordered as timestamps, verbosity level, class name,
and message), we use regular expressions to capture them in the Description
and Comments sections of bug reports (Chen and Jiang, 2017). Specifically,
we look for log snippets by extracting lines that contain timestamps and log-
related keywords (e.g., info, debug, and error). We look for stack traces in a
similar fashion by using both keywords (e.g., a line beginning with “at...”)
and line formats (e.g., followed by method invocation, class name, and line
number) that are specific to stack traces.

3.4 Collected Bug Reports

In general, we find that there is a non-negligible percentage (an av-
erage of 21.5% across all systems) of bug reports that contain logs
(i.e., either log snippets, stack traces, or both). Table 2 shows the num-
ber of bug reports in the studied systems. We call bug reports with logs as
BRWL, and bug reports without logs as BRNL. In total, 1,561 (18%) bug re-
ports contain logs and 7,287 (82%) bug reports do not contain any logs. We
also observe that 6% to 47% (an average of 21.5%) of the bug reports con-
tain at least one type of logs, which indicates that logs are often attached by
reporters to help describe problems. In addition, reporters are more likely to
include stack traces in a bug report compared to log snippets. Specifically, 10%
(161/1,561) of BRWL have only log snippets compared to 66% (1,029/1,561)
of BRWL that have only stack traces. One possible reason is that stack traces
are more straightforward to interpret (e.g., with clear exception messages and
stack traces); whereas the information in the log snippets may vary depend-
ing on how reporters attach the logs and how developers write the logging
statements in the source code (Li et al., 2019; Yuan et al., 2010, 2011). How-
ever, many bug reports still contain both log snippets and stack traces, which
shows that both types of logs are commonly provided in bug reports to help
debugging.

10 An Ran Chen et al.

4 Case Study Results

In this section, we discuss the results of our research questions (RQs). For each
RQ, we present the motivation, our approach and the results.

4.1 RQ1: Are Bug Reports With Logs Resolved Faster Than Bug Reports
Without Logs?

Motivation: Prior studies (Bettenburg et al., 2008b; Zimmermann et al.,
2010) found that log snippets and stack traces are useful debugging informa-
tion in bug reports. Presumably, and as found in prior research (Bettenburg
et al., 2008b; Yuan et al., 2012b; Zimmermann et al., 2010), bug reports that
contain logs may take a shorter amount of time to resolve compared to bug
reports that do not have logs. However, prior research only studies bug reports
with either log snippets or stack traces but did not study the combination of
both types of logs. In addition, as also shown in Section 2, developers may
ask for more logs and may thus delay the bug resolution time. Therefore, in
this RQ, we revisit whether bug reports with logs are resolved faster than bug
reports without logs, and if bug reports with logs in the Comments section
take more time to resolve.

Approach: We analyze the bug resolution time for the bug reports that we
collected in Section 3. In particular, we study the bug reports that have a cor-
responding code change in the code repository. For each analyzed bug report,
we calculate the bug resolution time (in days) by taking the difference between
the bug resolution date and bug report creation date (Chen et al., 2014). We
statistically compare the bug resolution time of the bug reports with logs
(BRWL) and the bug reports without logs (BRNL). We use Wilcoxon rank-
sum test to study if there exists a statistically significant difference between
the resolution time of BRWL and BRNL. We select Wilcoxon rank-sum test
because it is a non-parametric test that does not have an assumption on the
distribution of the data (Moore et al., 2009). To further show the magnitude of
the difference, we compute the effect size. We use Cliff’s Delta, which is also a
non-parametric test, as the effect size measurement to quantify the amount of
difference between BRWL and BRNL (Cliff, 1993). We assess the magnitude
by using the thresholds provided by Romano et al. (2006):

effect size

negligible, if |d| < 0.147

small, if 0.147 ≤ |d| < 0.33

medium, if 0.33 ≤ |d| < 0.474

large, if 0.474 ≤ |d|

(1)

Results: In general, BRWL takes more time to resolve compared to
BRNL. Table 3 shows the median resolution time of bug reports with logs
(BRWL) and without logs (BRNL). We find that the median resolution time

Title Suppressed Due to Excessive Length 11

Table 3: A comparison of the bug resolution time (in days) between the bug
reports with logs (BRWL) and the bug reports without logs (BRNL) across
the studied systems.

Project BRWL median BRNL median p-values Cliff’s Delta
resolution resolution

ActiveMQ 21.5 1.0 <0.001 0.73 (large)
AspectJ 14.0 25.0 0.89 0.01 (negligible)
Hadoop Common 7.0 1.0 <0.001 0.58 (large)
HDFS 27.5 4.0 <0.05 0.46 (medium)
MapReduce 23.5 1.0 0.19 0.69 (large)
YARN 10.0 2.0 0.47 0.53 (large)
Hive 7.0 3.0 0.56 0.25 (small)
PDE 3.0 6.0 <0.05 0.11 (negligible)
Storm 4.0 3.0 <0.001 0.28 (small)
Zookeeper 91.0 1.0 0.15 0.88 (large)

Average 20.9 4.7 - -

0
5

10
15

ActiveMQ

In
 D

ay
s

BRNL BRWL

0
5

10
15

AspectJ

In
 D

ay
s

BRNL BRWL

0
5

10
15

Hadoop

In
 D

ay
s

BRNL BRWL

0
5

10
15

HDFS

In
 D

ay
s

BRNL BRWL

0
5

10
15

MAPREDUCE

In
 D

ay
s

BRNL BRWL

0
5

10
15

YARN

In
 D

ay
s

BRNL BRWL

0
5

10
15

Hive

In
 D

ay
s

BRNL BRWL

0
5

10
15

PDE

In
 D

ay
s

BRNL BRWL

0
5

10
15

Storm

In
 D

ay
s

BRNL BRWL

0
5

10
15

Zookeeper

In
 D

ay
s

BRNL BRWL

Fig. 5: Beanplots to illustrate the densities of resolution time (in days) distri-
bution for BRWL and BRNL in range of 15 days.

ranges from 3 to 91 days for BRWL, and ranges from 1 to 25 days for BRNL.
Our results show that such differences are statistically significant in four out of
10 studied systems (ActiveMQ, Hadoop Common, HDFS, and Storm), where
the effects range from small to large. Figure 5 further shows the beanplots that
compare the density of the resolution time distribution between BRWL and
BRNL. We limit the Y-axis to 15 days to better visualize the difference between
the resolution time of BRWL and BRNL (most BRNL are resolved within 15
days). As illustrated in Figure 5, the distribution of the resolution time for
BRNL generally has a long tail. In other words, most BRNL are resolved in a

12 An Ran Chen et al.

Storm Zookeeper

MAPREDUCE YARN Hive PDE

ActiveMQ AspectJ Hadoop HDFS

BRNL BRWL BRNL BRWL

BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL

BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL
0

5

10

5

10

0

5

10

0

5

10

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

In
 D

ay
s

Fig. 6: Boxplots to illustrate the median resolution time (in days) for BRWL
and BRNL in range of 15 days.

very short amount of time (within two to three days), and almost all BRNL
are resolved within 15 days. BRWL, on the other hand, have more uniform
distributions in the studied systems. To better illustrate this finding, Figure 6
shows the boxplots that compare the median resolution time between BRWL
and BRNL in range of 15 days. BRNL are generally resolved in a shorter
amount of time than that of BRWL.

Prior studies (Bettenburg et al., 2008b; Zimmermann et al., 2010) found
that log snippets and stack traces are important debugging information in
bug reports. However, even though such information is useful for debugging,
we find that BRWL take more time to resolve compared to BRNL. Hence,
we further investigate the possible factors that may increase the resolution
time for BRWL. We first study where the logs are attached in bug reports.
As discussed in Section 2, developers may request more logs in the Comments
section of a bug report, which may take time for the reporter to provide and
delay the bug fixing. Table 4 shows the percentage of BRWL with logs only
in the Description section (i.e., BRWL-D) and BRWL with logs in the Com-
ments section (i.e., BRWL-C, both BRWL with logs only in the Comments
and BRWL with logs in both the Description and Comments), along with
their respective median number of log lines and median resolution time. We
find that the BRWL-C covers from 17% to 68% (an average of 43%) of BRWL.
In addition, the median number of log lines in the Comments section is com-

Title Suppressed Due to Excessive Length 13

parable to that of the Description section. For the median resolution time,
however, BRWL-C require much more time to resolve (i.e., medians are 1.1
to 36.8 times slower) compared to that of BRWL-D. The Wilcoxon rank-sum
test shows that the resolution time from BRWL-D is statistically significantly
different from the BRWL-C (p < 0.001). We use Cliff’s Delta to assess the
magnitude of this difference, which results to a small effect size (i.e., |d| is
0.31). We further examine the Spearman rank correlation between the num-
ber of log lines in the Comments section and the resolution time. Although
the correlation is not strong, we find that there are some correlations between
the bug resolution time and the number of log lines in the Comments section
(0.20 across all studied systems). Our finding shows that it is common for
developers to ask for more logs to diagnose a bug, and having more logs in
the Comments section may increase bug resolution time. In other words, the
initial-attached logs may be insufficient for debugging. Figure 4 illustrates an
example of such cases. The bug report ZOOKEEPER-2982 highlights an In-
ternet Protocol address (IP) resolution bug in the ZooKeeper server. Although
the reporter initially added some stack traces in the bug description illustrat-
ing the root cause, he was later asked by the developer to provide the steps to
reproduce the bug and some server logs to help the bug fix.

Different from other studied systems, our finding shows that, in Eclipse
PDE and AspectJ, the bug reports with logs are resolved faster than the ones
without. The median resolution time for BRWL and BRNL are 3 and 6 days
for PDE, respectively, and the difference is statistically significant (p-value
< 0.05) with a negligible effect size. The median resolution time for BRWL
and BRNL are 14 and 25 days for AspectJ, respectively, and the difference
is not statistically significant (p-value = 0.89). After some investigation, we
find that, compared to other studied systems, Eclipse PDE and AspectJ have
the least percentage of BRWL-C. As shown in Table 4, BRWL-C take more
time to resolve. For PDE and AspectJ, there are only 23% and 33% of the bug
reports that have logs in the Comments section, respectively.

Another factor that associates with the bug resolution time is the complex-
ity of bug fixes. We further compare the complexity of the bug fixes between
BRWL and BRNL. For each bug report, we compute the number of changed
lines of code (i.e., the total number of additions and deletions). In general,
we find that the median number of changed lines of code is 51 for BRWL
and 30 for BRNL. We also calculate the non-parametric Wilcoxon rank-sum
test to compare the number of changed lines between BRWL and BRNL. The
Wilcoxon rank-sum test shows that BRWL is statistically significant different
from BRNL in terms of changed lines (p < 0.001). To assess the magnitude
of this difference, we use Cliff’s Delta. The difference between the number of
changed lines of code for BRWL and BRNL is negligible (i.e., |d| is 0.12). In
short, we find that the bug fixes for BRWL are larger than BRNL, which may
be positively correlated with the longer fixing time of BRWL.

14 An Ran Chen et al.

Table 4: A comparison of the number of log lines and median resolution time
between BRWL that have logs only in Description (BRWL-D) and BRWL that
have logs in Comments (i.e., BRWL-C, BRWL with logs only in Comments
and BRWL with logs in both Description and Comments).

Project # of BRWL-C Median # of Median # of BRWL-D Median # of Median
log lines resolution log lines resolution

time time

ActiveMQ 40 (43%) 28 221 52 (57%) 21 6
AspectJ 15 (33%) 6 84 30 (67%) 6 11
Hadoop Common 72 (47%) 12 8 80 (53%) 13 7
HDFS 116 (57%) 22 37 86 (43%) 13 21
MapReduce 111 (58%) 18 36 82 (42%) 17 19
YARN 132 (49%) 18 13 140 (51%) 14 6
Hive 41 (32%) 22 18 88 (68%) 29 5
PDE 83 (23%) 9 27 282 (77%) 11 1
Storm 11 (17%) 27 14 53 (83%) 17 4
Zookeeper 32 (68%) 16 116 15 (32%) 25 46

total: 653 (42%) avg: 18 avg: 57 total: 908 (58%) avg: 17 avg: 13

We find that BRWL takes more time to resolve (median ranges from 3 to 91
days) compared to BRNL (median ranges from 1 to 25 days). Our further
investigation shows that the initially-attached logs may not be sufficient
for debugging (i.e., developers often ask for more logs in the Comments
section of a bug report), and the bug fixing size of BRWL is, in general,
larger than BRNL (median is 51 vs 30 lines of code).

4.2 RQ2: Are There Overlaps Between Logged Classes and Fixed Classes?

Motivation. Logs illustrate important system run-time information. When
debugging user-reported bugs, logs (i.e., either log snippets, stack traces, or
both) are usually the only source of information that is available to develop-
ers (Fu et al., 2014; Yuan et al., 2010, 2012a). Developers need to manually
analyze the logs to diagnose the problem. Hence, if the attached logs are un-
clear or insufficient, debugging can become even more time consuming and
challenging (LaToza and Myers, 2010; Yuan et al., 2010, 2012b). Even though
prior studies have leveraged logs to assist bug localization (Moreno et al., 2014;
Wang and Lo, 2016; Wong et al., 2014), it is still not clear about the direct
effects of the logs and their possible limitations. In this RQ, we study the
overlap between the logged classes (i.e., classes that generated the logs) and
the fixed classes (i.e., classes where developers applied bug fixes). Our findings
provide the empirical evidence on the importance and usefulness of providing
additional tools and information to help developers in analyzing user-provided
logs in bug reports.

Approach. Our goal is to study if there exist overlaps between the logged
classes and the fixed classes (i.e., whether or not at least one of the fixed
classes is the same as the classes that generated the user-reported logs). Our
first step is to extract the logged classes from bug reports. As mentioned
in Section 2, we capture the logs using regular expression. Specifically, we

Title Suppressed Due to Excessive Length 15

Table 5: An overview of the bug reports with fixed classes overlapping with the
logged classes. The average numbers are computed based on each bug report.
The percentage of fixed classes located in logs is the ratio of the fixed classes
in logs to the total fixed classes in bug report (# fixed classes in logs / # total
fixed classes).

Project # of BR with Avg. # of fixed Avg. # of logged % of fixed classes
fixed classes classes per BR classes per BR located in logs

located in logs

ActiveMQ 25 (58%) 2.3 15.3 41.6%
AspectJ 23 (65%) 2.0 5.5 33.7%
Hadoop Common 87 (65%) 2.4 6.8 50.0%
HDFS 119 (71%) 2.8 16.1 48.2%
MapReduce 108 (70%) 2.2 8.6 49.7%
YARN 192 (79%) 3.3 11.2 51.0%
Hive 91 (75%) 2.9 12.6 51.6%
PDE 291 (81%) 4.5 14.4 24.5%
Storm 30 (55%) 2.0 7.6 38.7%
Zookeeper 29 (63%) 2.2 6.7 46.2%

total: 995 (73%) avg: 2.7 avg: 10.5 avg: 43.5%

look for log snippets by extracting log lines that contain timestamps (e.g.,
17/07/14 13:31:58), verbosity level (e.g., INFO), and fully-qualified class
name (e.g., org.apache.hadoop.mapred.TaskTracker). We highlight
stack traces in a similar fashion by using the at keyword, followed by a fully-
qualified class name, method invocation, and line number. At the end of the
first step, we get a list of fully-qualified class names covered in logs.

The next step is to extract the list of fixed classes for each bug report. We
follow prior studies (Kim et al., 2006; Śliwerski et al., 2005) by linking the bug
reports to the associated bug fixing commits using bug IDs. In the studied
systems, developers are required to record the bug IDs in commit messages.
Therefore, we use the git log | grep BUG_ID[ˆ\d] command to find
the corresponding bug fixing commits of a bug. Once we get these commits,
we find the list of fixed Java files and compute for their fully-qualified class
name from the package declaration statement (e.g., package org.apache
.hadoop.mapred.TaskTracker). Finally, we compared the fixed classes
that overlap with the logged classes. To note that both the logged classes and
fixed classes are collected at outer class-level. To further refine our analysis,
we exclude 191 bug reports that did not modify any existing Java classes. We
then conduct a manual study on these bug fixes to examine the reason.

Results. Classes covered in user-reported logs provide a good indica-
tion of where the bug may be located. Table 5 shows the overview of the
bug reports where the fixed classes have an overlap with the logged classes. We
find that 88% (1,370/1,561) bug reports modified existing Java classes when
fixing bugs. We further study the remaining 191 bug reports that did not mod-
ify any existing Java class later in this RQ. There are 73% (995/1,370) bug
reports that have an overlap between the fixed classes and the logged classes.
In other words, to a large extent, logs provide direct information for developers
to diagnose and fix a bug. In addition, Table 5 shows the number of classes

16 An Ran Chen et al.

Table 6: A comparison of the median resolution time for the bug reports with
fixed classes located in logs and the ones without.

Project # of BR with Median # of BR with no Median
fixed classes resolution time fixed classes resolution time

located in logs (days) located in logs (days)

ActiveMQ 25 (58%) 14 18 (42%) 57
AspectJ 23 (65%) 16 22 (35%) 13
Hadoop Common 87 (65%) 7 47 (35%) 6
HDFS 119 (71%) 18 48 (29%) 26
MapReduce 108 (70%) 11 46 (30%) 26
YARN 192 (79%) 10 52 (21%) 7
Hive 91 (75%) 7 30 (25%) 6
PDE 291 (81%) 3 70 (19%) 6
Storm 30 (55%) 4 25 (45%) 25
Zookeeper 29 (63%) 60 17 (37%) 117

total: 995 (73%) avg: 15 total: 375 (27%) avg: 29

covered in user-reported logs. We find that the user-reported logs often cover
5.5 to 16.1 unique classes and these logged classes have an overlap with 24.5%
to 51.6% of the fixed classes. Given the fact that, on average, fixing a bug
report requires only modifying 2 to 4.5 classes in the studied systems. Our
finding shows that even without any advanced techniques, the user-reported
logs may provide a good indication of the fixed classes. Furthermore, on some
systems, the median resolution time is drastically reduced for bug reports that
have class overlap. Table 6 shows the median resolution time for bug reports
with class overlap and the ones without. For bug reports with class overlap, the
resolution time can be reduced up to 6.3 times. However, as we also find, not
all fixed classes are found in logged classes. Further improvement can be done
to better assist developers. For instance, future research can develop tools to
reconstruct the execution path based on the user-reported logs to assist devel-
opers with bug fixing as we observe cases where the fixed classes are located
on the execution path.

Similar to the prior study conducted by Schroter et al. (2010), we fur-
ther analyze the bug reports with fixed classes in stack traces (725/995) to
study the position of the fixed class in the stack frames. Figure 7 shows an
overview between the position of the fixed class in stack trace and the cu-
mulative percentage of bug reports. We observe that 40% of the bug reports
have the fixed class located at the first stack frame, 70% have the fixed class
located within the top-5 stack frames, and more than 90% have the fixed class
located within the top-15 stack frames. However, when we further analyze the
relationship between the position of the fixed class and the resolution time of
the bug report, the Spearman correlation is nearly zero (0.08). One potential
reason is that bug reports are only marked as resolved or fixed after they have
been tested, code-reviewed, and integrated into the production environment.
There are many factors that can influence the resolution time (e.g., time of bug
triage and replication). As the position of the fixed class is only relevant to the
debugging process, its effect becomes less significant to the overall resolution

Title Suppressed Due to Excessive Length 17

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 5 10 15 20 40 60
Position of fixed class in stack trace

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f b
ug

 r
ep

or
ts

Fig. 7: Cumulative percentage of bug reports for the position of fixed class in
stack trace.

time. Therefore, our finding shows that there is no clear correlation between
the position of the fixed class in the stack frame and the bug resolution time.

Table 7 shows examples where there is an overlap between the logged
classes and fixed classes. HADOOP-5233 (i.e., first row in Table 7) reports
a bug where the reducer transits from COMMIT_PENDING to RUNNING state
while it should wait for the commit response. The user-provided logs show
the unexpected transition from COMMIT_PENDING state, generated by the
TaskTracer class. The bug fix to HADOOP-5233 adds a conditional logic
to ignore the progress update in the TaskTracker class whenever the state
changes from COMMIT_PENDING to RUNNING. Thus, the logged class Task-
Tracer overlaps with the fixed class. Other changes (i.e., the changes that occur
in JobInProgress, Task, TaskInProgress and TaskStatus) make sure that the
COMMIT_PENDING task entry is properly removed from the tracker. HDFS-
10512 (i.e., second row in Table 7) describes a bug that triggers an unexpected
NullPointerException in the VolumeScanner class (i.e., a volume scanner
is responsible to scan block data to detect data corruptions) while reading for
a volume variable through the DataNode.reportBadBlocks method call. The
bug fix essentially added a conditional operator to verify whether the vol-
ume variable is null in the DataNode class. The changes to FsDatasetImpl
and VolumeScanner are to adopt existing codes to the changes. In addition,
a new test case is added to the TestFsDatasetImpl class to test the DataN-
ode.reportBadBlocks method when the volume is null. The logged classes over-
laps with the fixed classes DataNode and VolumeScanner.

18 An Ran Chen et al.

Table 7: Examples of direct mapping between logged classes and fixed classes.
Note that we simplify these examples by only showing the class name instead
of the fully-qualitified class name.

Bug Report Logs Logged Fixed classes Overlaps
classes

HADOOP-5233

...
2009-02-12 08:35:36,417 INFO org.apache.hadoop.map
-red.TaskTracker: Task attempt_200902120746_0297_r
_000033_0 is in COMMIT_PENDING
2009-02-12 08:35:36,417 INFO org.apache.hadoop.map
-red.TaskTracker: attempt_200902120746_0297_r_0000
33_0 0.33% reduce > sort

TaskTracker

JobInProgress
Task

TaskInProgress
TaskStatus
TaskTracker

TaskTracker

HDFS-10512

...
2016-04-07 20:30:53,831 ERROR org.apache.hadoop.
hdfs.server.datanode.VolumeScanner: VolumeScanner
(/dfs/dn, DS-89b72832-2a8c-48f3-8235-48e6c5eb5ab3)
exiting because of exception java.lang.NullPointer
-Exception

at org.apache.hadoop.hdfs.server.datanode.DataNo
-de.reportBadBlocks(DataNode.java:1018)
at org.apache.hadoop.hdfs.server.datanode.Volume
-Scanner$ScanResultHandler.handle(VolumeScanner
.java:287)
at org.apache.hadoop.hdfs.server.datanode.Volume
-Scanner.scanBlock(VolumeScanner.java:443)
at org.apache.hadoop.hdfs.server.datanode.Volume
-Scanner.runLoop(VolumeScanner.java:547)
at org.apache.hadoop.hdfs.server.datanode.Volume
-Scanner.run(VolumeScanner.java:621)

...

DataNode
VolumeScanner

DataNode
FsDatasetImpl

TestFsDatasetImpl
VolumeScanner

Datanode
VolumeScanner

We further manually examine the bug reports in which no existing Java
classes were modified in the bug fix. We manually study a statistically repre-
sentative random sample of 162 bug reports out of the 191 bug reports (with a
confidence level of 95% and a confidence interval of 3%). We classify these bug
reports into four categories: non-Java code changes, configuration file changes,
only added new Java classes, and incorrect commit. Non-Java code changes
(85/162) are bug fixes performed on programming source code files other than
.java. Such source code files are usually system-specific. For example, in
HIVE, a big majority of these bug reports changed test query files (.q) and
test query result files (.q.out). Configuration file changes (65/162) are bug
fixes that only modified configuration files, such as managing dependencies in
.xml file for Maven projects. Only added new Java classes (8/162) are bug
reports where only new Java classes were added to the studied system, and no
existing Java class was modified. For such bugs, it is impossible for the logs to
be mapped to a new fixed class that is yet to exist in the system. We also find
that this type of bug fixes is uncommon and developers often modify other
configuration files to adopt the newly added Java classes. Finally, incorrect
commit (4/162) consists of bug reports where bug fixes were committed with
the incorrect bug ID. In short, our findings show that it is common for de-
velopers to modify files that are written in different programming languages,
and some bugs can actually be fixed by modifying configuration files. Future
studies should consider the polyglot nature of modern software systems and
the importance of configuration files in fixing bugs.

Title Suppressed Due to Excessive Length 19

The fixes to 88% (1,370/1,561) of the BRWL included modifications to
existing Java classes. We find that 73% (995/1,370) of the bug reports
have overlaps between the logged classes and fixed classes. Depending on
the quality of the logs, the logged classes can locate up to 51.6% (44%
on average) of the fixed classes. Although the user-provided logs provide
a good indication on the bug fixing locations in some situations, there is
still an average of 56% of the fixed classes that have no overlap with the
logged classes.

4.3 RQ3: Why do some fixed classes have no overlap with the logged classes?

Motivation. Unlike bugs that are uncovered during development phases,
many user-reported bugs are difficult to reproduce and often lack test cases (Tucek
et al., 2007; Yuan et al., 2012a, 2014). In such cases, developers rely on logs
during the debugging process (Yuan et al., 2010, 2011, 2012a). However, as
we found in RQ2, even though there is an overlap between logged classes and
fixed classes, there are some bugs where the user-provided logs cannot help
identify fixed classes (27%, 375/1,370) after excluding the bug reports that
had no modified Java class in bug fixes. Therefore, in this RQ, we manually
investigate the reasons why certain user-provided logs fail to find the fixed
classes (i.e., cannot help identify any fixed classes). Our findings may provide
insights on helping researchers and practitioners improve the current logging
practice.

Approach. We manually study the bug reports in which the logs could not
help identify fixed classes at all. From RQ2, we find that 27% (375/1,370)
of bug reports have no overlaps between the logged classes and fixed classes.
Hence, we then manually study 278 out of 375 such bug reports to achieve a
confidence level of 95% and a confidence interval of 3% (Moore et al., 2009).
The first author of the paper manually studied the bug reports. The first
author examined the bug reports, the attached logs, the bug fixes, source code
classes, and the development history (e.g., prior commits) to understand the
reason. The first author took notes while studying each bug report. At the
end of the process, we uncovered a list of categories for which there was no
direct mapping between logged classes and fixed classes. We then revisited and
assigned each bug report to the uncovered categories. The second author of the
paper helped verify the assigned categories and any discrepancy (e.g., on which
category the bug report belongs to) is discussed until there is a consensus.

Results. In total, we uncovered two categories of reasons for which there was
no direct mapping between the logged classes and fixed classes. Below, we
discuss each category in detail.

Logs that show the failure but not the fault (i.e., the root cause)
(266/278). We find that reporters in most of the 278 studied bug reports
attached related logs to the bug, but the logged classes do not have an overlap

20 An Ran Chen et al.

Fig. 8: An example bug report (STORM-2496) that shows the reporter at-
tached logs to illustrate unexpected behaviors (i.e., failure). The bug fix was
applied in a related class (i.e., DependencyUploader), but the class is not shown
in the stack trace.

Table 8: Percentage of bug reports and fixed classes located at different dis-
tances, where the distance is calculated as the shortest path between the logs
and fixed classes in terms of class invocations. When there is no path between
the logs and fixed classes, the fixed classes are marked as unreachable.

BR # fixed classes

total dist=1 dist>1 unreachable total dist=1 dist>1 unreachable

266 61 (23%) 13 (5%) 192 (72%) 564 83 (15%) 19 (3%) 462 (82%)

Title Suppressed Due to Excessive Length 21

with the fixed classes. In all the cases that we manually studied, the logs are
reported to illustrate an unexpected behavior (i.e., the failure (IEEE, 2020)).
The majority of the cases (i.e., 202 bug reports) are related to stack traces. As
stack traces are used to provide debugging information at the point of failure,
the faulty classes (i.e., the cause of the bug) do not fall into the stack frames
of the stack traces. Figure 8 shows an example. In STORM-2496, a reporter
attached stack traces to show the failure AuthorizationException when users
upload dependency artifacts. In this stack trace, we see the list of stack frames
leading to the exception and the state of the user’s access permission being null.
However, DependencyUploader, the essential class that manages permissions
and where the bug fix was applied, is not shown in the logs. The reporter also
did not attach the logs that happened before the exception, which may show
the execution path that led to the exception and help locate the root cause.

Similar to the prior study by Moreno et al. (2014), we further analyze the
shortest path in the call graph between the fixed classes and classes found
in the logs at class level. Although some user-provided logs cannot help to
identify any fixed classes, we want to investigate how far away the logged
classes are from the fixed classes in the system. Thus, we further analyze the
distance between the fixed classes and the logged classes. First, we select the
commit prior to the bug fixing commit as our affected version (i.e., the bug is
still unresolved). Then, we derive the system call graph on the affected version
using JavaParser [1]. JavaParser is a static analysis tool that transforms the
source code to Abstract Syntax Tree (AST) for Java applications. We traverse
the method calls in the ASTs to uncover all the paths in the call graph. Once
the paths are generated, we calculate the distance for the shortest path, if it
exists, between the fixed classes and the logged classes by applying depth-first
search.

For the 266 bug reports that belong to this category, 61 (23%) bug reports
have fixed classes that are one distance away from the classes shown in the
logs, 13 (5%) are two distance or further, and 192 (72%) bug reports have fixed
classes that are unreachable from the classes in the logs. The result implies
that 28% of the studied bug reports have the fixed classes that are reachable
(i.e., one distance away or further in the call graph) to the classes in logs.
Besides, in terms of the number of fixed classes in stack traces, our finding
shows that up to 18% of the fixed classes (15% that are one distance away
from the logged classes, and 3% are two distance or further) can be located in
the call graph. The result shows that even for some of the bug reports which
have no overlap between the logged classes and fixed classes, the execution path
re-constructed from the logged classes may be used to suggest the potential
bug fixing locations.

There are a few other reasons where the fixed classes cannot be located
using the attached logs. Figure 9 shows an example of such bug reports. In this
example, DataNode throws IOException when one of the partitions does not
have enough remaining disk space. The logs show the execution of blocks (i.e.,
in a distributed storage system, blocks are essentially chunks of files that are
stored across DataNodes) when writing to DataNode. The bug occurs inside the

22 An Ran Chen et al.

Fig. 9: An example bug report (HADOOP-1189) that highlights the insuf-
ficient disk space left in one of the partitions. The bug fix updated the FS-
Dataset class which is not shown in the logs (but based on our manual study,
the FSDataset class is invoked between the first log and the second log).

getAvailable method, from the FSDataset class, that incorrectly calculates the
available space. The getAvailable method was executed as part of the execution
between the first log snippet carrying the message of “No space left on device
while writing ...” and the stack trace throwing the IOException. However, the
class (i.e., FSDataset) is not recorded in the stack trace since calls to the class
have returned before throwing exceptions, so are no longer available in the
stack. Since logs are expensive to maintain and monitor (Li et al., 2019; Yuan
et al., 2011), developers may need to prioritize on logging the essential code
snippets. Hence, some code snippets may be ignored and not logged. As shown
in the previous example, an important code snippet was hidden between two
logging statements. One potential direction for future research is to focus on

Title Suppressed Due to Excessive Length 23

Fig. 10: An example bug report (Eclipse PDE Bug 266964) where the fixed
classes are unreachable through the call graph.

reconstructing the execution path among logs and uncover the hidden paths
between logs to further assist debugging.

Our finding indicates that reporters often only attach debugging informa-
tion for the point of failure (e.g., stack traces). Although such information is
helpful, there is a missing link between the failure and the root cause of the
problem in the source code. Reporters may consider attaching additional logs
(e.g., log snippets) that show the execution of the system in addition to stack
traces. Additional research is required to help reporters provide missing logs
in bug reports that complete the execution information and help developers
with debugging the problem.

To better illustrate the cases where the fixed classes are unreachable through
the call graph, the figure 10 shows such example. The bug report Eclipse PDE
266964 shows an IllegalStateException when modifying the preferred platform.
This error is due to the user job that keeps running while the user switches
the target platform. The stack trace shows that the Worker class continues
to process the user job which leads to the IllegalStateException. The develop-
ers discussed in the comments that such use cases should not be allowed. The
fixed classes were TargetPlatformPreferencePage2, TargetEditor and LoadTar-
getDefinitionJob. The fix ensured that any existing jobs are cancelled before
the target platform switches. In such cases, the bug fix occurs in a small work-
flow change of the system, and it is almost impossible for developers to show
such details in logs.

24 An Ran Chen et al.

Code evolution (12/278). We find that sometimes the source code that
generates the logs no longer exists. In other words, the logs that the reporters
provide are from an older version of the system. The logging statements or
the source code class may have been removed during evolution. In such cases,
developers may have additional challenges in understanding and fixing the
bug. In addition, we find that 28.1% (323/1,151) of the studied bug reports
do not have values for the Affects Version field (i.e., entered by the reporter
or developers to indicate which versions they observed the bug). Even if the
bug reports have Affects Version, only 32.4% (268/828) of the bug reports
have the same Fix Version as the Affects Version. Note that we exclude PDE
and AspectJ bug reports from this analysis since the Fix Version field is not
available on Bugzilla. Namely, developers often debug and perform the fix on
a different version of the code and not on the reported Affects Version. Our
finding highlights that version information is essential for a high-quality bug
report. Therefore, reporters are strongly suggested to include version informa-
tion of the buggy system when submitting a bug report. Future studies should
also be conducted to help developers analyze such bug reports by taking the
past development history (e.g., prior source code changes) into consideration,
since the fixes may need to be applied to newer versions of the system.

Our manual study finds that some user-provided logs only show the unex-
pected behavior (i.e., failure), but do not show the root cause of a bug nor
the execution that led to the failure. Reporters should consider attaching
additional logs to assist in debugging. In addition, some attached logs are
from prior versions of the systems and can no longer be found in the source
code. Future research is required to utilize prior source code changes as an
important debugging hint for developers when analyzing bug reports.

5 Discussion and Implication of Our Findings

In this section, we summarize our findings and provide some discussion and
implications.

More research and supports are needed for logging code evolution.
In our manual study in RQ3, we find that some user-provided logs (i.e., either
stack traces, log snippets, or both) can no longer be found in the version
that developers are working on. Different from a prior study (Yuan et al.,
2012b), we found that it is not uncommon for logging statements or methods
in stack traces to be removed from the source code. If developers are not
familiar with the system, such logging statement changes can cause additional
challenges during debugging. Future studies should consider analyzing software
development history and help developers locate the user-provided logs, for
which the corresponding logging statements/methods were deleted or moved.
In addition, for reporters, it is essential to provide the version information of
the system when reporting a bug.

Title Suppressed Due to Excessive Length 25

Reporters need additional assistance on providing logs in bug re-
ports. Although logs provide important debugging information for develop-
ers, reporters may not be able to provide accurate logs that can illustrate
the problem. For example, we find that reporters may attach incomplete logs
or logs that only illustrate the exception. Hence, future studies should also
consider helping reporters provide more accurate logs that can better assist
debugging. One potential direction is to study the part of system execution
that is not illustrated in the reported logs to find the missing link between the
failure and the root cause of the problem.

Future studies could consider using execution paths that are re-
constructed from readily-available runtime data to provide addi-
tional debugging supports. We find that, even though the quality of user-
provided logs may not be perfect, these logs still provide a good indication of
the fixed classes. Our finding highlights a potential direction that may further
assist developers with debugging. For example, future studies may leverage
logs to re-construct the execution paths between each log message or stack
frame. For instance, as shown in Figure 9, although the fixed class is invoked
on the execution path leading to the bug, but it does not directly appear in
the reported stack trace. Therefore, to further assist developers in debugging,
additional research is needed to leverage user-provided logs in re-constructing
the execution paths leading to failures.

6 Threats to Validity

In this section, we discuss the threats to validity related to this study.

6.1 External Validity.

Threats to external validity are related to the generalizability of our findings.
To increase the generalizability of our study, we conduct our case study on
10 large-scale open source systems that vary in size and infrastructures (e.g.,
data warehouse, real-time computation system, distributed file system). These
systems are actively maintained and widely used. Although all the systems are
Java-based, our approach is not limited to Java systems. We present our ap-
proach in a generic way that can easily be adapted to fit systems in other pro-
gramming languages (e.g., by changing the regular expression). To reduce the
external threat to validity, we include systems from different domains, ranging
from databases to software development tools. We found that the results are
similar across the studied systems. However, other system types, such as mo-
bile applications, may use logs differently (e.g., for in-house debugging (Zeng
et al., 2019)) and our findings may not hold. Future studies are encouraged
to conduct the analysis on systems in more diverse domains to improve the
generalizability of our findings. For RQ3, we mitigate the sampling bias by

26 An Ran Chen et al.

ensuring the sample falls into a confidence level of 95% with a confidence in-
terval of +/- 3%. When sampling for our manual data set, we carefully respect
the sample size of each studied system and sampled proportionally according
to the number of bug reports per system.

6.2 Internal Validity.

Threats to internal validity are related to experimenter errors and bias. Our
study shows that the results of direct mapping between logged classes and
fixed classes highly depend on the quality of user-provided logs. Thus, the
extracted logs are an internal threat to the validity of our study. To mitigate
this threat, we choose 10 systems that vary in software maturity, to better
observe the difference in log quality of each studied system.

Another threat to internal validity is that we use bug IDs in commit mes-
sages to identify bug fixing commits. Although the developers in the studied
systems are required to provide bug IDs in commit messages as part of the
development guideline, there may still be some mistakes. For example, in our
manual study in RQ3, we found a few cases where developers made a typo
when providing bug IDs in the message. Nevertheless, we find such cases to be
rare, and based on our manual study on a statistically representative sample,
the heuristic has a very high precision (99%).

Another threat to internal validity is the way in which we collected the bug
reports with logs. Typically, reporters attach logs in the bug description or as
comments. Sometimes, when the logs are too long, reporters may upload them
as attachments. Therefore, bug reports with logs might also include those that
have log files in attachments. We further investigate this possibility, and find
only a small number of the reporters upload logs as attachment (i.e., in 51
out of 8,849 bug reports, log files were added as attachment), which limits the
impact of this threat.

In our study, we selected bug reports with priority Major or higher because
bug reports with a lower priority may have less of an impact on the overall
quality of the system. Moreover, these bug reports are less likely to be fixed.
For example, we find that only 14% of the bug reports with logs marked as
“Minor” or less were fixed in Hive, 13% in Hadoop Common and Storm, and
12% in MapReduce. Therefore, we follow prior studies (Chen and Jiang, 2017;
Chen et al., 2014; Yuan et al., 2014) and focus our analysis on the bug reports
with priority Major or higher.

6.3 Construct Validity.

In this paper, we have two manual studies. One investigates the reasons why
some bug reports had no modification on existing Java files. The other one
studies the reasons why some bug reports have no overlaps between the logged
classes and fixed classes. Human biases may be introduced. To reduce the bias

Title Suppressed Due to Excessive Length 27

of our analysis, we have a second author to verify the assigned categories and
any discrepancies are discussed until consensus is reached.

7 Related Work

In this section, we discuss related work in three areas: analyzing bug reports
for debugging, debugging and maintaining software systems, and log analysis.

Analyzing Bug Reports for Debugging. Prior studies found that bug
reports are essential for debugging (Anvik et al., 2006; Bettenburg et al.,
2008a,b). In particular, Bettenburg et al. (Bettenburg et al., 2008b) found
that stack traces and steps to reproduce bugs are important for a good qual-
ity bug report. Similar to their findings, we found that logs provide a good
indication of where a bug may be located. However, more often, we found that
there is some missing information in the logs that may prevent developers from
using the logs to locate bugs. Due to the rich information in bug reports, some
studies proposed approaches to locate bugs in the source code by using text
information in bug reports (Bhagwan et al., 2018; Chaparro et al., 2017; Dao
et al., 2017; Lam et al., 2017; Liu et al., 2016; Loyola et al., 2018; Rahman
and Roy, 2018; Saha et al., 2013; Sisman and Kak, 2012; Wang and Lo, 2016;
Zhou et al., 2012). Wang and Lo (2016) and Saha et al. (2013) also found that
different parts of bug reports (e.g., title and description) may provide more
information to help locate the bugs in the source code. Different from prior
studies that focus on developing approaches to help locate bugs by leveraging
bug reports, we performed an empirical study to provide insights to improve
bug localization, e.g., leveraging execution paths that are re-constructed from
user-provided logs to provide additional information for identifying bugs.

Debugging and Maintaining Software Systems By Leveraging Logs.
Logs, including both system execution logs and stack traces, are commonly
used for understanding system execution (Chen et al., 2016; Zhao et al., 2014),
maintaining software (Chen and Jiang, 2017; Yuan et al., 2012b), testing (Chen
et al., 2018, 2017; Li et al., 2018), and debugging (Yuan et al., 2010, 2011).
Prior studies (Chen and Jiang, 2017; Yuan et al., 2012b) found that developers
continuously improve logging code in software systems to assist in diagnosing
production bugs. Li et al. (2020a) found that developers consider various ben-
efits and costs when adding logging statements. These log messages are often
the only information that is available for diagnosing production bugs (Yuan
et al., 2010, 2012a). Yuan et al. (2011, 2012a) tried to improve log messages
(e.g., record values for important variables) to assist developers in diagnosing
production bugs. Yuan et al. (2010) proposed a technique to assist develop-
ers with debugging by leveraging system runtime logs. However, the authors
themselves manually evaluated their technique on only eight production bugs.
Other studies apply machine learning techniques to identify anomalies in the
log messages, which may be an indication of possible problems (Chen et al.,
2017; Lin et al., 2016; Xu et al., 2009). Hassani et al. (2018) analyzes bug re-
ports that are related to logs (e.g., log levels or log messages) and provided a

28 An Ran Chen et al.

tool to automatically detect log-related issues. Schroter et al. (2010) compared
the resolution time between the bug reports where the fixes are on the stack
traces and the bug reports where the fixes are not on the stack trace. They
found that the bug reports where the fixes are on the stack trace are fixed
faster. Li et al. (2019) proposed an automated static analysis tool to identify
duplicated logging statements code smells. Different from prior studies, we fo-
cus on studying the user-provided logs in bug reports, where the quality of the
logs depends on the reporter (Li et al., 2020b). We found that although the
user-provided logs can help to debug by highlighting the logged classes to some
extent, there are still some challenges. We manually studied and documented
the challenges that we found in user-provided logs and provide future research
directions.

The prior study by Moreno et al. (2014) found that 94.8% of the bug
report can be fixed through the logged classes or the classes that are reachable
in code structure to the logged classes. More specially, 64.5% (100/155) of the
bug reports have the fixed classes at distance zero (i.e., where logged classes
are overlapping with the fixed classes), 30.3% (47/155) at distance one or
further, and 5% (8/155) are unreachable. This implies that, based on the 55
bug reports with logged classes that are not directly mappable, 15% (8/55)
are unreachable with the other 85% (47/55) are reachable at distance one or
further. Our result is different from that of the prior study. There are a few
potential factors that lead to this difference in the results. Our bug reports are
collected from 10 open-systems systems, where 9 out of 10 are different from
the prior study. In our research, we focus on studying the bug reports with
logged classes that are not directly mappable, thus we collected a larger sample
size (i.e., 266 bug reports vs 55 bug reports). In addition, we include both log
snippets and stack traces in our study and the prior study only considers stack
traces. Nevertheless, our finding is similar to that of the prior study, which
confirms the usefulness of the classes that are reachable (i.e., in call graph)
from the logged classes in bug localization.

8 Conclusion

Logs in bug reports provide important information for developers to diag-
nose and fix the reported problems. However, due to privacy or technical
constraints, users often do not provide the entire logs in a bug report. There-
fore, the user-reported logs may be incomplete or inaccurate. In this paper,
we conduct an empirical study on the user-provided logs in bug reports. In
particular, we study the usefulness of the logs and potential challenges that de-
velopers may encounter when analyzing such logs. We conduct our case study
on 10 large-scale open-source systems: ActiveMQ, AspectJ, Hadoop Common,
HDFS, MapReduce, YARN, Hive, PDE, Storm, and Zookeeper. We find that:
1) bug reports with logs (BRWL) often take a longer time to resolve compared
to bug reports without logs (BRNL). Our further analysis finds that developers
often require additional logs in the Comments section of a bug report, which

Title Suppressed Due to Excessive Length 29

delays the bug fixes. In addition, the fixes of BRWL are more complex (i.e.,
modify more lines) than that of BRNL. 2) Most bug reports (73%) have an
overlap between the logged classes that generate the reported logs in bug re-
ports and their corresponding fixed classes, and the logged classes cover 38.7%
to 51.6% of the fixed classes across our studied systems. Our results show that
even without any advanced techniques, the user-reported logs may provide a
good indication of the fixed classes. However, there is still a large number of
bug reports where there is no overlap between the logged and fixed classes. 3)
Our manual study finds that many logs only show the point of failure (e.g.,
exception) and not the actual root cause. In addition, some logging statements
are removed in the source code as the system evolves, which may cause chal-
lenges in analyzing the logs. In summary, our empirical findings illustrate the
usefulness of logs in bug reports and unveil the potential challenges. We also
highlight future research directions on helping practitioners with attaching
logs in bug reports and approaches to better analyze logs (e.g., consider us-
ing execution paths that are re-constructed from user-provided logs to provide
additional debugging supports).

References

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In
Proceedings of the 28th International Conference on Software Engineering ,
ICSE ’06, pages 361–370.

Apache (2019). Aapache JIRA. Last accessed: Feb. 1, 2019.
Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S. (2008a). Duplicate

bug reports considered harmful... really? In Proceedings of the 24th IEEE
International Conference on Software Maintenance, ICSM ’18.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmer-
mann, T. (2008b). What makes a good bug report? In Proceedings of the
16th International Symposium on Foundations of Software Engineering .

Bhagwan, R., Kumar, R., Maddila, C. S., and Philip, A. A. (2018). Orca:
Differential bug localization in large-scale services. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 18), pages
493–509. USENIX Association.

Bianchi, F. A., Pezzè, M., and Terragni, V. (2017). Reproducing concurrency
failures from crash stacks. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering , ESEC/FSE 2017, pages 705–716.

Cao, Y., Zhang, H., and Ding, S. (2014). Symcrash: Selective recording for
reproducing crashes. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering , ASE ’14, pages 791–802.

Chaparro, O., Florez, J. M., and Marcus, A. (2017). Using observed behavior
to reformulate queries during text retrieval-based bug localization. In Pro-
ceedings of the 33rd International Conference on Software Maintenance and
Evolution, ICSME ’17, pages 376–387.

30 An Ran Chen et al.

Chen, B. and Jiang, Z. M. (2017). Characterizing logging practices in java-
based open source software projects – a replication study in apache software
foundation. Empirical Software Engineering , 22(1), 330–374.

Chen, B., Song, J., Xu, P., Hu, X., and Jiang, Z. M. J. (2018). An automated
approach to estimating code coverage measures via execution logs. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering , ASE ’18, pages 305–316.

Chen, T.-H., Nagappan, M., Shihab, E., and Hassan, A. E. (2014). An empir-
ical study of dormant bugs. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 82–91.

Chen, T.-H., Shang, W., Hassan, A. E., Nasser, M., and Flora, P. (2016).
Cacheoptimizer: Helping developers configure caching frameworks for
hibernate-based database-centric web applications. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering , FSE 2016, pages 666–677.

Chen, T.-H., Syer, M. D., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M.,
and Flora, P. (2017). Analytics-driven load testing: An industrial experience
report on load testing of large-scale systems. In Proceedings of the 39th
International Conference on Software Engineering: Software Engineering in
Practice Track , ICSE-SEIP ’17, pages 243–252.

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3), 494–509.

Dao, T., Zhang, L., and Meng, N. (2017). How does execution information
help with information-retrieval based bug localization? In Proceedings of
the 25th International Conference on Program Comprehension, ICPC ’17,
pages 241–250.

Fu, Q., Zhu, J., Hu, W., Lou, J.-G., Ding, R., Lin, Q., Zhang, D., and Xie, T.
(2014). Where do developers log? an empirical study on logging practices in
industry. In Proceedings of the 36th International Conference on Software
Engineering , ICSE-SEIP ’14, pages 24–33.

Hassani, M., Shang, W., Shihab, E., and Tsantalis, N. (2018). Studying and
detecting log-related issues. Empirical Software Engineering .

IEEE (2020). Ieee definitions. https://standards.ieee.org/
standard/610_12-1990.html. Last accessed March 23 2020.

Jin, W. and Orso, A. (2012). Bugredux: Reproducing field failures for in-house
debugging. In Proceedings of the 34th International Conference on Software
Engineering , ICSE ’12, pages 474–484.

Kim, S., Zimmermann, T., Pan, K., and Whitehead, E. J. J. (2006). Auto-
matic identification of bug-introducing changes. In Proc. of the 21st Int.
Conference on Automated Software Engineering (ASE .

Lam, A. N., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N. (2017). Bug
localization with combination of deep learning and information retrieval. In
Proceedings of the 25th International Conference on Program Comprehen-
sion, ICPC ’17, pages 218–229.

LaToza, T. D. and Myers, B. A. (2010). Developers ask reachability ques-
tions. In Proceedings of the 32Nd ACM/IEEE International Conference on

https://standards.ieee.org/standard/610_12-1990.html
https://standards.ieee.org/standard/610_12-1990.html

Title Suppressed Due to Excessive Length 31

Software Engineering , ICSE ’10, pages 185–194.
Li, H., Chen, T.-H. P., Hassan, A. E., Nasser, M., and Flora, P. (2018). Adopt-

ing autonomic computing capabilities in existing large-scale systems: An
industrial experience report. In Proceedings of the 40th International Con-
ference on Software Engineering: Software Engineering in Practice, ICSE-
SEIP ’18, pages 1–10.

Li, H., Shang, W., Adams, B., Sayagh, M., and Hassan, A. E. (2020a). A
qualitative study of the benefits and costs of logging from developers’ per-
spectives. IEEE Transactions on Software Engineering .

Li, Z., Chen, T.-H. P., Yang, J., and Shang, W. (2019). DLfinder: Charac-
terizing and detecting duplicate logging code smells. In Proceedings of the
41st International Conference on Software Engineering , ICSE ’19, pages
152–163.

Li, Z., Chen, T.-H., and Shang, W. (2020b). Where shall we log? studying and
suggesting logging locations in code blocks. In Proc. of the 35rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).

Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y., and Chen, X. (2016). Log clustering
based problem identification for online service systems. In Proceedings of the
38th International Conference on Software Engineering Companion, ICSE
’16, pages 102–111.

Liu, B., Lucia, Nejati, S., Briand, L. C., and Bruckmann, T. (2016). Simulink
fault localization: an iterative statistical debugging approach. Software Test-
ing, Verification and Reliability , 26(6), 431–459.

Loyola, P., Gajananan, K., and Satoh, F. (2018). Bug localization by learning
to rank and represent bug inducing changes. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Manage-
ment , CIKM ’18, pages 657–665.

Moore, D., MacCabe, G., and Craig, B. (2009). Introduction to the Practice
of Statistics. W.H. Freeman and Company.

Moreno, L., Treadway, J. J., Marcus, A., and Shen, W. (2014). On the use of
stack traces to improve text retrieval-based bug localization. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages
151–160. IEEE.

Rahman, M. M. and Roy, C. K. (2018). Improving bug localization with report
quality dynamics and query reformulation. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceeedings,
ICSE ’18, pages 348–349.

Romano, J., Kromrey, J. D., Coraggio, J., and Skowronek, J. (2006). Appro-
priate statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys. In
annual meeting of the Florida Association of Institutional Research, pages
1–33.

Saha, R. K., Lease, M., Khurshid, S., and Perry, D. E. (2013). Improving bug
localization using structured information retrieval. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering ,
ASE’13, pages 345–355.

32 An Ran Chen et al.

Satvat, K. and Saxena, N. (2018). Crashing privacy: An autopsy of a web
browser’s leaked crash reports. CoRR, abs/1808.01718.

Schroter, A., Schröter, A., Bettenburg, N., and Premraj, R. (2010). Do stack
traces help developers fix bugs? In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pages 118–121. IEEE.

Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., and Mar-
tin, P. (2013). Assisting developers of big data analytics applications when
deploying on hadoop clouds. In Proceedings of the 2013 International Con-
ference on Software Engineering , ICSE ’13, pages 402–411.

Sisman, B. and Kak, A. C. (2012). Incorporating version histories in infor-
mation retrieval based bug localization. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, MSR ’12, pages 50–
59.

Soltani, M., Panichella, A., and Van Deursen, A. (2018). Search-based crash
reproduction and its impact on debugging. IEEE Transactions on Software
Engineering , pages 1–1.

Tucek, J., Lu, S., Huang, C., Xanthos, S., and Zhou, Y. (2007). Triage: Diag-
nosing production run failures at the user’s site. In Proceedings of 21st
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 131–144.

Wang, S. and Lo, D. (2016). Amalgam+: Composing rich information sources
for accurate bug localization. Journal of Software: Evolution and Process,
28(10), 921–942.

Wong, C.-P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., and Mei, H. (2014).
Boosting bug-report-oriented fault localization with segmentation and stack-
trace analysis. In Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution, ICSME ’14, page 181–190.

Wu, R., Zhang, H., Cheung, S.-C., and Kim, S. (2014). Crashlocator: Lo-
cating crashing faults based on crash stacks. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 204–214.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. (2009). De-
tecting large-scale system problems by mining console logs. In SOSP ’09:
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 117–132, Big Sky, Montana, USA. ACM.

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., and Pasupathy, S. (2010).
Sherlog: Error diagnosis by connecting clues from run-time logs. In Pro-
ceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 143–154.

Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. (2011). Improving
software diagnosability via log enhancement. In ASPLOS ’11: Proceedings
of the sixteenth international conference on Architectural support for pro-
gramming languages and operating systems, pages 3–14, Newport Beach,
California, USA. ACM.

Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X., Zhou, Y., and Sav-
age, S. (2012a). Be conservative: Enhancing failure diagnosis with proactive

Title Suppressed Due to Excessive Length 33

logging. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 293–306.

Yuan, D., Park, S., and Zhou, Y. (2012b). Characterizing logging practices in
open-source software. In Proceedings of the 2012 International Conference
on Software Engineering , pages 102–112.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang, Y., Jain,
P. U., and Stumm, M. (2014). Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive sys-
tems. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 249–265.

Zeng, Y., Chen, J., Shang, W., and Chen, T.-H. P. (2019). Studying the
characteristics of logging practices in mobile apps: a case study on f-droid.
Empirical Software Engineering , 24(6), 3394–3434.

Zhao, X., Zhang, Y., Lion, D., Ullah, M. F., Luo, Y., Yuan, D., and Stumm,
M. (2014). Lprof: A non-intrusive request flow profiler for distributed sys-
tems. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 629–644. USENIX Association.

Zhou, J., Zhang, H., and Lo, D. (2012). Where should the bugs be fixed?
- more accurate information retrieval-based bug localization based on bug
reports. In Proceedings of the 34th International Conference on Software
Engineering , ICSE ’12, pages 14–24.

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., and
Weiss, C. (2010). What makes a good bug report? IEEE Transactions on
Software Engineering , 36(5), 618–643.

Śliwerski, J., Zimmermann, T., and Zeller, A. (2005). When do changes induce
fixes? page 1–5.

	Introduction
	Background
	Data Collection and Case Study Setup
	Case Study Results
	Discussion and Implication of Our Findings
	Threats to Validity
	Related Work
	Conclusion

