
Study the Correlation Between the readme File of

GitHub Projects and Their Popularity

Tianlei Wanga, Shaowei Wanga, Tse-Hsun (Peter) Chenb

aDepartment of Computer Science, University of Manitoba, Canada
bDepartment of Computer Science and Software Engineering, Concordia University,

Canada, Canada

Abstract

A readme file plays an important role in a GitHub repository to provide
a starting point for developers to reuse and make contributions. A good
readme could provide sufficient information for users to learn and start a
GitHub repository and might be correlated to the popularity of a repository.
Given the importance of the role that a readme file plays, we aim to study
to understand the correlation between the readme file of GitHub repositories
and their popularity. We analyze readme files of 5,000 GitHub repositories
across more than 20 languages. We study the relationship between readme
file related factors and the popularity of GitHub repositories. We observe
that: 1) Most of the studied readme file related factors (e.g., the number of
lists, the number and frequency of updates on the readme file) are statis-
tically significantly different between popular and non-popular repositories
with non-negligible effect size. 2) After controlling repository-specific fac-
tors (e.g., repository topics and license information), the number of lists and
the frequency of updates are the most significantly important factors that
discriminate between popular and non-popular repositories. 3) The most
of updates were made to update references in popular repositories, while in
non-popular repositories most updates are for the content of how to use the
repository.

Keywords:
Documentation, Github, readme file, random forest

Email addresses: wangt316@myumanitoba.ca (Tianlei Wang),
shaowei.wang@umanitoba.ca (Shaowei Wang), peterc@encs.concordia.ca (Tse-Hsun
(Peter) Chen)

Preprint submitted to Elsevier August 15, 2023

1. Introduction

GitHub, the largest open-source projects hosting site in the world, pro-
vides a platform for developers and organizations to share and host their
open-source projects. GitHub hosts more than 200 million repositories, as of
March, 2022 (GitHub, 2022c). Millions of developers and organizations con-
tribute to these repositories by adding new features and resolving bugs (Bao
et al., 2019; McDonald and Goggins, 2013; Jiang et al., 2017). Develop-
ers also learn from the hosted projects on GitHub and utilize them in their
projects (Gharehyazie et al., 2019, 2017).

A readme file plays an important role in a repository to provide a starting
point for developers to understand and learn the repository. As the official
documentation supported by GitHub, a readme file typically provides the ba-
sic information related to the repository, such as what the project does, how
users can get started with the project, etc (GitHub, 2022a). The information
provided in the readme file largely affects the contribution and the usage of a
repository. A well-organized and maintained readme could provide sufficient
information for users and reduce the learning curve of getting started on the
project for users (Steinmacher et al., 2014), which probably correlates to the
popularity of the project. For instance, a repository with a well-maintained
readme file, in which all information updated to date, may be easy for a user
to get started on it, compared with a repository that has a significant amount
of out-of-dated information in the readme file, as a result, attracts more de-
velopers to use it and contribute to it. Therefore, we aim to understand the
correlation between various factors related to readme file of a GitHub reposi-
tory and the popularity of the repository, e.g., whether the organization and
update activities of a readme file correlate to the popularity of a repository.
Notice that our aim is not to uncover causal relationships between various
factors and the popularity of GitHub repositories. Instead, we compare the
differences between popular and non-popular GitHub repositories, aiming to
help highlight good practices in improving readme files.

In this study, we performed an analysis of the readme files of 5,000 GitHub
repositories across different domains and languages. We study the relation-
ship between readme file related factors and the popularity of GitHub repos-
itories to understand whether the factors related to readme files are different
between popular and non-popular GitHub repositories, and which factors are

2

most important for distinguishing them. For this purpose, we structure our
inquiry using 18 factors along three dimensions: the content presented and
organized in the readme file (e.g., the number of lists, images, and links),
updates on the readme file (e.g., the number and frequency of updates), and
repository meta information (e.g., topics, age, license, and size). More specif-
ically, we structure our study along the following three research questions:

• RQ1: Is there a relationship between the studied readme file
related factors and the popularity of GitHub repositories?
In RQ1, we compare the readme file related factors between popu-
lar and non-popular repositories and examine if the differences be-
tween those two groups are statistically significant. We observe that
all studied readme file related factors (e.g., number of links, images,
and updates frequency) except heading content are statistically sig-
nificantly different between popular and non-popular repositories with
non-negligible effect size. Popular and non-popular repositories share
similar headings (e.g., usage and installation).

• RQ2: What are the most important readme file related fac-
tors that differentiate popular and unpopular GitHub repos-
itories?
In RQ2, we build a classification model to investigate which readme
file related factors are the most important for discriminating between
popular and non-popular repositories by controlling factors related to
the repository. We observe that after controlling factors related to the
repository (e.g., repository topics and license information), the number
of lists, links, and the frequency of updates are statistically significantly
important factors that discriminate between popular and non-popular
repositories. The frequency/number of readme updates and the number
of lists and links positively correlate with the likelihood of a repository
being popular.

• RQ3: What content is updated in readme files between pop-
ular and non-popular GitHub repositories?
For RQ3, we perform qualitative analysis to understand what content
is updated in readme file of popular and non-popular repositories. We
observe that the largest portion of the updates (47%) were performed

3

to update references in popular repositories, while the largest portion of
updates were performed to update the content of “how” in non-popular
ones (34%). A remarkable portion of updates on readme files were per-
formed to improve the presentation and update badges for both popular
and non-popular repositories.

In summary, the quality of the readme file (e.g., proper organization of
content and ensuring content is up to date) is positively correlated with
the popularity of repositories after controlling for repository-specific fac-
tors. Developers should pay attention to improving the readme file, e.g.,
improving the organization of content and ensuring the content is up to
date. Future research is encouraged to develop approach to help main-
tain readme automatically (e.g., detecting and updating broken/obsolete
references) and generate readme file templates automatically. To enrich
future research on this direct, we make our replication publicly available
https://github.com/TianleiWang0414/WIP2022-GitHub_Readme-code/.

Paper Organization. Section 2 introduces the background information
about the GitHub readme file and related work. Section 3 describes our data
collection process and studied factors. Section 4 presents the result of our
research questions. Section 5 describes the discussion on update activities of
readme files, implications of our findings, and the threats to the validity of
our observation. Finally, Section 6 concludes the paper.

2. Background & Related work

2.1. Readme file on GitHub

Readme files are text files, typically written in markdown, that provide
an overview of information to allow an individual to understand how to run,
when to use, and what tools to apply for a given project. Usually, readme
files are the first documentation/file of a project that is visited. Readme files
usually follow a strict naming convention, as the name suggests, they are
often written as “readme.md”. Suggested by GitHub official documentation,
readme files typically contain the following information: 1) What the project
does; 2) Why the project is useful; 3) How users can get started with the
project; 4) Where users can get help with your project; 5) Who maintains
and contributes to the project (GitHub, 2022a). Readme files are part of
the GitHub repositories and they can be updated accordingly as the projects

4

https://github.com/TianleiWang0414/WIP2022-GitHub_Readme-code/

evolve. Figure 1 shows an example readme file of a GitHub repository1.
Various pieces of information are labeled in the example, such as heading,
image, badge, and link.

2.2. Related work

2.2.1. Studying and leveraging the content presented in readme files

Readme files are considered an important source for understanding repos-
itories not only by developers but also by researchers. Therefore, there has
been a number of studies that leverage readme files to conduct software en-
gineering tasks (e.g., project recommendation and project categorization).
Zhang et al. (2017) proposed an approach that leverages the content of
readme files together with their sources (e.g., source code), to detect similar
repositories on GitHub. They assume that similar repositories have similar
readme files in terms of content. Similarly, Koskela et al. (2018) leveraged
the content presented in readme files together with the tags of repositories
to recommend GitHub repositories for users based on their profiles. Sharma
et al. (2017) categorized GitHub projects based on the content in readme
files. Coelho et al. (2018) leverage the information presented in readme files
to identify unmaintained GitHub projects. Trockman et al. (2018) conducted
an empirical study to understand the repository badges in the npm Ecosys-
tem shown on the readme files. Ikeda et al. (2019) investigate the content
of readme file for JavaScript packages and its relationship with the type of a
package. Different from prior studies that focus on leveraging readme file as
a source to perform other tasks, our study focuses on studying the readme
file itself and investigating its association with the popularity of GitHub
repositories. Hassan and Wang (2017) proposed technique to automatically
extract software build commands from software readme files and Wiki pages
for software building.

Several studies have been done to investigate the content of readme files
of GitHub repositories. Liu et al. (2022) study the patterns of readme files
and determine the degree to which readme files are aligned with the official
guidelines. They found that the majority of readme files do not align with
the GitHub guidelines and repositories whose readme files follow the GitHub
guidelines tend to receive more stars. Prana et al. (2019) studied the content
of 393 GitHub readme files. Their study shows that the information about

1https://github.com/alibaba/Sentinel

5

…

…

…

 badge

 heading

list

 link

code block

image

Figure 1: Example readme file of a GitHub repository.

6

“what the project does” and “how users can get started with the project” of
a repository is common while information on the purpose and status is rare.
They developed a classifier to predict categories of sections in the readme
files with an F1 score of 0.746. Ikeda et al. (2019) studied the readme file of
JavaScript packages, and they show that information related to usage, instal-
lation, and license are commonly contained by such readme files. Treude et al.
(2020) recruited technical editors to assess various software documentation,
including readme files for R GitHub Projects and Stack Overflow threads in
terms of ten dimensions such as readability, cohesion, and structure. They
shed light on challenges for software documentation and directions for future
studies. Different from these studies that focus on studying the content of
readme files, our work aims to investigate the relationship between readme
file related features of GitHub projects and their popularity.

2.2.2. Studying popularity of GitHub repositories

Many studies have analyzed software code repositories to understand
what makes a code repository popular. Weber and Luo (2014) proposed
a classifier using 38 features in various dimensions (e.g., code, project) to
classify popular and non-popular Python GitHub projects. Zhu et al. (2014)
studied the patterns of folders used by 140k Github projects and their rela-
tionship with project popularity. They find that the standard folders, such as
documents, testing, and examples, are not only among the most frequently
used, but their presence in a project is associated with increased chances that
a project’s code will be forked. Aggarwal et al. (2014) investigated the cor-
relation between the documentation change of 90 GitHub projects and their
popularity. They observed that the consistent popularity of projects attracts
consistent work on documentation. Different from their study, we not only
investigate the features related to the revision of readme files, but also other
features in terms of structure and content of the readme files. Borges et al.
(2016) identified four patterns of popularity growth of projects on GitHub in
terms of stars. They observed that the main factors that impact the number
of stars of GitHub projects are programming language and the application
domain. We consider programming language and application domain (we
consider tags of a repository) as controlling factors in this study. Different
from previous studies, we focus on examining the relationship between fea-
tures related to readme files and Github projects’ popularity and controlling
several repository related factors, such as programming language, license,
topics, size, and age.

7

The most related work is a study by Fan et al. (2021), which studied the
correlation between features from various dimensions (i.e., code, reproducibil-
ity, and documentation) of AI repositories and their popularity. Their results
show that popular and non-popular AI repositories are significantly different
in various features, such as the number of links, images in the README
file, and license. Different from Fan et al’s study which focuses on investi-
gating academic AI repositories, our study focus on more general GitHub
repositories.

3. Data Preparation

3.1. Repository Data Collection

To have enough readme files to answer our RQs, we randomly sampled
5,000 GitHub repositories from Google big query as of January, 2022 (Google,
2020). We retrieved the owner information as well as the repository URL
from the Google big query. We then use GitHub API (GitHub, 2022b) to
retrieve the README.md files in the main/master branch for the sampled
5,000 repositories. The studied repositories host projects that span more
than 20 programming languages including popular ones, such as Python,
Java, JavaScript, Go, and C++.

To ensure the quality of our studied repositories, we future filter reposi-
tories based on certain criteria. We first removed the repositories that do not
have a readme file (i.e., “README.MD”). We filtered out 132 such reposi-
tories. We removed the repositories that have default content in the readme
file. GitHub initializes the content of a readme file with the repository name
if the creator does not modify the readme file. The reason why we removed
such repositories is that they do not contain any useful information for our
RQs (only contain the name of the repositories). We removed the reposi-
tories whose readme file is not fully written in English. We removed such
repositories since it requires translation of the whole file to extract useful
information, since translation may introduce bias. We used a library called
langdetect 2 to detect the language written in the readme files. We further
removed 614 repositories during the above process. GitHub hosts reposi-
tories (academic/tutorial repositories) other than software repositories that
could introduce bias (Munaiah et al., 2017; Liu et al., 2022). We removed

2https://pypi.org/project/langdetect/

8

the repositories that have less than 50% of the files that are not written in
programming languages and have only one contributor. Last, we removed
the repositories that have less than one year from their creation date to our
collected date. We did so to ensure the repositories have enough time to
attract attention from the community and obtain starts. We ended up with
1,566 repositories.

3.2. Data Labeling

To conduct our analysis, we need to categorize repositories as popular or
unpopular. For this purpose, we collected repositories’ metadata including
stars, watches, number of pull requests, number of contributors, and forks
via Github API to find what can be represented for popularity. With this
information, we applied Spearman’s rank correlation to them. Figure 3
shows that there is a high correlation between forks, watches, and stars.
Thus, we believe it is appropriate to select stars as the proxy for popularity
following prior studies (Han et al., 2019; Borges et al., 2016). We find that
the number of stars is highly skewed and only a small portion of repositories
received many stars (see Figure 2). We label the repositories that have a
star of 0 as non-popular and the ones that have a star larger than 100 as
popular. Note that we use a clear-cut since we would like to mitigate the bias
from the repositories with a very similar number of starts while belonging to
two different categories and provide a clear boundary between popular and
non-popular repositories. For instance, if we considered a threshold of 50 as
the boundary to categorize the repositories with at least 50 stars as popular
repositories and the ones with less than 50 as non-popular repositories, then
a repository with 49 stars and a repository with 51 would be considered as
different classes although their stars are very close. Nevertheless, such a
clear-cut threshold probably would introduce bias to our study and cause
a threat to the validity of our study. We would discuss it in more detail in
Section 5.3. We collected 810 non-popular repositories and 756 popular ones.
Table 1 shows the information of two groups of repositories.

3.3. Factors Collection

In RQ1, we compare the factors related to the readme file between pop-
ular and non-popular repositories (see Section 4.1 for details). In RQ2, we
build a classification model to understand the most important readme file
related factorsdiscriminating between popular and non-popular repositories
by controlling factors that are related to their corresponding repositories.

9

Figure 2: Distribution of repositories with different numbers of stars.

Factor Popular Non-popular
Star 13,398.2/4,374/677/339,873 0/0/0/0
Fork 3,029.7/939/25/86,266 0.25/0/0/6
Watch 516.8/202/7/8,472 2.4/2/1/57
Size (in KB) 137,704.4/14764.0/0/22,309,053 18,339.4/603/0/1,222,458
Age (in day) 2,280.8/2,137/770/4,808 2,446.8/2,420/77/3,832

Table 1: Statistics of popular and non-popular repositories. The value in each cell is
ordered as mean/median/min/max.

10

Table 2: Studied factors that are related to three dimensions readme content, readme
update, and repository meta.

Factor Name Explanation (data type) Rationale

R
ea

d
m
e
co

n
te
n
t R NumCodeBlock The number of code blocks in the

readme file (numeric).

Good presentation of readme file of a
GitHub Repositories probably could pro-
vide a good impression to visitors and im-
prove its popularity. For instance, the list
is recommended for clear writing (Kim-
ble, 1992; Fan et al., 2021).

R NumIndent The number of indents in the readme
file (numeric).

R NumList The number of lists in the readme file
(numeric).

R NumLink The number of links in the readme file
(numeric).

Providing links and images to further
documentation and support channels
could help visitors to get started and im-
proves the popularity of the repository.

R NumImage The number of images in the readme
file (numeric).

R NumBadge The number of badges in the readme
file (numeric).

The badge indicates the quality and prop-
erties of a repository and may have a cor-
relation with the popularity of the repos-
itory.

R heading The words appear in headings of the
readme file (text).

The popularity of a repository may cor-
relate with the content presented in the
readme file. We use the content in the
headings as the proxy to represent the
major topics presented in the readme file.

R
ea

d
m
e
u
p
d
a
te R UpdateInterval The average update interval between

updates (calculated as total elapsed
days since creation / number of up-
dates) (numeric).

Frequently update on documentation of a
project have positive correlation with its
popularity (Aggarwal et al., 2014).

R NumUpdate Number of updates for the readme file
(numeric).

R SinceLastUpdate Number of days since last update in the
readme file (numeric).

The time of being inactive of readme file
of a project may have negative correlation
with its popularity.

R
ep

o
si
to
ry

m
et
a P Age Age of a repository since its creation in

days (numeric).
An older repository tends to get more at-
tention from the community and proba-
bly has more stars, forks, etc.

P size The size of a repository in KB. (nu-
meric).

Larger size of a repository might indi-
cate more features or better functionality,
which might be correlated with its popu-
larity (Tian et al., 2015).

P -
Max/Min/Avg/Median -
Tag

The max, min, average, and median
value of tag popularity scores for a
repository. Tag popularity score is cal-
culated as the number of repositories in
GitHub that have a tag (numeric).

The tags of a repository indicate its
application domain and related topics.
The repositories with popular tags may
get more attention from the community
and probably have more stars, forks,
etc (Zhou et al., 2020a; Borges et al.,
2016).

P License Type of license the repository has (cat-
egorical).

Users can clearly understand the license
of a repository and facilitates its popular-
ity (Fan et al., 2021; Laurent, 2004).

P ProgramLanguage The majority of programming lan-
guages used in the repository (categor-
ical).

Prior study by Borges et al. (2016) ob-
served that the one of main factors that
impact the number of stars of GitHub
projects is the programming language.

11

Spearman Correlation

contributor star watch pull_request fork

co
n

tr
ib

u
to

r
st

ar
w

at
ch

p
u

ll_
re

q
u

es
t

fo
rk

Figure 3: Correlation matrix between the number of forks, pull requests, watches, stars,
contributors. We observe that fork, watch, and star have a high correlation.

In this subsection, we discuss the studied factors and how we collect them.
The quality of a readme file probably affect the popularity of the correspond-
ing repository. A well-maintained and well-organized could provide sufficient
information for users and reduce the learning curve of getting started on
the project for users. We collect the factors related to readme file’s quality
from two dimensions: readme content and readme update. Readme content
and update consider the quality of the readme file from static and dynamic
perspectives, respectively. The content dimension reflects if a readme file
is well-organized, and the update dimension reflects if a readme file is well-
maintained. In terms of content, we consider the factors that are captured
at the moment of data collection. For content dimension, we first consider
the factors that characterize the presentation of a readme file (i.e., R Num-
CodeBlock , R NumImage, R NumIndent , and R NumList). We expect that
a readme file with a good presentation provides a good impression to visitors
and correlates with the popularity of the repository. GitHub users usually
use markdown for organizing their readme files. Therefore, we consider the
formatting types that are commonly used in markdown. For instance, we
collect the number of code blocks, indents, lists, and images. Kimble (1992)
recommends using lists for clear writing. Tian et al. (2015) show the images

12

displayed in a mobile app have a positive correlation with the popularity of
the mobile app. Second, we consider the factors related to the information
presented in the content (e.g., installation instruction, license, support link)
to help visitors to understand the repository and get started on it. We collect
the number of links (R NumLink), badges (R NumBadge), words presented
in the headings of a readme file (R heading), and license (P License). We
expect that a readme file with sufficient information could help visitors get
started on the repository and improve its popularity. For instance, license
information clearly indicates to visitors how to use a repository (Fan et al.,
2021; Laurent, 2004). Links are usually used to point to references for ex-
ternal supporting materials. To collect those factors, for each readme file,
we collected the heading information, code blocks, indents, images, lists, and
badges. We used the regular expression shown in Table 3 with the Python
library re. For heading information, we extracted each word in the heading,
and applied lemmatization and stemming using Python libraries spacy and
nltk for preprocessing. For other factors, we collected the number of occur-
rences in each readme file. Note that since a badge is also an image, we
further check if a link contains “https://img.shields.io” to determine if the
link represents a badge.

For the update dimension, we consider the history of a readme file and
examine how it was updated. In this study, we consider the number of
updates that a readme file receives (R NumUpdate) and update frequency
(R UpdateInterval). Aggarwal et al. (2014) found that frequent updates on
the documentation of a project have a correlation with its popularity. We
expect that frequent updates help maintain a repository stay up to date,
therefore improving the popularity of the repository. Note that we count the
initialization of a readme file when calculating R UpdateInterval in order to
avoid zero in the denominator. To collect the update information, we use
Github API (GitHub, 2022b) to collect all commits that involve changes on
readme files for each studied repository and extracted the message and the
time stamps for each commit. We then calculate each factor accordingly.

There are some other confounders that potentially correlate with the pop-
ularity of GitHub repositories. Therefore, we also consider factors related to
the repository’s meta information, i.e., the age (P Age), the major program-
ming language (P ProgramLanguage), the size (P size), license (P License),
the popularity (P Max/Min/Avg/Median Tag) as controlling factors when
building the model in RQ2, since they are related to the project itself and
cannot be modified when editing readme file by the repository owner. Note

13

Table 3: Regular expressions that are used to extract different pieces of information from
readme files.

factor Regular expression
R heading #+ .+\\s
R NumCodeBlock `{3}([\S\s]*?)`{3}.*
R NumIndent ˆ((?:(?:[]{4}|\t).*(\R|$))+)
R NumLink \[[ˆ\]\r\n]+\]\([ˆ\)\r\n]+\)
R NumImage !\[[ˆ\]\r\n]+\]\([ˆ\)\r\n]+\)
R NumList (ˆ{,3}(-|\+|*|[0-9\.])+ [\S\s]*?\r\n\r\n)
R NumBadge !\[[ˆ\]\r\n]+\]\([ˆ\)\r\n]+\)

that for popularity, we actually have four factors. We calculate the factors
based on the meta information we collected for each repository. We present
the studied factors in Table 2.

4. Results of the Research Questions

4.1. RQ1: Is there a relationship between the studied readme file related fac-
tors and the popularity of GitHub repositories?

Motivation The readme file of a GitHub repository provides the first ex-
pression of the repository to visitors and plays an important role for visitors
to get to know the repository. A readme file may have a correlation with the
popularity of the GitHub repository. In this RQ, we compare the readme
file related features between popular and non-popular GitHub repositories.
By understanding this, GitHub project owners may leverage our findings to
further improve their projects.
Approach For each of the readme file related numeric features (see details
in Section 3.3), we apply the Wilcoxon rank-sum test (Mann and Whitney,
1947) to examine whether the differences in these features between popular
and non-popular GitHub repositories are statistically different or not. We
also compute Cliff’s delta to examine the effect size of the difference between
the two groups (Cliff, 1993). Note that we interpret |d| as follows: a |d| less
than 0.147, between 0.147 and 0.33, between 0.33 and 0.474, and larger than
0.474 is considered as a negligible (N), small (S), medium (M), and large (L)
effect size following prior study (Romano et al., 2006). The reason we select
the Wilcoxon rank-sum test and cliff’s delta since they are non-parametric
and do not require any assumption on the distribution of two samples.

14

To understand if there exist differences in the content between the two
groups, we compute frequent words that appear in the headings of readme
files. We choose to analyze words appearing in headings, since the headings
usually summarize the major topics presented in a readme file. We also
applied stemming to reduce the size of vocabulary and convert similar words
into their original form (e.g., we convert “install”, “installed”, “installation”
into “install”). After the pre-processing, we compare the top 15 frequent
words mined from the headings of readme files of the two groups.
Results: All studied numeric readme file-related features have sta-
tistically significant differences between popular and non-popular
repositories with non-negligible effect size. Table 4 shows the compari-
son of the studied numeric features between popular and non-popular GitHub
repositories, including the mean, median, minimum, and maximum values of
each factor. We observe that the two groups of repositories have statistically
significant differences (p-value < 0.05) with a non-negligible effect size for
all the studied features, in which R NumLink , R NumUpdate, R NumUp-
date, R Length, and R SinceLastUpdate have large effect size. Therefore, in
general, popular and non-popular GitHub repositories have significant dif-
ferences in terms of the presented structure, length, and update activities of
readme files.

For instance, popular Github repositories (12,396.1 characters) have a
four times longer readme file than non-popular repositories (3,115.8 charac-
ters) on average. A longer readme file usually suggests more detailed infor-
mation about the repositories. Meanwhile, popular repositories receive more
updates (mean value is 17.8) compared with non-popular repositories (mean
value is 6.7). Popular repositories have a mean value of 6.2 code blocks, 10
indents, and 3.4 lists, which are significantly more than non-popular reposi-
tories with 2.3 blocks, 5.2 incidents, and 0.02 lists on average. That is said,
popular repositories are usually better presented than non-popular ones. For
instance, the repository AXIOS 3 is a promise-based HTTP client for the
browser and node.js. It has 91k stars (as of the date of data collected),
which is a very popular GitHub repository. It contains a table of contents to
provide the index of the readme file. The readme file describes the features,
detailed installing instructions, usage examples, lists of resources, which is
very long.

3https://github.com/axios/axios

15

https://github.com/axios/axios

Popular and non-popular repositories share similar headings
when examining the top 15 most frequent words appearing in head-
ings of readme files. Table 5 presents the top 15 frequent words occur-
ring in the headings of readme files. We notice that 11 out of the top 15
words are overlapped between these two groups. Such observation indicates
that the readme files of popular and non-popular repositories share simi-
lar sections. For instance, sections related to license (i.e., “license”), how to
use/start the repository(i.e., “install”, “start”, “build”, “example”, “usage”),
contribution (“contribute”), support (“support”) commonly shared in the
readme files of both groups. More importantly, 4 out of the top 5 words be-
tween the two groups are overlapped, i.e., “license”, “install”, “contribute”,
and “start”. For instance, tensorflow4 hosts the repository for tensorflow
the readme file contains information about installation, license, contribu-
tion guidelines, patching guidelines, Continuous build status, resources, and
courses. In other words, both popular and non-popular introduce how to use
the repository, license, and contributor with top priority. This finding echoes
the previous study by Prana et al. (2019), in which they observed that 88.5%
readme files have a section to introduce how to use the repository, and 52.9%
of the readme files have information related to contributor and license.

Table of contents appears more frequently in readme file of pop-
ular repositories than non-popular repositories. We also notice that
the word “content” appears frequently in popular repositories, while not in
non-popular ones. We manually examined several readme files containing
“content” and find such readme files usually have a heading “table of con-
tents” to indicate the content included in the readme files. We find that it
appears in popular repositories (71 out of 756 popular repositories), while
only 11 out of 810 in non-popular repositories.

�

�

�

All studied readme file related features except heading content are statis-
tically significantly different between popular and non-popular repositories
with non-negligible effect size. Popular and non-popular repositories share
similar headings. While the table of contents appears more frequently in
the readme file of popular repositories than non-popular repositories.

4https://github.com/tensorflow/tensorflow

16

https://github.com/tensorflow/tensorflow

Table 4: P-value and cliff’s |D| for the readme file related features.

Mean/Median/Min/Max
Feature Popular Non-popular P-value & Cliff’s |d|
R NumCodeBlock 6.2/2/0/349 2.3/0/0/73 <0.05 & 0.26 (S)
R NumIndent 10.0/2/0/366 5.2/0/0//283 <0.05 & 0.15 (S)
R NumImage 4.3/2/0/171 0.8/0/0/14 <0.05 & 0.41 (M)
R NumLink 43.5/16/0/1153 5.3/1/0/266 <0.05 & 0.67(L)
R NumList 3.4/0/0/171 0.02/0.0/0/5 <0.05 & 0.39 (M)
R NumBadge 1.1/0/0/53 0.14/0/0/8 <0.05 & 0.26 (S)
R Length 12,396.1/6,459/14/178,059 3,115.8/1,403/11/60,947 <0.05 & 0.63 (L)
R UpdateInterval 254.7/128/34/4,599 665.9/336/6/4,535 <0.05 & 0.9 (L)
R SinceLastUpdate 693.4/433/82/3,958 2,401.6/2,471/171/3,714 <0.05 & 0.91(L)
R NumUpdate 17.8/20/1/30 6.7/3/1/28 <0.05 & 0.686 (L)

Table 5: Top frequently appearing words in the headings of readme files in popular and
non-popular repositories. The top 5 words for popular and non-popular repositories are
highlighted.

Popular Non-popular
Frequent word Frequency Rank Frequency Rank
license 0.313 1 0.15 2
install 0.29 2 0.19 1
contribute 0.274 3 0.11 4
start 0.181 4 0.095 5
document 0.165 5 0.055 15
content 0.161 6
build 0.156 7 0.087 6
support 0.149 8 0.055 14
example 0.143 9 0.065 9
code 0.136 10
usage 0.131 11 0.14 3
feature 0.131 12 0.063 10
project 0.128 13
get 0.118 14 0.056 13
learn 0.115 15
run 0.105 0.072 7
develop 0.0697 8

17

4.2. RQ2: What are the most important readme file related factors that dif-
ferentiate popular and unpopular GitHub repositories?

MotivationAmong the studied factors, some factors may be more important
than others. In this research question, we investigate the most important
factors in differentiating two groups of repositories. Our findings probably
can provide insights to repository owners, helping them improve their readme
files.
Approach To compute the importance of the studied factors, we build a
random forest classification model (Cutler et al., 2012) to differentiate pop-
ular and non-popular GitHub repositories. The factors that contribute more
explanation power are considered to be more important. Below, we elabo-
rate on each step of the model construction, model validation, and variable
importance analysis.
Correlation & redundant factor analysis. Before constructing the model,
we perform correlation analysis to remove correlated factors. Highly corre-
lated factors can cause multicollinearity problems in our model (Farrar and
Glauber, 1967), and turned out to bias the model interpretation. Thus, we
perform a correlation analysis to remove highly correlated factors using a
variable clustering analysis technique by following prior studies (Rajbahadur
et al., 2019; Wang et al., 2018; Fan et al., 2021). First, we use the Spearman
rank correlation test to measure the correlation between factors and remove
highly-correlated factors (using a cut-off value of 0.7). For each group of
the highly-correlated factors, we keep one factor as the representative for the
group and then performed a redundancy analysis to remove redundant fac-
tors following prior studies (Rajbahadur et al., 2019; Wang et al., 2018; Fan
et al., 2021). We ended up with 14 factors (see remaining factors in Table 6).
Model construction. Most of the factors which are numeric and categorical
could be directly derived from the repository and used as a feature when
building the model. However, one factor R heading is text-based. Because
our objective is for explanation and not for prediction, we use permutation
variable importance (see below for details) to examine which factors are im-
portant. If we directly treated each occurred word in the headings as a feature
in the model, it would be difficult to determine the importance of R heading
as a whole, since permutation variable importance can only provide the im-
portance for each individual feature (i.e., each word in the heading) rather
than the importance of a collection of the words in headings. Therefore,
we require a special process on R heading . Following previous studies (Shi-
hab et al., 2013; Mizuno and Hata, 2010), we use a classifier to convert the

18

heading text into a single numeric factor. More specially, we build a classi-
fier to discriminate between popular and non-popular repositories using the
heading text of repositories in the training set. The headings in reposito-
ries are divided into tokens using write space, where each token represents a
single word. We did not stem the words or remove stop words since words
appearing in the headings are usually important. Once the classifier (i.e.,
Classifier 1) is built, we get a probability score for each repository based on
its heading text. Then, we build another classifier (i.e., classifier 2) using all
factors in Table 2 except R heading together with the probability generated
by classifier 1 to discriminate between popular and non-popular repositories.

In this study, we select random forest as our classifiers (for both classifiers
1 and 2). Since our goal here is to conduct model explanation (i.e., under-
standing which factors are important) rather than prediction. Therefore, we
exclude deep learning models since they are hard to explain (Castelvecchi,
2016; Shwartz-Ziv and Tishby, 2017). In general, a model with a higher
accuracy indicates more reliable explanation results (Jia et al., 2021). We
select random forest since random forest is generally highly accurate (Ghotra
et al., 2015; Rajbahadur et al., 2017) and is also robust to outliers since it
summarizes the classification results of multiple trees that are learned dif-
ferently (Cutler et al., 2012). We actually compared the performance of
different commonly used classification models from various families on our
task, i.e., logistic regression (AUC is 0.90), SVM (AUC is 0.92), decision tree
(AUC is 0.89), AdaBoost(0.97), k-nearest neighbors (0.91), random forest
(AUC is 0.98). We found that random forest achieved the best performance,
therefore we selected random forest for our study. We use the Python pack-
age sklearn.ensemble.RandomForestClassifier as the implementation of our
random forest model. Note that in this study, we consider the factors related
to the repository (i.e., P Age, P size, P ProgramLanguage, P License, and
P Max/Min/Avg/Median Tag) as the controlling factors.
Model validation. We use the area under the Receiver Operating Character-
istic Curve (i.e., ROC) to assess the explanatory power of the built random
forest (Rajbahadur et al., 2017). A random classifier has an AUC (i.e., the
area under the curve) of 0.5, while the AUC for a perfect classifier is equal
to 1. In practice, most of the classification models have an AUC between
0.5 and 1. In general, an AUC of 0.5 suggests no discrimination (i.e., unable
to distinguish between popular and non-popular repositories), 0.7 to 0.8 is
considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is
considered outstanding (Mandrekar, 2010). To ensure that our model is not

19

overfitted and the results are reliable, we perform 10-fold cross validation to
validate the performance of the built model.
Variable importance analysis. In this study, we use permutation feature im-
portance (Permutation) to measure the importance of each feature. Permuta-
tion is one of the oldest and most popularly used approaches in both machine
learning (typically for random forest) and software engineering communi-
ties (Rajbahadur et al., 2021, 2017; Janitza et al., 2013; Jiarpakdee et al.,
2020). It is defined to be the decrease in a model performance score when a
single feature value is randomly shuffled We use the Python implementation
sklearn.inspection.permutation importance. We use partial dependence plot
(PDP) to show the marginal effect a feature has on the predicted outcome
of our built model (Friedman, 2001).
Results: Our model explains our dataset well and has reliable per-
formance. We find that the average AUC of our built classifier is 0.98. An
AUC large than 0.7 is generally considered acceptable (Hosmer Jr et al., 2013;
Zhou et al., 2020a). The results suggest that our built model explains the
relationship between the studied factors and the popularity of a repository
well.

After controlling factors related to the repository (e.g., P -
Avg Tag and P License), R NumList , R NumUpdate, and R Up-
dateInterval are statistically significantly important factors that
discriminate popular and non-popular repositories. From Table 6,
we observe that several repository related factors (i.e., controlling factors)
are statistically significantly important to the built model (p-value). For in-
stance, P Avg Tag is the most important factor to discriminate between two
groups of repositories. P License and P ProgramLanguage rank as the sec-
ond and fourth most important. Besides the controlling factors, we observe
that R NumList , R UpdateInterval , R NumLink , R NumUpdate, R Length
are statistically significantly to the model. In other words, the presentation
and frequent updates are correlated to the popularity of a repository. For
instance, CodeXGLUE5 is a benchmark published by Microsoft for various
software engineering tasks (e.g., code summarization and code search). The
readme file contains various links to external supporting resources, such as
large pre-trained models, other datasets, and related papers, which are help-
ful for developers to understand and reuse the benchmark, and develop new

5https://github.com/microsoft/CodeXGLUE

20

https://github.com/microsoft/CodeXGLUE

Factor Variable importance (median) p-value
P Avg Tag 0.49 2.5e-34
P License 0.22 2.5e-34
R NumList 0.16 2.5e-34
P ProgramLanguage 0.11 1.55e-19
R NumUpdate 0.089 1.9e-06
R UpdateInterval 0.086 2.7e-16
R Length 0.047 0.0049
R NumLink 0.038 0.0003
R heading 0.022 0.54
R NumIndent 0.01 0.90
R NumCodeBlock 0.01 0.62
P size 0.011 7.6e-08
R NumImage 0.01 0.22
R NumBadge 0.007 0.007

Table 6: Variable importance for studies factors that are ordered from the most important
to least important.

techniques based on the benchmark.
There is a positive correlation between the frequency and num-

ber of readme updates and the likelihood of a repository being
popular. As shown in Figure 4, the likelihood of a repository being classi-
fied as popular is positively correlated with R NumUpdate and negatively
correlative with R UpdateInterval . For R NumUpdate, the likelihood in-
creases sharply from 0 to 7 and gets relatively stable afterward. In terms
of R UpdateInterval , the likelihood decreases sharply from 0 to ∼600 and
gets stable afterward. Note that smaller R UpdateInterval indicates more
frequent updates. Such observations indicate that there is a positive correla-
tion between the frequency and number of readme updates and the likelihood
of a repository being popular.

There is a positive correlation between the number of lists and
links and the popularity of a repository. Figure 4 shows a similar trend
for R NumLink and R NumList , sharply increasing from 0 to a certain value
(i.e., 3 for R NumList and ∼30 for R NumLink). Such observations suggest
that proper markdown format and providing a proper amount of external
support materials probably have a positive correlation with the popularity
of repositories.

21

Figure 4: The estimated probability when the values of R NumLink , R NumList , R Up-
dateInterval , R Length, and R NumUpdate change. Y axis is the probability of a repository
being classified as a popular one.

22

In summary, We find that readme related factors have a high correlation
with the popularity of a repository. Therefore, we suggest repository owners
should pay more attention to factors related to readme files, such as fre-
quently updating the readme up to date and using proper markdown format
to better organize the content in readme files.

�

�

�

�

After controlling repository-specific factors (e.g., P Avg Topic), R Num-
List, R NumLink, R Length, R NumUpdate and R UpdateInterval are sta-
tistically significantly important factors that discriminate popular and non-
popular repositories. There is a positive correlation between the frequency,
number of readme updates, the number of lists and links, and the likelihood
of a repository being popular.

4.3. RQ3: What content is updated in readme files between popular and non-
popular GitHub repositories?

MotivationAs observed in RQ2, factors related to readme update dimension
are significantly important for the built model. In particular, R UpdateInter-
val is the most important factor after controlling repository-specific factors.
Therefore, in this section, we explore the update activities in readme files to
understand what and when were updated in readme files and compare these
activities between popular and non-popular repositories.
Approach To further understand what content was updated in readme files
of popular and non-popular repositories, we need to manually examine the
updates in the commits. Note that since the number of stars of a repository
changes over time, to understand the updates in readme files for popular
repositories, we only extract the commits after the repositories become pop-
ular (i.e., after receiving at least 100 stars in our case). To do so, we first
used star history data provided by Bytebase6 to obtain the star history of
each popular repository, and then identify the moment when the repository
achieved at least 100 stars. We then extracted all commits of popular repos-
itories that involved readme file updates after they became popular. Since
there are too many commits and it is infeasible for us to manually examine
all of them. Therefore, we randomly sampled 100 commits for popular and
non-popular repositories, respectively. We use the coding scheme created by

6https://star-history.com/

23

7

0

17

9 7

47

0

13

5

17

0

34

3
0

20

1

18

8

0
5

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 (%

)

Category

Popular Non-popular

Figure 5: Comparison of updated content in the readme files between popular and non-
popular repositories.

prior study (Prana et al., 2019) to label the content updated in readme files.
To determine if the existing codes are sufficient for our study, the first author
examined the 50 sampled commits with 25 from each group using open code,
respectively. After this pilot examination, additional categories are derived.
To alleviate the bias from human labeling, the first two authors then label the
50 sampled commits collaboratively. During this phase, the categories are
revised and re-fined. Finally, we derived two additional categories “Badge”
and “Presentation”. Then the first two authors independently applied the
categories to the rest of sampled commits and any disagreements until a
consensus is reached. During this phase, no new categories were introduced.
The inter-rater agreement of this coding process has a Cohen’s kappa of 0.81.
Table 7 presents the final categories we used to label the updated content in
the readme files and example headings.
Results: A larger portion of popular repositories were updated
than non-popular repositories. Although we observe that update ac-
tivities are an important factor for discriminating popular and non-popular
repositories, we observe that 34.6% (1728 out of 5,000) of the studied repos-
itories have never been updated since creation. The situation is better in
popular repositories, in which only 9% of them have never been updated,
compared with non-popular repositories (35%). In terms of R UpdateIn-
terval and R NumUpdate as shown in RQ1, popular repositories’ readme

24

Table 7: Categories of updated content in the readme file.

Category Definition Example headings in
readme files

What Update the introduction of
the repository.

Introduction, project back-
ground

Why Update the description of
advantages of the repository.

Advantages of the reposi-
tory, comparison with re-
lated work

How Update the information
about how to use the
project.

Getting started/quick start,
how to run, installation, how
to update, configuration,
setup, requirements, depen-
dencies, languages, plat-
forms, demo, downloads, er-
rors and bugs

When Update the description of
the status and plan of the
repository.

Project status, versions,
project plans, roadmap

Who Update the information
about who the project gives
credit to.

Project team, community,
mailing list, contact, ac-
knowledgment, licence, code
of conduct

References Update the references to ex-
ternal information related to
the repository.

API documentation, getting
support, feedback, more in-
formation, translations, re-
lated projects, donation

Contribution Update the information
about how to contribute to
the repository.

Contribution guidelines

Badge Update the badge informa-
tion for the repository.

NA

Presentation Fix grammar issues and
change markdown format.

NA

25

files are updated more frequently (254.7 days per update) than non-popular
repositories (665.9 days per update).

Most of the updates (47%) were performed to update refer-
ences in popular repositories, while most updates were performed
to update the content of “how” in non-popular repositories (34%).
Figure 5 compare the categories of content updated in readme files between
popular and non-popular repositories. On one hand, we observe that cat-
egories How, References, and Presentation are the top three most frequent
categories in both popular and non-popular repositories. Those three cat-
egories account for 77% and 72% of popular and non-popular repositories,
respectively. More importantly, we observe both in popular and non-popular
projects, developers make significant efforts to update references, such as API
documentation and related projects. For example, one commit was made to
update a broken URL of API documentation to resolve an issue raised by
developers7. This finding is compatible with prior studies on software knowl-
edge platforms in which the authors found that a remarkable proportion of
links are obsolete (Zhang et al., 2019; Liu et al., 2020). For instance, Zhang
et al. (2019) found that 11.9% of the 5.5 million links in Stack Overflow an-
swers are broken. Developers in both groups of repositories edit frequently
the information on how to use the repositories, which is expected. One possi-
ble explanation is that almost all the repositories have such information and
they are easy to become outdated (Prana et al., 2019).

A remarkable portion of updates on readme files were performed
to improve the presentation and update badges for both popular
and non-popular repositories. Developers also make efforts to improve
the presentation of readme files (13% and 18% for popular and non-popular
repositories). For instance, in a commit8, the contributor changed the format
of section titles to make them more consistent. Based on our results in Sec-
tion 4.2, the factors related to the presentation of readme files are important
factors for discriminating between popular and non-popular repositories. In
other words, the presentation of readme files is important for the popularity
of a repository. 5% and 8% of updates on readme files are related to badge
(i.e., category Badge) for popular and non-popular repositories, respectively.

7https://github.com/cristaloleg/go-advice/commit/

c78d6c06d5327d731f61bbe416eeec2c28e79586
8https://github.com/emberjs/ember.js/commit/fb7022b8f4af64534470b002fe91a4da9b9d96b5

26

https://github.com/cristaloleg/go-advice/commit/c78d6c06d5327d731f61bbe416eeec2c28e79586
https://github.com/cristaloleg/go-advice/commit/c78d6c06d5327d731f61bbe416eeec2c28e79586
https://github.com/emberjs/ember.js/commit/fb7022b8f4af64534470b002fe91a4da9b9d96b5

Various badges could be added to the readme file of a repository to indicate
the standard/property of a repository, e.g., a 100% coverage badge could be
added to indicate that 100% of the code in the repository is covered by its test
cases. For instance, in a commit of openframeworks 9, the contributor up-
dated the badge status (e.g., changed the status of build on Linux 64 & Arm
from “errored” to “passing”). They also changed the name of the badge for
each platform to make the badge more specific (e.g., from “build” to “build-
linux64-and-arm”). We compare the ratio of repositories in two groups that
have at least one badge. Interestingly, we find more popular repositories have
at least one badge (30%) than non-popular repositories (6.7%).

�

�

�

Most of the updates (47%) were performed to update references in popular
repositories, while most updates were performed to update the content of
“how” in non-popular ones (34%). A remarkable portion of updates on
readme files were performed to improve the presentation and update badges
for both popular and non-popular repositories.

5. Discussion

In this section, we discuss the implications of our findings and threats to
validity.

5.1. Implications of Our Findings

We suggest the GitHub repository contributors use proper mark-
down to organize the content of the readme file properly. In RQ2, we
observe that R NumLink and R NumList are significantly important factors
and have a positive correlation with the popularity of a repository. We also
observe that the table of contents are appeared more frequently in the readme
file of popular repositories than in non-popular repositories, especially when
the readme file is long. Therefore, we suggest contributors should pay atten-
tion to using proper markdown to organize the content of readme files.

We suggest the GitHub repository contributors make continu-
ous efforts to keep readme files up to date. In RQ2, we observe that

9https://github.com/openframeworks/openFrameworks/commit/

faba5895d2687588ee0512ed90fb5288c8f3de1d

27

https://github.com/openframeworks/openFrameworks/commit/faba5895d2687588ee0512ed90fb5288c8f3de1d
https://github.com/openframeworks/openFrameworks/commit/faba5895d2687588ee0512ed90fb5288c8f3de1d

R NumUpdate and R UpdateInterval are statistically significantly important
factors in the built model. Although our study does not reveal causation,
at least we observe the frequency/number of readme updates positively cor-
relates with the likelihood of a repository being popular. In other words,
updates on the readme file are important. In RQ3, we observe that a re-
markable proportion of updates were performed to update references and
content related to “how”. Prior studies already prove that a good quality
readme file can reduce the learning curve of users to get started and con-
tribute to a repository (Steinmacher et al., 2014). Therefore, contributors
should pay attention to maintaining the repository and make all content up
to date.

In summary, the quality of the readme file is positively correlated with
the popularity of repositories. Developers should pay attention to improving
their readme files.

5.2. Future research direction

Tools are encouraged to be developed to support the automatic
update for readme files. In RQ3, we observe that most of the updates
(47%) in popular repositories were performed to update references due to
various reasons, such as broken links and obsolescence. We also observe that
developers frequently update the information on how to use the repository
due to their obsolescence. Developers make significant efforts to maintain
the references in their readme files. Therefore, future research is encouraged
to develop tools to support such updates. One solution is to develop ap-
proaches to detect such obsolete references and content in the readme file
during pushing a commit and recommend proper update solutions similar to
prior research in just-in-time commit message generation (Xu et al., 2019;
Liu et al., 2018). We also observe developers update the readme file to im-
prove presentation, e.g., improving the formatting. Recently, large language
models (e.g., GPT-4) have been proven in various NLP tasks (Bubeck et al.,
2023; OpenAI, 2023). Future research is encouraged to leverage large lan-
guage models for improving the presentation of readme files.

Future research is encouraged to generate a readme template
for a repository automatically. In RQ1, we observe that popular and
non-popular repositories share similar headings (e.g., usage and installation).
Certain topics are frequently contained both in the readme file of popular
and non-popular repositories. In other words, the readme files of GitHub
repositories usually follow patterns containing certain pieces of information.

28

Therefore, there is potential to generate a readme template automatically
when a repository description is given using historical readme files as the
training data using machine learning techniques, such as generative mod-
els (Radford et al., 2018; Nie et al., 2018). We encourage future research to
investigate this.

5.3. Threats to Validity

Internal Validity One threat to internal validation relates to the catego-
rization of the studied repositories as popular and non-popular ones, in which
we use a hard-cut 0 and 100 as the threshold. However, different thresholds
may lead to different observations. To alleviate this threat, we build a ran-
dom forest model using different thresholds. Instead of using the number of
stars directly, we use percentages following prior studies (Zhou et al., 2020b;
Wang et al., 2018). More specifically, we sort the repositories based on their
starts and consider the top k% and bottom k% of the repositories as pop-
ular and non-popular. We tested three values 10, 20, and 30 for k. The
findings still hold. The findings still hold. The R NumList , R NumLink ,
and R UpdateInterval are still the most important features after controlling
repository-related features.

One internal threat is that in RQ1, we use the most frequent words ap-
pearing in the headings as a proxy to estimate the content of readme files.
Some readme files probably do not have headings. However, we find the
proportion of such cases is low, i.e., 6% in popular but 29% in non-popular.
Another internal threat is that in RQ1, we look at the top 15 most frequent
words appearing in the headings to compare the content of readme files be-
tween popular and non-popular repositories. The findings may vary when we
select different thresholds. To alleviate the threat, we select different thresh-
olds (i.e., top 20 and 30) and we find the overlap between the two groups is
70% and 50%, respectively.

Another threat is that in data preparation, we did not consider outliers
and their impact, typically the impact of the extremely popular reposito-
ries. To alleviate this threat, We used the three-sigma rule of thumb to
identify outliers (Pukelsheim, 1994). For popular repositories, we identify 17
repositories that have more than 86,054 stars as outliers. For non-popular
repositories, since all the repositories have zero star and we do not identify
any outliers. After removing those outliers, we re-ran the analysis in RQ1
and RQ2 and our findings still hold.

29

In RQ2, we study the association between the studied features and the
likelihood of a repository being popular. However, we can not conclude
the causation between them. Future research is encouraged to study their
causation of them.

In RQ3, we involved human labeling. To reduce the bias from human
labeling, each commit was labeled by two of the authors, and discrepancies
were discussed until a consensus was reached. We also showed that the level
of inter-rater agreement of the qualitative study is high (i.e., the value of
Cohen’s kappa is 0.81).
External Validity One external threat is that it is not clear whether our
findings still hold on to other repositories (e.g., closed source repositories
and open source repositories on other platforms). Although we performed
the study on the most popular repository hosting platform (i.e., GitHub),
future research is encouraged to replicate our analysis on other repositories.

Another threat is regarding the factors that there might be additional
factors that could be associated with the popularity of a repository. In this
study, we consider 6 factors related to the content of readme files, 3 factors
related to the update activities on readme files, and 8 factors related to the
repository as our controlling factors. There might be other factors associated
with the popularity of a repository. However, our results show that the
explanatory power of our models is high (0.98) when using the studied factors.
Future studies should consider more features.

6. Conclusion and future work

In this study, we analyze the readme files of 5000 GitHub repositories
across different domains and languages. We investigate the relationship be-
tween readme file related factors and the popularity of GitHub repositories.
We observe that all studied readme file related features (e.g., the number of
links and images, updates frequency) except heading content are significantly
different between popular and non-popular repositories with non-negligible
effect size. Popular and non-popular repositories share similar headings. We
also observe the number of lists and the frequency of updates are significantly
important factors that discriminate between popular and non-popular repos-
itories and they positively correlate with the likelihood of a repository being
popular. In summary, the quality of the readme file (e.g., proper organization
of content and ensuring content is up to date) is positively correlated with the
popularity of repositories. The most of the updates were performed to update

30

reference in popular repositories, while the most updates were performed to
update the content of “how” in non-popular ones. A remarkable portion
of updates on readme files were performed to improve the presentation and
update badges for both popular and non-popular repositories. Developers
should pay attention to improving the readme file, such as improving the
organization of content and ensuring the readme is up to date.

As the one of the first studies on this direction, we provide certain action-
able insights for contributors on GitHub and future research. We encourage
future research to verify those insights.

References

Aggarwal, K., Hindle, A., and Stroulia, E. (2014). Co-evolution of project
documentation and popularity within github. In Proceedings of the 11th
working conference on mining software repositories , pages 360–363.

Bao, L., Xia, X., Lo, D., and Murphy, G. C. (2019). A large scale study of
long-time contributor prediction for github projects. IEEE Transactions
on Software Engineering , 47(6), 1277–1298.

Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the factors
that impact the popularity of github repositories. In 2016 IEEE interna-
tional conference on software maintenance and evolution (ICSME), pages
334–344. IEEE.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar,
E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., et al. (2023). Sparks of
artificial general intelligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712 .

Castelvecchi, D. (2016). Can we open the black box of ai? Nature News ,
538(7623), 20.

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin, 114(3), 494.

Coelho, J., Valente, M. T., Silva, L. L., and Shihab, E. (2018). Identifying
unmaintained projects in github. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measure-
ment , pages 1–10.

31

Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). Random forests. In
Ensemble machine learning , pages 157–175. Springer.

Fan, Y., Xia, X., Lo, D., Hassan, A. E., and Li, S. (2021). What makes a
popular academic ai repository? Empirical Software Engineering , 26(1),
1–35.

Farrar, D. E. and Glauber, R. R. (1967). Multicollinearity in regression
analysis: the problem revisited. The Review of Economic and Statistics ,
pages 92–107.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics , pages 1189–1232.

Gharehyazie, M., Ray, B., and Filkov, V. (2017). Some from here, some
from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pages
291–301. IEEE.

Gharehyazie, M., Ray, B., Keshani, M., Zavosht, M. S., Heydarnoori, A., and
Filkov, V. (2019). Cross-project code clones in github. Empirical Software
Engineering , 24(3), 1538–1573.

Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the impact
of classification techniques on the performance of defect prediction mod-
els. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering , volume 1, pages 789–800. IEEE.

GitHub (2022a). About READMEs. https://docs.github.com/en/

repositories/managing-your-repositorys-settings-and-features/

customizing-your-repository/about-readmes.

GitHub (2022b). REST API. https://docs.github.com/en/rest.

GitHub (2022c). Where the world builds software. https://github.com/

about.

Google (2020). Use BigQuery to query GitHub data. https://codelabs.

developers.google.com/codelabs/bigquery-github.

32

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/rest
https://github.com/about
https://github.com/about
https://codelabs.developers.google.com/codelabs/bigquery-github
https://codelabs.developers.google.com/codelabs/bigquery-github

Han, J., Deng, S., Xia, X., Wang, D., and Yin, J. (2019). Characterization
and prediction of popular projects on github. In 2019 IEEE 43rd annual
computer software and applications conference (COMPSAC), volume 1,
pages 21–26. IEEE.

Hassan, F. and Wang, X. (2017). Mining readme files to support automatic
building of java projects in software repositories. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C),
pages 277–279. IEEE.

Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied
logistic regression, volume 398. John Wiley & Sons.

Ikeda, S., Ihara, A., Kula, R. G., and Matsumoto, K. (2019). An empiri-
cal study of readme contents for javascript packages. IEICE TRANSAC-
TIONS on Information and Systems , 102(2), 280–288.

Janitza, S., Strobl, C., and Boulesteix, A.-L. (2013). An auc-based permuta-
tion variable importance measure for random forests. BMC bioinformatics ,
14(1), 1–11.

Jia, Y., Frank, E., Pfahringer, B., Bifet, A., and Lim, N. (2021). Studying
and exploiting the relationship between model accuracy and explanation
quality. In Machine Learning and Knowledge Discovery in Databases. Re-
search Track: European Conference, ECML PKDD 2021, Bilbao, Spain,
September 13–17, 2021, Proceedings, Part II 21 , pages 699–714. Springer.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang, L. (2017). Why
and how developers fork what from whom in github. Empirical Software
Engineering , 22(1), 547–578.

Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2020). The impact
of automated feature selection techniques on the interpretation of defect
models. Empirical Software Engineering , 25(5), 3590–3638.

Kimble, J. (1992). Plain english: A charter for clear writing. TM Cooley L.
Rev., 9, 1.

Koskela, M., Simola, I., and Stefanidis, K. (2018). Open source software
recommendations using github. In International Conference on Theory
and Practice of Digital Libraries , pages 279–285. Springer.

33

Laurent, A. M. S. (2004). Understanding open source and free software li-
censing: guide to navigating licensing issues in existing & new software. ”
O’Reilly Media, Inc.”.

Liu, J., Xia, X., Lo, D., Zhang, H., Zou, Y., Hassan, A. E., and Li, S. (2020).
Broken external links on stack overflow. arXiv preprint arXiv:2010.04892 .

Liu, Y., Noei, E., and Lyons, K. (2022). How readme files are structured
in open source java projects. Information and Software Technology , 148,
106924.

Liu, Z., Xia, X., Hassan, A. E., Lo, D., Xing, Z., and Wang, X. (2018).
Neural-machine-translation-based commit message generation: how far are
we? In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering , pages 373–384.

Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic
test assessment. Journal of Thoracic Oncology , 5(9), 1315–1316.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics , pages 50–60.

McDonald, N. and Goggins, S. (2013). Performance and participation in
open source software on github. In CHI’13 extended abstracts on human
factors in computing systems , pages 139–144.

Mizuno, O. and Hata, H. (2010). An integrated approach to detect fault-
prone modules using complexity and text feature metrics. In Advances in
Computer Science and Information Technology , pages 457–468. Springer.

Munaiah, N., Kroh, S., Cabrey, C., and Nagappan, M. (2017). Curating
github for engineered software projects. Empirical Software Engineering ,
22(6), 3219–3253.

Nie, W., Narodytska, N., and Patel, A. (2018). Relgan: Relational generative
adversarial networks for text generation. In International conference on
learning representations .

OpenAI (2023). Gpt-4 technical report.

34

Prana, G. A. A., Treude, C., Thung, F., Atapattu, T., and Lo, D. (2019).
Categorizing the content of github readme files. Empirical Software Engi-
neering , 24(3), 1296–1327.

Pukelsheim, F. (1994). The three sigma rule. The American Statistician,
48(2), 88–91.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Im-
proving language understanding by generative pre-training.

Rajbahadur, G. K., Wang, S., Kamei, Y., and Hassan, A. E. (2017). The
impact of using regression models to build defect classifiers. In 2017
IEEE/ACM 14th International Conference on Mining Software Reposi-
tories (MSR), pages 135–145. IEEE.

Rajbahadur, G. K., Wang, S., Kamei, Y., and Hassan, A. E. (2019). Impact
of discretization noise of the dependent variable on machine learning classi-
fiers in software engineering. IEEE Transactions on Software Engineering ,
47(7), 1414–1430.

Rajbahadur, G. K., Wang, S., Ansaldi, G., Kamei, Y., and Hassan, A. E.
(2021). The impact of feature importance methods on the interpretation
of defect classifiers. IEEE Transactions on Software Engineering .

Romano, J., Kromrey, J. D., Coraggio, J., and Skowronek, J. (2006). Appro-
priate statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys.
In annual meeting of the Florida Association of Institutional Research,
volume 177, page 34.

Sharma, A., Thung, F., Kochhar, P. S., Sulistya, A., and Lo, D. (2017).
Cataloging github repositories. In Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering , pages
314–319.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W. M., Ohira, M., Adams, B.,
Hassan, A. E., and Matsumoto, K.-i. (2013). Studying re-opened bugs in
open source software. Empirical Software Engineering , 18(5), 1005–1042.

Shwartz-Ziv, R. and Tishby, N. (2017). Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810 .

35

Steinmacher, I., Gerosa, M. A., and Redmiles, D. (2014). Attracting, on-
boarding, and retaining newcomer developers in open source software
projects. In Workshop on Global Software Development in a CSCW Per-
spective.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the
characteristics of high-rated apps? a case study on free android applica-
tions. In 2015 IEEE international conference on software maintenance and
evolution (ICSME), pages 301–310. IEEE.

Treude, C., Middleton, J., and Atapattu, T. (2020). Beyond accuracy: assess-
ing software documentation quality. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering , pages 1509–1512.

Trockman, A., Zhou, S., Kästner, C., and Vasilescu, B. (2018). Adding
sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proceedings of the 40th International Conference on
Software Engineering , pages 511–522.

Wang, S., Chen, T.-H., and Hassan, A. E. (2018). Understanding the factors
for fast answers in technical q&a websites. Empirical Software Engineering ,
23(3), 1552–1593.

Weber, S. and Luo, J. (2014). What makes an open source code popular
on git hub? In 2014 IEEE International Conference on Data Mining
Workshop, pages 851–855. IEEE.

Xu, S., Yao, Y., Xu, F., Gu, T., Tong, H., and Lu, J. (2019). Commit
message generation for source code changes. In IJCAI .

Zhang, H., Wang, S., Chen, T.-H., Zou, Y., and Hassan, A. E. (2019). An
empirical study of obsolete answers on stack overflow. IEEE Transactions
on Software Engineering , 47(4), 850–862.

Zhang, Y., Lo, D., Kochhar, P. S., Xia, X., Li, Q., and Sun, J. (2017).
Detecting similar repositories on github. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 13–23. IEEE.

36

Zhou, J., Wang, S., Bezemer, C.-P., and Hassan, A. E. (2020a). Bounties
on technical q&a sites: a case study of stack overflow bounties. Empirical
Software Engineering , 25(1), 139–177.

Zhou, J., Wang, S., Bezemer, C.-P., Zou, Y., and Hassan, A. E. (2020b).
Studying the association between bountysource bounties and the issue-
addressing likelihood of github issue reports. IEEE Transactions on Soft-
ware Engineering .

Zhu, J., Zhou, M., and Mockus, A. (2014). Patterns of folder use and project
popularity: A case study of github repositories. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement , pages 1–4.

37

	Introduction
	Background & Related work
	Readme file on GitHub
	Related work
	Studying and leveraging the content presented in readme files
	Studying popularity of GitHub repositories

	Data Preparation
	Repository Data Collection
	Data Labeling
	Factors Collection

	Results of the Research Questions
	RQ1: Is there a relationship between the studied readme file related factors and the popularity of GitHub repositories?
	RQ2: What are the most important readme file related factors that differentiate popular and unpopular GitHub repositories?
	RQ3: What content is updated in readme files between popular and non-popular GitHub repositories?

	Discussion
	Implications of Our Findings
	Future research direction
	Threats to Validity

	Conclusion and future work

