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a b s t r a c t

Apache Spark is one of the most popular big data frameworks that abstract the underlying distributed
computation details. However, even though Spark provides various abstractions, developers may
still encounter challenges related to the peculiarity of distributed computation and environment. To
understand the challenges that developers encounter, and provide insight for future studies, in this
paper, we conduct an empirical study on the questions that developers encounter. We manually
analyze 1,000 randomly selected questions that we collected from Stack Overflow. We find that: 1)
questions related to data processing (e.g., transforming data format) are the most common among the
11 types of questions that we uncovered. 2) Even though data processing questions are the most
common ones, they require the least amount of time to receive an answer. Questions related to
configuration and performance require the most time to receive an answer. 3) Most of the issues
are caused by developers’ insufficient knowledge in API usages, data conversation across frameworks,
and environment-related configurations. We also discuss the implication of our findings for researchers
and practitioners. In summary, our work provides insights for future research directions and highlight
the need for more software engineering research in this area.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The amount of available data has increased significantly in
ecent years. Forbes estimated that 90% of the data in the world
s generated in the last few years (Forbes, 2018). The collected
ata contains valuable information that helps in making critical
usiness decisions, but the data of such scale is difficult to pro-
ess and analyze using a single machine. As a result, developers
everage various distributed data processing frameworks, such as
pache Hadoop (Hadoop, 2021) and Apache Spark (Spark, 2021),
o analyze data across tens or even hundreds of machines.

In particular, Spark has become one of the most popular big
ata frameworks that companies are adopting (Agarwal, 2019).
pache Spark is a unified analytics engine for processing large-
cale data. Spark can distribute data processing tasks across large
lusters of computers to speed up the computation. Spark pro-
ides a set of APIs that abstract the distributed computation
etails. Thus, developers can call Spark APIs to implement the
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data processing logic and can scale horizontally without modi-
fying the code. Spark supports multiple programming languages
(i.e., Java, Python, Scala, and R) and offers various high-level API
abstractions to meet a wide range of big data development needs,
such as SQL queries, machine learning, and graph analysis.

Although Spark helps developers abstract the underlying dis-
tributed data processing details, developers may still encounter
various challenges when developing Spark applications. For ex-
ample, while Spark’s abstraction layer automatically optimizes
data processing to achieve better performance, such abstrac-
tion may also pose challenges in debugging data processing
tasks (Wang et al., 2021). Moreover, since developers may in-
tegrate Spark applications with other big data frameworks (e.g.,
storage engines such as HDFS), developers may also encounter
integration issues. Spark provides various components, such as
MLlib for machine learning and Spark Streaming for stream data
processing, to perform a wide range of data processing tasks.
However, there may be unique challenges associated with using
various components and process different types of data.

In this paper, we conduct an in-depth qualitative study of
the problems that developers encounter when developing Spark
applications. Prior studies have used Stack Overflow to study the
challenges that developers have in various fields, such as security
and deep learning applications (Meng et al., 2018; Islam et al.,
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019). Similarly, we study both the Spark-related questions and
nswers on Stack Overflow.
In total, we collected 12,217 posts (i.e., each post contains

he question and the corresponding answers). Due to the large
umber, we conduct our qualitative study based on a statistically
ignificant sample. We randomly sample 1000 posts, achieving a
onfidence level of 95% and a confidence interval of 3%. While
rior research also aimed to study the challenges that big data
evelopers encounter, the study was purely quantitative (Gulzar
t al., 2019). In our paper, we study each post in detail and
xamine the code provided in the questions and answers to
btain deeper insights into the potential challenges in developing
park applications. In particular, we seek to answer the following
esearch questions:

RQ1: What types of questions do developers ask about Spark
on Stack Overflow?
We uncover 11 types of questions that developers en-
counter when developing Spark applications. We find that
data processing is the most common type of questions,
accounting for 43% of all the studied questions. We also
find that developers often encounter issues related to con-
figuration, integration with other frameworks, and using
machine learning APIs in Spark.

RQ2: Which types of questions have higher view counts and
are more time-consuming to answer?
Although data processing questions or Spark basics ques-
tions have a higher number of view counts, they require
less time to receive an answer (median is one hour). On
the other hand, performance and configuration questions
take more time to get answers (median is eight and 14 h,
respectively), while are still very popular in terms of view
count. We also find that the view-count ranking of the
question type remains stable even if we consider the age
of the question.

RQ3: What are the root causes of Spark-related questions?
By manually analyzing every question and answer in these
1000 posts, we summarize 11 root causes. We find that
the Spark data abstraction and the lack of knowledge of
API usage contribute to the root cause of half of the ques-
tions (50%). Furthermore, complex environment configura-
tions and incorrect or incompatible data format issues also
contribute to many problems during Spark development
(24%).

Our research uncovers the types of common problems in Spark
evelopment. In addition, we discuss the implications of our
indings and provide actionable suggestions to practitioners. Our
indings may inspire future research to better assist developers
ith big data development.
aper Organization. Section 2 discusses the background and
elated work on Spark. Section 3 presents the common challenges
n the development of Spark applications, their popularity and
ifficulty, and their root causes. Section 4 discusses the implica-
ions of our findings. Section 5 discusses the threats to validity.
ection 6 concludes the paper.

. Background and related work

In this section, we introduce the background of Apache Spark
nd Stack Overflow, which we use to analyze Spark related ques-
ions. Then, we discuss related work in the empirical study and
esting of big data applications, and Stack Overflow.
2

2.1. Background

The Spark Ecosystem. Apache Spark is a distributed computing
framework that executes the computation in parallel in a cluster.
In Spark, the computation task is automatically sent from the
driver node to the worker nodes so that the worker nodes can
perform the computation in parallel. Spark is widely used for big
data processing by large corporations, such as Amazon (Amazon,
2021) and Yahoo (Yahoo, 2021). Spark becomes one of the most
popular big data frameworks and is the number one big data tech-
nology that IT decision makers plan to deploy (Agarwal, 2019),
and it has quickly become the largest open-source community in
big data, with over 1600 contributors and 30.4k stars. Spark sup-
ports various programming languages, such as Java, Scala, Python,
and R, and provides three abstracted data structures for dis-
tributed data processing: resilient distributed dataset (i.e., RDD),
DataSet, and DataFrame. By using such an abstraction, developers
would be free from the burden of implementing the underlying
details on distributed computation. The three data structures are
similar in functionalities, although DataSet and DataFrame have
become the recommended data structure and API to use since
Spark 2.0.

Since Spark is often used in distributed settings, it provides
support for the integration with various data sources and frame-
works. For example, Spark provides APIs that allow developers
to read data from other data storage systems such as HDFS
and Hive. Spark’s data storage APIs also help developers deal
with different data formats (e.g., JSON or CSV) that are used
in the external data storage systems. Although such APIs help
simplifies the integration with other frameworks, there may still
be issues caused by incorrect configurations or API usages. To
help ease the development of various data analysis tasks, Spark
supports a number of high-level APIs including Spark SQL (SQL,
2021) (i.e., access data using SQL-like domain specific language),
Spark Streaming (Streaming, 2021) for data stream processing,
MLlib (MLlib, 2021) for machine learning, and GraphX (GraphX,
2021) for graph processing. All these APIs have their specific
design and data format requirement. Hence, if developers are not
familiar with the data format and the data storage framework
that a Spark application integrates with, there may be unexpected
errors during runtime. Moreover, since Spark abstracts and dis-
tributes the computation across many worker nodes, there may
be particular challenges when using Spark to train distributed
machine learning models compared to models in a single node.

In this paper, we conduct an empirical study to unveil the
challenges that developers encounter when developing Spark
applications. We manually study the issues that developers have
and summarize the root causes of the challenges. Our findings
not only help inspire future research directions on assisting de-
velopers with developing big data applications but also provide
development guidelines for developers.
Stack Overflow. In this paper, we study the Spark issues that
developers encounter on Stack Overflow. Stack Overflow is a
well-known Q&A website for developers to discuss all kinds of
questions related to software development. Users can not only
ask and answer questions but also vote for the most appro-
priate questions and answers. Every question and answer has
attributes such as view count, vote count, and favorite count.
The view count represents the number of views for a question
thread, which reflects the popularity of the associated ques-
tion/answer (Bajaj et al., 2014; Nadi et al., 2016; Yang et al., 2016).
Each question can be upvoted or downvoted by users to reflect
the vote count. A higher vote count means that the question
may be more applicable to the general audience. Finally, Stack
Overflow allows users to ‘‘bookmark’’ a question by marking the
question as ‘‘favorite’’. In this paper, we conduct a detailed manual



Z. Wang, T.-H.(P. Chen, H. Zhang et al. The Journal of Systems & Software 194 (2022) 111488

a
S
t
s

2

E
p
o
a
w
m
f
a
J
t
O
a
c
o
s
c
t
F
S
w
d
d
T
q
1
a
e
b
r

c
d
u
O
p
w
t
A
(
d
w
w
t
d
i
m
e
g
p
m
t
t
c
d
a
O
O
p
v

nalysis on 1000 randomly sampled Spark-related questions on
tack Overflow. We also analyze the above-mentioned attributes
o study which challenges are more prevalent and may require
upport from the research community.

.2. Related work

mpirical Studies on Big Data Applications. There are several
rior studies that aim to understand the challenges that devel-
pers have when developing big data applications. Bagherzadeh
nd Khatchadourian (2019) used Stack Overflow data to study
hat kinds of questions big data developers ask. They use topic
odels to find the more popular topics. However, their work

ocuses only on the quantitative aspects and does not provide
n in-depth analysis of the challenges that developers have.
iménez Rodríguez et al. (2018) used a LDA model to study the
opics of the Spark-related questions that developers ask on Stack
verflow. They found the main libraries and topics of discussion
bout Spark and how the discussion of different Spark libraries
hange over time. While the study provides a good general
verview of the challenges that Spark developers encounter, the
tudy is totally quantitative and the categories in their study are
oarse-grained, it offers few insights into the types of information
hat can be useful for building and debugging Spark applications.
or example, compared to other Spark libraries, they found that
park-SQL may have more problems but they did not discuss
hat challenge developer encounter when using Spark-SQL to do
ata processing tasks. Kim et al. (2018) surveyed 793 Microsoft
ata scientists on the common challenges that they encounter.
hey find that the most common challenges are related to data
uality and the scale of data. Fisher et al. (2012) also interviewed
6 data analysts at Microsoft and they found that debugging in
distributed cloud environment is extremely challenging. Zhou
t al. (2015) analyzed 210 issue reports from one of Microsoft’s
ig data platforms. They find that more than 30% of the issues are
elated to application design and code logic.

Compared to prior studies, this paper aims to provide a more
omprehensive and in-depth understanding of the problems that
evelopers encounter and their root causes. We conduct a man-
al study on 1000 Spark-related questions collected from Stack
verflow. We manually categorize the questions and identify the
revalent question types (e.g., in terms of view counts). Finally,
e manually derive the root causes of questions and summarize
he implications of our findings.
nalysis and Testing of Big Data Applications. Gulzar et al.
2016, 2018, 2019) developed a series of techniques to assist
evelopers in debugging and testing big data applications. Their
ork of BigDebug (Gulzar et al., 2016) simulates breakpoints and
atchpoints to allow interactive debugging in big data applica-
ions. BigSift (Gulzar et al., 2018) applies the concept of delta
ebugging to help developers identify the root cause of an error
n Spark applications. Finally, BigTest (Gulzar et al., 2019) auto-
atically generates a small and synthetic dataset for effective and
fficient testing. Zhang et al. (2020) propose a novel coverage-
uided fuzz testing tool for Spark applications. Wang et al. (2021)
ropose an approach called DPLOG to provide logging support to
onitor data applications. These studies provide valuable support

o developers and assist in testing and debugging Spark applica-
ions. Our work focuses on identifying problems and their root
auses in developing Spark applications. Our findings provide
irections for future research on improving the quality of Spark
pplications.
ther Empirical Studies that Leverage Stack Overflow. Stack
verflow is a widely used platform to study software engineering
ractices from developers’ perspectives. Previous studies provide
aluable insights by analyzing questions on Stack Overflow (Tahir
3

et al., 2018; Ahmed and Bagherzadeh, 2018; Abdellatif et al.,
2020; Tahaei et al., 2020; Islam et al., 2020; Meng et al., 2018;
Islam et al., 2019). Meng et al. (2018) studied 503 Stack Over-
flow posts to understand developers’ concerns on Java secure
coding. Islam et al. (2019) study over 2000 posts from Stack
Overflow to find the common types and root causes of bugs in
five popular deep learning libraries. Islam et al. (2020) studied
415 repairs from Stack Overflow and 555 repairs from GitHub to
find the bug repair patterns and challenges in five deep learning
libraries. They find that bug fix patterns of deep neural networks
are different compared to traditional bug fix patterns. Zhang et al.
(2019) studied obsolete answers on Stack Overflow to understand
the evolution of crowdsourced knowledge. Mondal et al. (2021)
studied unanswered questions on Stack Overflow to understand
the difference between unanswered and answered questions.
Similarly, we conduct an empirical study of Spark-related ques-
tions on Stack Overflow to understand the Spark problems that
developers encounter.

Stack Overflow posts cover a wide range of topics. Barua et al.
(2014) found that general programming and web-related topics
are more common on Stack Overflow. To uncover the types of
posts on Stack Overflow, previous studies (Beyer et al., 2020; Alla-
manis and Sutton, 2013) propose categories such as review, con-
ceptual, and learning, to classify the posts. These categories pro-
vide a valuable perspective for classifying issues on Stack Over-
flow. Although such classification categories may be suitable for
general programming-related problems, these categories are too
general for categorizing the problems that developers encounter
during Spark development. Spark, as a distributed data processing
framework, requires certain domain-specific knowledge, such as
data processing, distributed computing, and configuration man-
agement. Such knowledge often does not apply to general pro-
gramming or other domain-specific (e.g., Android or web de-
velopment) questions. Therefore, we propose new classification
schemes to study the Spark-related problems that developers ask
on Stack Overflow.

3. Study results

In this section, we first discuss our data collection process.
Then, we discuss the results of our research questions (RQs). For
each RQ, we discuss the motivation, approach, and results.

3.1. Study setup

Our goal is to understand common challenges that developers
encounter when using Spark and to provide insights towards
potential solutions to Spark challenges. To achieve the goal, we
analyze the questions that developers ask on Stack Overflow —
the most popular Q&A website for software development and
programming questions. We collect the Stack Overflow data from
Stack Exchange Data Explorer.1 This website provides a SQL query
interface where we can download Spark-related posts through
SQL queries. Our collected data contains post information, such
as the detailed content of each post (i.e., a question and its
associated answers), the number of received votes in a post, and
the view count of a question.

To study the types of questions that developers ask on Stack
Overflow, our first step is to identify the posts that are related to
Apache Spark. On Stack Overflow, developers are required to label
at least one and at most five tags when they ask a question. These
tags represent the specific topics for a question. Therefore, we
use the tag apache-spark to select all Spark-related questions on
Stack Overflow. Moreover, we follow prior studies (Wang et al.,

1 https://data.stackexchange.com/help.

https://data.stackexchange.com/help
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018; Ponzanelli et al., 2014) to further select questions that have
score greater than zero. In total, we collected 14,043 questions
nd their associated 22,329 answers. To study the questions
nd their associated root causes in detail, we only consider the
uestions with an accepted answer and code snippets. Finally, we
elect the questions that were asked between 2014 and 2019. We
hoose the questions in this period because Spark 1.0 (the first
table version of Spark) was released in 2014 (although Spark was
irst open-sourced in 2010). Based on the above-mentioned crite-
ia, we filter our extracted posts and collect 12,217 Spark-related
osts.

.2. RQ1: What types of questions do developers ask about Spark on
tack Overflow?

otivation. Spark is a popular distributed big data processing
framework that is widely used by many large companies around
the world,2 such as Shopify, Baidu, and TripAdvisor. One of the
main advantages of using Spark is that it abstracts the data paral-
lelization and computation for developers, which significantly re-
duces the software development overhead. Spark abstracts com-
plex data computation using a functional programming model,
e.g., executing operations such as filter, map, and reduce in dis-
ributed and parallel settings. However, due to the peculiarity
f Spark and its abstraction, there may be unique challenges
n using Spark from developers’ perspective. To help developers
nd practitioners understand the common issues when using
park and to inspire future research, in this RQ, we analyze the
park-related questions that developers ask on Stack Overflow.
pproach. As discussed in Section 3.1, we collected a total of
2,217 Spark-related posts (i.e., questions and their associated an-
wers) that have an accepted answer and code snippet. To answer
his RQ, we randomly sampled 1000 posts and conduct a qualita-
ive study. The size of the random sample achieves a confidence
evel of 95% with a confidence interval of 3%.3 We then study
ach sampled post based on the question itself and the associated
nswers (including both text and code snippets) to identify the
hallenges that developers have when using Spark. We did not
se the question tags to classify the questions because the tags
re user-provided and only contain high-level information. More
oncretely, we followed previous research process (Wang et al.,
018; Zhang et al., 2019) to manually derive categories. This
rocess involves three phases and is performed by the first two
uthors (i.e., A1–A2) of this paper:

• Phase I: A1 & A2 first independently go through 300 ran-
domly sampled questions and their corresponding com-
ments, and suggested type for each post. A1 & A2 discussed
the suggested types and merged the similar types. They
discuss their opinions to unify the classification criteria,
and finally generate 11 manually-derived types (shown in
Table 1).

• Phase II: A1 & A2 independently categorize the question
types for the remaining 700 questions using the types de-
rived in Phase I. We assign each question to the most rele-
vant category. Each question belongs to only one of these
11 types. A1 & A2 took notes regarding the deficiency or
ambiguity of the labels for these questions.

• Phase III: A1 & A2 discussed the coding results that were
obtained in Phase II to resolve any disagreements until a
consensus was reached. The inter-rater agreement of this
coding process has a Cohen’s kappa of 0.825 (measured be-
fore starting Phase III), which indicates that the agreement
level is substantial (McHugh, 2012).

2 https://spark.apache.org/powered-by.html.
3 https://www.surveysystem.com/sscalc.htm.
4

Results. Table 1 shows the manually derived question types.
In total, we uncover 11 types of questions that developers en-
counter. Below, we discuss the uncovered types in detail. To the
replication of our results, we have made the dataset publicly
available4 5

Data Processing (43%) is the most prevalent issue that de-
velopers have. Developers often face issues related to data pro-
cessing during Spark development. As a distributed big data pro-
cessing framework, Spark provides users with multiple ways to
process data. However, due to the vast number of APIs and
approaches to process data, developers often cannot quickly find
the most efficient way to process data in different situations.
For example, a developer on Stack Overflow attempted to add a
numeric index to every line.6 His initial attempt used the map
function, which is one of the most common functions in Spark.
However, the code resulted in incorrect output. Even though the
task can be achieved using the map function, the accepted answer
suggested the developer use the function zipWithIndex in Spark.
By design, the zipWithIndex function automatically appends the
corresponding index to the element in a resilient distributed
dataset (RDD).

Developers often encounter issues when configuring Spark
or its integration with other frameworks (15%). Spark has a
high degree of configuration flexibility and a large number of
configuration parameters.7 Therefore, developers may encounter
problems when configuring Spark. In addition, as a distributed big
data processing framework, Spark often needs to be configured
in a cluster setting and communicates with numerous other big
data frameworks. We also find that developers encounter config-
uration issues related to the environment setup. For example, a
developer attempted to save data to Elasticsearch using Spark, but
he encountered a NoClassDefFoundError exception.8 Although
he developer tried to use Maven to manage the dependencies,
he exception still occurred. In the end, an answer pointed out
hat, due to the distributed nature of Spark, the initial Maven
etting that the developer used only applied to the driver machine
ut not the worker nodes. The developer needed to configure
aven to pass the dependent classes to both the worker nodes
nd the driver. Although less common, developers may also
ncounter issues related to configuring logging frameworks in
park (1%). For example, a developer had an issue with configur-
ng custom Spark logging for debugging due to the complexity of
istributed systems.9 Since logs are an important source of infor-
ation for debugging large-scale systems, properly configuring
park logging is important to assist developers with diagnosing
untime issues.

11% of the issues are related to data input and output (IO).
park provides a series of APIs to access a variety of data sources
n different formats (e.g., Parquet, JSON, and ORC) or frame-
orks (e.g., Elasticsearch and Hive). However, developers may
ncounter problems with reading and writing the data. For ex-
mple, a developer tried to read some JSON data in Spark but
ot an error message after loading the entire 6 GB of the JSON
ile.10 The reason is that Spark requires the JSON file to be in a
pecific format (i.e., not the regular JSON format), where each line
n the file must contain a separate and self-contained valid JSON
bject. As a consequence, reading a regular multi-line JSON file

4 https://github.com/SPEAR-SE/Spark_Empirical.
5 https://doi.org/10.5281/zenodo.6977517.
6 https://stackoverflow.com/questions/31212962/.
7 https://spark.apache.org/docs/latest/configuration.html#application-
roperties.
8 https://stackoverflow.com/questions/38118582/.
9 https://stackoverflow.com/questions/34353995/.

10 https://stackoverflow.com/questions/35990846/.

https://spark.apache.org/powered-by.html
https://www.surveysystem.com/sscalc.htm
https://github.com/SPEAR-SE/Spark_Empirical
https://doi.org/10.5281/zenodo.6977517
https://stackoverflow.com/questions/31212962/
https://spark.apache.org/docs/latest/configuration.html#application-properties
https://spark.apache.org/docs/latest/configuration.html#application-properties
https://stackoverflow.com/questions/38118582/
https://stackoverflow.com/questions/34353995/
https://stackoverflow.com/questions/35990846/
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Table 1
Our manual classification of Spark-related posts on Stack Overflow. Percentages in the table are rounded up.
Type Definition Number of posts

Data processing Spark provides a variety of different APIs and data abstraction formats
to process data, such as RDD, DataFrame, and Dataset. Developers may
encounter issues when they need to transform and process the data to
get the desired data format.

432 (43%)

Configuration Developers may encounter issues related to tuning the vast number of
configurations in Spark, and the required configurations when
integrating Spark with other frameworks.

151 (15%)

Input and Output Spark provides a series of APIs to access a variety of data sources.
Developers may have issues when they read or write data in various
formats (e.g., JSON) or sources (e.g., NoSQL database) when using Spark.

114 (11%)

Spark basics Developers may encounter issues with basic Spark usage and concepts
related to big data development.

84 (8%)

MLlib Developers may encounter issues when using MLlib, which is Spark’s
machine learning (ML) library.

47 (5%)

Performance Developers may encounter performance issues when using Spark. The
issues may be related to the resources in a cluster, e.g., CPU, network
bandwidth, or memory.

47 (5%)

Streaming Spark Streaming is an extension of the core Spark API that enables the
processing of live data streams. Developers may encounter issues
related to using Spark Streaming.

44 (4%)

Serialization Spark requires objects to be serializable to be sent to worker nodes for
computation. Some developers may encounter issues with object
serialization when using Spark.

19 (2%)

Spark Bug Developers may encounter unresolved bugs in Spark. 16 (2%)

Logging Developers may encounter issues about the usage of the Spark logging
system.

8 (1%)

Other Issues that do not belong to the above-mentioned categories, such as
questions about Spark UI monitor or Scala syntax problems.

38 (4%)
would result in an error. Such issues may be difficult to detect
in advance due to the vast number of IO sources that Spark
supports. Moreover, due to the size of the data that developers
often work with when using Spark (e.g., 6 GB in the above-
mentioned example), the issues may require a long time to debug.
In addition to regular IO, developers also encounter IO issues re-
lated to streaming (4%). We find that developers often use Spark
ogether with other stream-processing frameworks (e.g., Kafka
r Flume) to read/write real-time data streams. Developers may
ave issues, such as delays in data reception, checkpoint issues,
r inconsistent data format across frameworks.
Developers sometimes have issues understanding the basics

f Spark (8%). Developers encounter some problems related to
he working principle of Spark and programming language, etc.,
hich are relatively basic concepts. For example, a developer
id not know if the spark-shell mode can run in a clustered
nvironment like spark-submit mode.11 These are two different
ays to start Spark applications (e.g., one is through a shell
nvironment) but they can both run in a cluster environment. In
articular, we find that 2% of the issues are specifically related to
bject serialization, where developers either did not provide any
erialization or made a mistake during the serialization process.
lthough Spark provides an abstraction for big data processing,
evelopers may be unfamiliar with the distributed computing
oncept behind the abstraction, thus encountering issues with
ow to leverage Spark for a given task in hand.
5% of the issues are related to MLlib. MLlib is a machine

earning library in Spark that supports many mainstreammachine
earning algorithms, such as logistic regression. One key advan-
age of MLlib is that it utilizes Spark’s distributed computing
apability so that developers train/apply the ML models using
ultiple worker nodes. However, due to the differences between

11 https://stackoverflow.com/questions/36910014/.
5

the data representation and processing in Spark and other ma-
chine frameworks (e.g., R or scikit-learn), Spark developers may
encounter problems when using MLlib. For example, a developer
had an question regarding the type of input data that should be
used in Spark’s API for Latent Dirichlet Allocation.12 However, due
to unclear API documentation and the differences in how Spark
represents the input data, the developer did not know how to
properly use MLlib. In short, we find that due to the data types
that are introduced to abstract big data processing (e.g., RDD and
dataset), developers may have difficulties when using MLlib for
machine learning in Spark.

5% of the developers encounter performance issues when
using Spark. Because of the in-memory nature of most Spark
computations, different settings (e.g., IO read and write, clus-
ter configurations, and choice of different APIs) may affect the
performance of Spark applications. Therefore, Spark developers
sometimes encounter performance issues. For example, some
developers discussed which API achieves better performance be-
tween reducebykey and groupbykey.13 For different programming
languages (e.g., Scala or Python), due to differences in imple-
mentation principles, the two APIs may have certain perfor-
mance differences. Using reducebykey may bring a slight perfor-
mance improvement but may also lead to an increase in code
complexity.

Developers sometimes encounter unresolved bugs in Spark
(2%). Since the release of Spark, it has attracted much attention
from the software engineering community and is under active
development. Therefore, Spark developers are constantly improv-
ing and adding new features to Spark. There are over 40 Spark
releases over seven years from 2014 (i.e., Spark’s initial release)
to 2021. Such active release practices may make it difficult for
users to adopt the most recent Spark version. We find that in 2%

12 https://stackoverflow.com/questions/32604516/.
13 https://stackoverflow.com/questions/33221713/.

https://stackoverflow.com/questions/36910014/
https://stackoverflow.com/questions/32604516/
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f the studied questions, users encounter some resolved bugs in
park. The bugs were already resolved in either the latest release
r in the master trunk, but some users were not aware of the
ssue and the fix, which increases the development overhead.

4% of the problems do not belong to the above-mentioned
ategories and are assigned to the Other category. We find that
ometimes developers discuss the design of Spark. For example,
developer discussed that the design of the Row class in Spark
eeds some improvement.14 This developer thought that in order
o extract a value, one has to know the exact type, which is a bad
esign. Another problem discussed by a developer goes against
he working principle of Spark.15 The developer asked about how
o call another RDD in the map function for an RDD, which is
mpossible to achieve and violates the working principle of Spark.
n short, we find that even though Spark provides an abstraction
f big data computation for developers, developers may still
ncounter various issues related to the design of abstraction or
he underlying working mechanisms of Spark.

We identify 11 different types of questions that develop-
ers encounter in developing Spark applications. Data pro-
cessing is the most prevalent (43%) issue that developers
encounter. Developers also encounter issues in configur-
ing Spark or in the integration between Spark and other
frameworks. Furthermore, developers encounter other
diverse types of Spark challenges, such as performance
issues, MLlib-related issues, and Spark bugs.

3.3. RQ2: Which types of questions have higher view counts and are
more time-consuming to answer?

Motivation. In our manual analysis, we identified 11 categories
of questions that developers encounter when developing Spark
applications. In this RQ, we further investigate the view counts of
the questions, which helps identify the questions that are most
commonly encountered by users. We also analyze the time to
receive the first accepted answer to questions. These metrics have
been used in prior studies (Yang et al., 2016; Rosen and Shihab,
2015) as proxies to measure the popularity and difficulty of the
questions in different categories. The finding may help identify
which types of questions may be more popular and challeng-
ing to solve, and thus require more support from the research
community.
Approach. For the 1000 posts that we manually classified, we
follow the steps below to compute the view counts and the time
it takes to receive the first accepted answer.

• View Counts. Similar to prior studies (Bajaj et al., 2014;
Nadi et al., 2016; Yang et al., 2016), we use view counts as
a proxy to measure the popularity of the uncovered cate-
gories of questions. In particular, we also collect some other
metrics (such as the number of favorites and answer score).
While there may be some subtle differences among all these
different metrics, based on our observation, the correlation
between view counts and other metrics is high (from 0.71
to 0.90). Moreover, we find that for the ranking of the types
of questions, these metrics have similar trends compared
to view counts. Therefore, we decided to use view counts
as a proxy for popularity since we believe view counts are
easier to interpret. We compute the normalized view count
based on the age of the question by dividing view count by
the year difference between the posting time and 2020 (our

14 https://stackoverflow.com/questions/49442206/.
15 https://stackoverflow.com/questions/47498798/.
6

Table 2
The average of normalized (i.e., based on the age of the question) and raw view
count, and the median time to receive an accepted answer in each category.
Classification Average of

normalized
view count

Average of raw
view count

Median hours
to receive an
answer

Spark basics 1361.0 5384.9 1.0
Data processing 1112.9 4213.6 1.0
Input and output 928.3 3710.2 4.2
Configuration 862.4 3560.1 14.4
Performance 698.6 2328.8 8.6
Other 605.4 2048.7 5.2
Streaming 377.7 1291.0 2.6
Spark bug 364.1 1307.0 30
MLlib 361.9 1385.0 4.7
Serialization 271.9 1120.3 3.4

data was collected around the end of 2019). For example, for
the questions that were posted in 2018, we divide the view
count by two. Intuitively, a topic with a larger view count
may be more popular.

• Time to Receive an Accepted Answer. We follow prior
work (Yang et al., 2016; Rosen and Shihab, 2015) and use the
needed time for a question to receive an accepted answer as
a proxy for the difficulty of the questions in each category.
When it takes a longer time for a question to receive an
accepted answer, it may indicate that the question may be
more difficult to answer or less common. We calculate the
median time in hours for the questions that belong to the
same category.

esults. Table 2 shows the average of normalized and raw view
ount for the questions that belong to each category. Table 2 also
orts the categories by the average of normalized view counts.
ote that we exclude one category (i.e., Logging) since this cat-
gory has less than 10 questions and the data is highly skewed.
e find that the ranking based on the normalized view counts

s very similar as the ranking based on the raw view counts.
he only difference is that the rankings of streaming and MLlib
ave swapped. The finding shows that the popularity of the
uestion categories remain stable across the years. We find that
uestions related to Spark Basics have much larger normalized
iew counts (an average of 1361 views) compared to questions in
ther categories. We conjecture that the reason may be related to
he multi-paradigm nature of Spark (i.e., Spark provides APIs in
unctional programming paradigm but can also be used in object-
riented languages such as Java) and its abstraction of complex
istributed data processing. We find that questions related to
ata Processing are the second most-viewed among all categories.

The reason may be that most developers rely on Spark to process
large-scale data, but as we found in our manual study, some
developers may have difficulties knowing how to correctly use
Spark to transform/process the data to the desired format. We
also find that questions in the categories Input and Output and
Configuration have a higher normalized view count (i.e., more
than 800), which may indicate that developers encounter such
problems more often. In general, developers not only ask more
questions about Data Processing and Input and Output, but they
also read related questions frequently.

Table 2 shows the median time to receive an accepted answer
for the questions in each category. We find that, even though
there are many questions related to Spark Basics and Data Process-
ing, the median time for these questions to receive an accepted
answer is short (i.e., within one hour). In other words, most of
the issues that developers have in these two categories may be
less difficult to answer, thus leading to a fast accepted answer.

https://stackoverflow.com/questions/49442206/
https://stackoverflow.com/questions/47498798/
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n the other hand, we find that questions related to Spark Bugs,
onfiguration, and Performance require relatively more time to
eceive an accepted answer (the medians are 30.0, 14.4, and
.6 h, respectively). Our findings show that whenever developers
ncounter an issue caused by bugs in Spark, they need to wait
or a long time to receive an answer, which may indicate that
eveloper will have to search other Q&A databases to find what
hey need. In addition, due to the complexity of systems based on
park, developers may encounter issues on Spark configurations
r configurations related to the integration with other frame-
orks. Finally, performance issues also require a longer time to
esolve. For example, a developer used the window function to
ransform a dataframe, the developer was looking for a more
fficient way to process his data. It took almost a month to get
n accepted answer.16 As we observed in our manual study, the
eason may be that performance issues are difficult to diagnose
n a distributed computing environment, especially when the
omputation involves complex data computation across multiple
orker nodes.
In short, our finding highlights the potential bottlenecks and

hallenges that developers may encounter when using Spark for
ig data applications. Future studies may consider helping de-
elopers with Spark development by providing better diagnostic
upport and suggestion for configuration and performance related
ssues. Future studies may also help developers identify if the
ssue that they encounter is related to bugs in Spark (e.g., by
utomatically mining the bug reports), thus reducing the needed
ime to fix bugs by requesting help from Stack Overflow.

Questions related to Configuration and Performance re-
ceive a relatively large number of average view counts
and require the most time to answer. On the other hand,
Spark Basics and Data Processing questions have the most
view counts but are faster for developers to solve. Future
studies may consider helping developers with Configu-
ration and Performance related issues due to their long
answering time.

3.4. RQ3: What are the root causes of Spark-related questions?

Motivation. In the previous RQs, we study the types of questions
hat developers encounter and how popular/time-consuming
hey are. However, questions of the same type can have different
oot causes, and different questions can share the same root
ause. Hence, it is important to understand the root causes of
park questions and provide insights into the challenges that
evelopers have. In this RQ, we manually study and identify
he root causes (e.g., incorrect API usage) of the studied Spark
uestions. Our findings can help practitioners avoid common
ssues and inspire future research directions to better support
evelopers in improving the quality of Spark applications.
pproach. We manually analyze the same 1000 sampled posts
hat we studied in RQ1, with a goal to identify the root causes
f each Spark question. We follow a similar open-coding pro-
ess in RQ1, where two authors first study the questions and
dentify their root causes separately based on 300 randomly
elected questions. As it is not possible for us to find and ask
he questioner of each post about why this problem is caused,
e speculate about the cause of their problems based on their
uestions, the accepted answers and the code that solves the
roblem. We generate a list of root causes after discussions and
abel the rest of the questions with our derived list of root

16 https://stackoverflow.com/questions/56270629/.
7

causes. These root causes are related to developers’ usage of
the Spark API/configuration or Spark’s abstraction. After labeling
all the sampled questions, we calculate the distribution of the
questions with different root causes in each question type. We
filter out the question types with fewer than 20 posts, which are
Serialization, Logging, Spark Bug, and the posts that belong to
the Other category. We remove these posts since they are often
unrelated (e.g., the ones that belong to the Other category) or
are very similar (e.g., the ones that are related to Serialization).
Thus, we wish to focus on identifying the root causes of the major
question types.
Results. Table 3 shows our manually identified root causes of
the studied Spark questions together with their corresponding
percentage. In total, we identify 11 root causes about why de-
velopers encounter the question. Below, we discuss the different
root causes in detail.

The root cause of 28% of the studied problems is related
to Spark’s data abstraction since developers are not able to
see the intermediate results in data processing pipelines. Spark
ses various data structures (e.g., RDD and DataFrame) to ab-
tract distributed computation and performance optimization. In
data processing pipeline (i.e., calling a chained list of meth-
ds), Spark automatically distributes the computation across the
orker nodes and applies lazy evaluation for optimization. In
ther words, Spark would not compute the result immediately
hen a method is called. Instead, Spark may optimize the perfor-
ance of data processing by combining several method calls into
ne data transformation operation. Developers may call several
ata transformation methods in a data processing pipeline, but
evelopers do not know how the data is transformed/processed
n each step. When developers get an unexpected result, they
ay not know which step in the data processing pipeline causes

he issue. Debugging such data processing errors can be chal-
enging since there is no automated way of tracking how the
ata is transformed/processed in each step of the data process-
ng pipeline. Moreover, breaking the data processing pipeline to
ecord intermediate results will result in significant performance
egradation. For example, a developer on Stack Overflow had
n issue with his big data application.17 The application always

threw an exception after running for half an hour, but there
was no information to show which step in the data processing
pipeline caused the issue. Therefore, the developer wished to
display step-by-step execution results to debug the application.
Since there was no readily available solution, the suggested an-
swer was to sample a subset of the data and test the application
locally instead of on the cluster.

Spark’s abstraction for data processing and lazy compu-
tation causes challenges for developers to understand the
intermediate data processing steps during debugging and
monitoring.

The root cause of 22% of the studied problems is related to
insufficient knowledge of API usage. In order for developers to
gain flexibility in working with various data types, Spark provides
a rich set of API functions with various configurations/options
to support development. Developers can choose different API
functions when working with diverse data types. However, due
to a large number of API functions in Spark, it is difficult for
developers to use the proper functions that apply to specific
development scenarios. Developers can encounter problems by
using incorrect API functions or inefficient API functions when
a more performant alternative exists. For example, a developer

17 https://stackoverflow.com/questions/40042315/.

https://stackoverflow.com/questions/56270629/
https://stackoverflow.com/questions/40042315/
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Table 3
Root causes of the 1000 manually studied Spark-related questions on Stack Overflow. Percentages in the table are rounded up.
Root cause Definition Number

of questions

Not able to know the
intermediate processed data
due to Spark’s abstraction.

Due to Spark’s lazing evaluation and the nature of its data processing
pipeline, developers cannot track/view how the data is transformed in the
pipeline. Developers often encounter problems of not knowing how the data
is transformed in each intermediate step, which can make it difficult for users
to debug unexpected results, especially those cause by intermediate data
processing functions.

255 (28%)

Insufficient knowledge of API
usage

Spark provides a wealth of APIs to deal with various development scenarios.
However, with the evolution of Spark, new APIs are constantly introduced and
some of the existing APIs may also have changed significantly over time.
Developers may use an outdated API that is no longer compatible with a
newer version of Spark. We observe that API misuse is the root cause for a
variety of questions, including data processing, performance, streaming,
input/output, and MLlib.

206 (22%)

Complex environmental
configuration

In order for Spark applications to run successfully, developers need to
configure Spark’s distributed environment and the environment of its
interacting components. The configuration of a distributed environment can
become complex as a Spark application is developed at a large scale. The
complexity of distributed environment configuration is one of the root causes
for the studied questions.

116 (13%)

Incorrect or incompatible
data format

When using Spark, developers often need to convert different data types
between various formats and representations, e.g., converting RDD to
DataFrame, or converting input data to become compatible with MLlib. When
developers are not familiar with how to convert different data types, they
may encounter unexpected issues.

100 (11%)

Lack of basic knowledge of
Spark or programming
language

Spark may have a steep learning curve. Developers need to master some
programming languages and have certain understanding of distributed
systems. In some questions, the root cause of the issue is that some
developers lack the basic knowledge of Spark or related concepts.

84 (9%)

Integration errors with other
data sources

Spark can read data from other big data frameworks such as HDFS, Flume,
Kafka, etc. Spark’s input/output and streaming often involve framework
integration. Developers encounter problems related to IO and streaming due
to errors during framework integration.

51 (6%)

Incorrect or suboptimal
configuration values

Due to the diverse configuration parameters during Spark development,
developers may use suboptimal or even incorrect configuration values in their
Spark applications.

45 (5%)

Diverse representation of
timestamp data

Parsing and analyzing timestamps in the data due to their diverse
representation (e.g., for a year-month-day timestamp only the year is needed)
analyzing timestamps in the data. Many developers are unclear how to deal
with data containing timestamps, such as changing the time unit.

35 (4%)

Data distributed computing In Spark, the data is processed in a distributed manner. Developers may
encounter performance issues caused by their unfamiliarity with how a
computation task is distributed across worker nodes. Therefore, developers
may not know how to configure the distribution system settings and process
data in a distributed environment. (e.g., data partitions are too small), and
result in poor performance.

11 (1%)

Lack of knowledge on
memory tuning

Some developers may develop the application without making memory
optimization and caused insufficient memory issues in the application.

10 (1%)

Unfamiliar with the working
principle of distributed
algorithms.

Some developers encounter problems during the MLlib development process
because they are not clear about how to make the algorithm suitable for
parallel computing, which causes them to encounter problems during the
model training process.

6 (1%)
(i.e., an asker) on Stack Overflow asked how to determine if a
dataframe contains a specific string and how to extract only the
rows that contain the string. The asker initially attempted to
initialize a user-defined function (UDF) and executed the function
along with Spark’s API. Nevertheless, the final result was differ-
ent from what the asker expected.18 To solve the problem, an
nswerer created a user-defined function (x_isin_array), while a

commenter suggested a better solution that reuses a Spark built-
in API function (array_contains) that the answerer was not aware
of.

We also find that the names of some Spark functions may
be similar to other popular data processing frameworks, but the
usage can be different. For example, a developer encounters a

18 https://stackoverflow.com/questions/47052969/.
8

problem when he migrated Pandas Dataframe code to Spark
Dataframe.19 While developers know how to use groupby to pro-
cess data in Pandas, they encountered problems using groupby in
Spark due to subtle differences between the two frameworks. In
short, developers may assume that the API in Spark is the same
as the one in Pandas, which results in issues in the application.

Developers may not be familiar with some Spark APIs
or may use them in an incorrect/inefficient way. Further
support is needed to provide better API recommendations
for various data processing tasks.

19 https://stackoverflow.com/questions/42776610/.

https://stackoverflow.com/questions/47052969/
https://stackoverflow.com/questions/42776610/
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The root cause of 13% of the studied problems is related
o complex environmental and inter-framework configuration.
ince Spark applications are often executed in a distributed envi-
onment, developers need to properly configure the environment
arameters to ensure the proper operation of the applications.
owever, correctly configuring the environment parameters can
e a complex task, especially when developers need to configure
oth Spark and other interacting frameworks. This complexity
ay lead to configuration-related problems.
We also find that, since the issue may be related to the config-

ration of various frameworks/components in a distributed envi-
onment, the error message may not be detected in local mode
nd propagated back to the main Spark application. Namely,
park application developers may be left in the dark when di-
gnosing complex configuration issues in distributed environ-
ents. For example, a developer tried to access a NoSQL database

i.e., Cassandra) in a Spark application using Spark’s Cassandra-
onnector configured using Maven.20 The connection was estab-
ished, but no result was returned and there was no exception
essage in the local mode and driver node . The developer later

ound out that the issue was related to file path issues in the con-
iguration file. Due to Spark’s distributed nature, helping develop-
rs analyze issues that are propagated across frameworks/nodes
s important for debugging and ensuring application quality.

Developers often encounter issues caused by config-
urations related to distributed settings or framework
integrations. However, such issues are difficult to debug
because error messages may not be propagated across
frameworks or worker nodes.

11% of the studied problems are related to incorrect or in-
ompatible data format. Spark provides different data formats
e.g., RDD and DataFrame) to abstract distributed computation
or various data types. Developers may need to convert between
ata formats and types to leverage different APIs (e.g., to use APIs
n MLlib, the machine learning library in Spark). However, data
ormat conversions can be a challenging task for developers, espe-
ially if the conversion involves multiple frameworks. For exam-
le, a developer asked how to convert a Spark’s DataFrame with
n array of doubles to a vector to pass the vector to a machine
earning algorithm.21 The data conversion process requires con-
erting from Double in Scala to Vectors in Spark MLlib (i.e., across
rameworks or libraries), where there is no standard nor an
asy way for such conversation.22 Future research is needed
o assist developers with data format conversation, especially
onversation across frameworks or programming languages.

Developers often need to convert between data formats
when using Spark. However, due to a rich variety of
data formats from different frameworks or programming
languages, developers may encounter challenges when
converting between data formats.

9% of the studied problems are related to a lack of basic
nowledge of Spark or programming language. Developers with
ifferent experience levels may try to use Spark for big data pro-
essing. Some developers encounter problems because they lack
he basic knowledge of Spark or related programming languages.
or example, a developer was not familiar with the Scala language

20 https://stackoverflow.com/questions/42219747/.
21 https://stackoverflow.com/questions/47543747/.
22 https://stackoverflow.com/questions/42138482/.
9

and he did not understand the meaning of rdd.map(_.swap).23
He mentioned that he studied the Scala/Spark API but still could
not find where .swap is defined, even though .swap is a method
defined in Scala’s Tuples. We found that these types of questions
also have very high view counts on Stack Overflow (e.g., over 7K
views in the above-mentioned example). The Spark community
can improve the documentation to guide developers in under-
standing the basic knowledge of Spark. For example, tools that
help developers extract solutions from the Spark official docu-
mentation would be helpful. A community mentoring program
can also be launched to help developers build high-quality Spark
applications.

Developers may lack basic knowledge of Spark or re-
lated programming languages. Better community sup-
port is needed to guide developers in developing Spark
applications.

Developers may encounter issues related to integrating Spark
applications with other frameworks or data sources (6%). De-
velopers commonly use and integrate a variety of data man-
agement/storage systems, including HDFS, Hive, and Kafka, with
Spark applications. For flexibility and ease of development, Spark
provides a set of APIs that provides an abstraction to the data
management systems. Namely, developers can use the same set
of APIs to access different data storage systems. However, even
though Spark provides an abstraction layer for the data storage
systems, there are still some differences among the systems that
Spark fails to abstract. For instance, a Spark developer needed
to call different APIs when accessing files of different formats
that are stored in HDFS.24 The issue was the developer was not
aware of the Spark API that handles a specific type of data that is
stored in HDFS. The problem can be more challenging if the data
type is not supported by Spark. In such cases, developers may
need to manually handle the integration with other frameworks,
which may be prone to maintenance issues if the frameworks
are updated. Future studies should consider helping developers
with better integration between Spark and other frameworks by
providing support such as automated API recommendation or
better data abstraction.

While developers may know how to interact with some
frameworks and data sources, a certain amount of vari-
ability (e.g., accessing data of different formats stored
in an external framework) can cause problems when
developing Spark applications.

The root cause of 5% of the studied problems is related to
incorrect or suboptimal configuration values. Spark configura-
tion parameters control the application runtime settings, such
as memory limits and network bandwidth. Most of the param-
eters that control internal settings have default values, which
can be changed by developers. However, with hundreds of avail-
able configuration parameters in Spark, it can be challenging
for developers to configure the parameters according to the ap-
plication and its environment setup. For example, a developer
found there was much unused memory in his application and
attempted to leverage the available memory by increasing the
memory limit.25 The developer changed the Spark configura-
tion parameter, spark_worker_memory in the configuration file,
but he found that the used memory limit stays the same. The

23 https://stackoverflow.com/questions/34670957/.
24 https://stackoverflow.com/questions/51994323/.
25 https://stackoverflow.com/questions/24242060/.
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eason is that in order to increase the memory, the developer
hould modify the spark.executor.memory parameter rather than
park_worker_memory parameter. Future research is needed to
ssist developers in better managing Spark configurations, espe-
ially in a distributed environment.

Although Spark provides developers with a variety of
configuration options, developers often encounter config-
uration problems due to the inability to find the correct
or optimal configuration parameters.

4% of the studied problems are related to the diversity of
imestamps representations. Timestamps have many different
epresentations, such as year and month format (yyyy-MM-dd)
r Unix time. Developers often need to do some processing on
he timestamps in the original data based on their needs. Spark
rovides some API functions to help developers process times-
amp data. However, the support from Spark is limited and does
ot cover the wide variety of timestamp formats. For example,
park provides APIs to calculate timestamp differences in days
ut not for other granular levels (e.g., minutes or seconds). A
eveloper knew that Spark provides the datediff function to get
he number of days between two timestamps but he did not
now how to get the minute difference.26 The accepted answer
s to convert the different times into the long data type and then
anually calculate the difference in minutes. Due to the variety
f timestamp representations, we found that many developers
ncounter issues in converting timestamp formats or calculating
ime differences. Thus, more support is needed to help developers
void mistakes and assist in processing timestamp data.

Due to different representations of timestamps and the
uniqueness of the time difference calculation, developers
can encounter problems when manually processing data
that contains timestamps.

1% of the studied problems are related to the specifics of dis-
ributed data computing. Unlike stand-alone computing, Spark
acts as a distributed data processing engine, allowing developers
to maximize the advantages offered by distributed computing.
Developers should consider how to maximize the use of limited
resources to process data concurrently when running their appli-
cations. Spark automatically sets the number of ‘‘map’’ tasks to
run on each file according to its size (though it can be controlled
through setting optional parameters in SparkContext.textFile). For
distributed ‘‘reduce’’ operations, Spark uses the largest specified
number of partitions. Clusters will not be fully utilized unless
developers set the proper level of parallelism for each operation.
Some developers ignored the mechanism of distributed data com-
puting and set an unreasonable partition number. For example, a
developer needed to read all the images into memory as RDD,
and the target image was saved in a directory hosted on HDFS.27
his developer found that the process is time-consuming and
ttempted to understand if there was any better way to load large
mage data set into Spark. An answerer suspected that it may
ecause there were a large number of small files on HDFS that
ause the problem. A large number of small files causes Spark to
enerate too many tasks and affects performance. This answerer
ave a suggestion which is to set the number of partitions to
reasonable number: at least 2x the number of cores in the

luster. This can increase the degree of parallelism and make
ull use of cluster resources to process data. Future research is

26 https://stackoverflow.com/questions/37058016/.
27 https://stackoverflow.com/questions/27959831/.
10
needed to provide automated support to help developers utilize
the computing resources in clusters.

Developers may not utilize the resources in a distributed
environment, which can cause performance issues. Fu-
ture research is needed to help developers automatically
configure Spark applications to utilize the cluster settings
and computing resources.

1% of the studied problems are related to a lack of knowl-
edge in Spark’s memory allocation. There are two main types of
memory in Spark: execution and storage. The execution memory
is mainly used to store the temporary data when running a data
processing task. The storage memory is mainly used to store the
cached data and broadcast variable values across nodes in the
cluster. The allocation of the memories has a significant impact
on the performance of Spark programs. However, developers may
lack knowledge in Spark’s memory allocation, which generally
requires a certain level of understanding of the inner workings of
Spark. For example, a developer wished to know why the cached
memory was improved when using order by in a Spark SQL
query.28 An answerer explained that Spark SQL scans the required
columns and automatically optimizes memory usage through
data compression. Therefore, it is important for developers to
know how to choose a proper data structure and storage strategy
to utilize memory usage in Spark applications.

Different data processing tasks may have different mem-
ory allocation and optimization strategies. Therefore,
developers may need to know the inner workings of
Spark to utilize the memory allocation in different data
processing tasks.

The root cause of 1% of the studied problems is related to
being unfamiliar with the working principles of distributed al-
gorithms. We find that in some cases, developers encounter chal-
lenges in the development process because they do not under-
stand the distributed algorithms used in Spark for machine learn-
ing operations. For example, a developer got different results for
multiple runs on the same input matrix when he computed SVD
(Singular Value Decomposition).29 An answer explained that even
though the SVD computation should be deterministic (i.e., does
not rely on random numbers), the final results in Spark are some-
times different. The reason is that every change in Spark may be
regarded as non-deterministic and Spark can merge partial results
of upstream tasks in any order, which can help applications to get
optimal performance in distributed computing. If developers are
not familiar with such optimization and apply the algorithm reg-
ularly, there may be unexpected results. There may be a need to
provide better documentation on helping developers know, from
a high-level perspective, the difference between the distributed
and non-distributed algorithms when applying machine learning
models.

Due to the distributed nature, some machine learn-
ing algorithms may be optimized and have slightly
different behavior. Developers need to be aware of
such differences to avoid issues when developing Spark
applications.

28 https://stackoverflow.com/questions/36237508/.
29 https://stackoverflow.com/questions/53468193/.

https://stackoverflow.com/questions/37058016/
https://stackoverflow.com/questions/27959831/
https://stackoverflow.com/questions/36237508/
https://stackoverflow.com/questions/53468193/
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Table 4
The distribution of the root causes of Spark-related questions among the seven uncovered question types. Percentages in the table are rounded up.
Question type Root cause Number of post

Data processing

Not able to know the intermediate processed data due to Spark’s abstraction. 243 (56%)
Insufficient knowledge of API usage 103 (24%)
Incorrect or incompatible data format 51 (12%)
Diversity of the representation of timestamps 35 (8%)

Spark configuration Complex environmental configuration 106 (70%)
Incorrect or suboptimal configuration values 45 (30%)

Input and Output

Integration errors with other data sources 39 (34%)
Insufficient knowledge of API usage 33 (29%)
Incorrect or incompatible data format 32 (28%)
Complex environmental configuration 10 (9%)

MLlib
Insufficient knowledge of API usage 24 (51%)
Incorrect or incompatible data format 17 (36%)
Unfamiliar with the working principle of distributed algorithms 6 (13%)

Spark performance
Insufficient knowledge of API usage 26 (55%)
Data distributed computing 11 (23%)
Lack of knowledge about memory tunning 10 (21%)

Streaming
Insufficient knowledge of API usage 20 (46%)
Not able to know the intermediate processed data due to Spark’s abstraction. 12 (27%)
Integration errors with other data sources 12 (27%)

Spark basics Lack Basics knowledge of Spark or programming language 84 (100%)
4. Discussion and implications of our findings

In this section, we discuss the implications of our findings. We
iscuss actionable implications and future work for two groups of
udiences: researchers and practitioners.

.1. Discussion and implications for researchers

evelopers often encounter issues with using or choosing the
orrect API in various tasks when developing Spark applica-
ions. Future studies should provide better API recommen-
ations and usage support. Table 4 shows the root causes of
he different types of problems and their distribution. Insufficient
nowledge of API usage is a common root cause for questions
f various types, including Data Processing, Input and Output,
Llib, Spark Performance, and Streaming. As we found in RQ3,
hoosing the correct API can be a challenging task, especially
iven the complex setup of Spark applications (e.g., integration
ith many other frameworks). Therefore, future studies should
onsider proposing techniques to help developers identify the
orrect APIs to use based on the given data processing tasks,
ata types, and the used frameworks. Moreover, once the API
s recommended, it would be important to provide support on
hoosing the correct API options/parameters for optimal usage.
nvironmental and runtime configuration tuning is essential
n the deployment of Spark applications. Future studies are
eeded to automatically help developers detect or debug con-
iguration issues. Configuration problems are prevalent and
ifficult to resolve (i.e., require more time to answer, as shown
n RQ2). As discussed in RQ3 and shown in Table 4, configuration
ssues are common and may occur when developers need to
everage other frameworks for data storage. Prior studies (Vitui
nd Chen, 2021; Xu et al., 2016; Chen et al., 2016) proposed
pproaches to tune configurations or detect configuration errors.
owever, prior studies often do not consider the complexity of
he composition of big data applications, where the applications
re integrated with other frameworks in a distributed environ-
ent. Furthermore, applications based on Spark can depend on
ther software systems in the big data ecosystem, leading to the
hallenge in optimizing the configuration. Hence, an automated
ool that helps developers choose and optimize the configuration
f Spark applications according to the product requirements and
luster setting can effectively assist developers with application
eployment.
11
Even though Spark provides APIs for interacting with other
frameworks, developers often encounter issues related to
cross-framework access such as data format conversation.
Automated approaches that help developers better handle
framework integration are needed. When developing Spark
applications, developers often integrate the applications with
other data storage frameworks such as HDFS. Therefore, accessing
data of different types across frameworks is a challenging task. As
shown in Table 4, developers often encounter issues related to
data format conversion when reading/storing data across frame-
works or system components. Although Spark provides a schema
to standardize data reading/writing, developers still encounter
data format-related issues. In many cases, developers need to
convert data format manually, which may be error-prone and
increase maintenance effort. Moreover, some APIs (e.g., MLlib)
may even have specific data format requirements. Hence, ap-
proaches that automatically handle data format conversation and
abstraction can better help developers handle data from various
sources.
Developers spend more time solving the performance issues
in Spark. Future research should not only help developers
automatically detect performance problems but also auto-
matically analyze the causes of performance problems for
developers. Although performance issues in Spark development
are not among the major issue types, as shown in RQ2, such issues
require more time to fix. In our manual study, we found that
performance problems are usually solved by tuning parameter
configurations or code optimization. Prior studies (Ren et al.,
2018; Alnafessah and Casale, 2020) often focus on the identifica-
tion and prediction of performance problems. However, once the
issue is found, it may take a long time for developers to resolve
performance issues. Future research is needed to help developers
diagnose the root causes of performance problems in production
environments and provide automated optimization suggestions
based on factors such as deployment settings.
Developers often encounter issues when pre-processing data
or running machine learning models in distributed settings.
Future research should help developers better migrate ma-
chine learning tasks to distributed environments. The machine
learning library (i.e., MLlib) is an important part of Spark. Al-
though Spark aims to abstract the distributed computing de-
tails, developers still encounter various issues. The model train-
ing/inference process in MLlib may be different from other tradi-
tional machine learning libraries (e.g., scikit-learn) due to Spark’s
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istributed nature and integration with other data storage frame-
orks. As we found in RQ3, developers may not be aware that
ome algorithms may become non-deterministic when running
n Spark, which may affect the model output. Also, some APIs
n MLlib may have specific data format requirement that is not
eeded if developers want to train the model in other frame-
orks. Future studies are needed to provide developers with
dditional information (e.g., API hints Wang et al., 2021) to high-
ight the data requirement and behavior of certain algorithms in
istributed settings.

.2. Implication for Spark application developers

evelopers should be aware of the potential risks in using
ong method chains and develop good unit testing habits. We
bserve that developers commonly make mistakes during data
ransformation since the data processing is abstracted away from
evelopers. It can be difficult for developers to visualize how
set of data is processed in each step of the data processing
ipeline. Wang et al. (2021) propose an approach to log samples
f the intermediate data processing results. However, developers
hould still avoid using long method chaining in a data process-
ng pipeline (e.g., dataframe.filter().groupby().join().distinct()) for
etter debugging and maintenance.
evelopers should carefully study the official Spark program-
ing and API documentation before developing Spark appli-
ations. Although Spark aims to abstract the distributed data
omputation from developers, such abstraction is not always
erfect. Some errors may occur if developers use some Spark
PIs without knowing the underlying details. As we found in
Q1 and RQ3, developers often use Spark APIs incorrectly or
nefficiently, assuming the API usages may be the same as their
ingle-node counterpart (e.g., Python’s Pandas library). Although
he official Spark programming and API documentation already
ighlighted the correct usage, developers may not be aware of
hem. Therefore, before using a Spark API, developers should
heck the usage examples in the official documentation to avoid
isuse and be aware of the differences with other single-node
ata processing frameworks such as Pandas. To support devel-
pers in developing Spark applications, in RQ3 we analyze the
oot causes of Spark-related questions and provide guidelines for
evelopers to mitigate potential issues.

.3. Implication for Spark framework developers

park framework developers can improve the Spark official
ocumentation and provide more targeted tutorials based on
evelopers’ needs. During our manual study, we found that the
nswers for many problems on Stack Overflow can be found in
he Spark official documentation. The official Spark documenta-
ion is a comprehensive document with detailed explanations and
escriptions of each part of Spark development. However, some
park components may require more experience and technical
kills. In our paper, we uncover the most difficult (in terms of
ime to receive an answer) and common issues for developers.
park framework developers may leverage the findings and doc-
ment explicitly the common issues that we find as common
itfalls to avoid. Our findings also highlight the challenges that
evelopers have, and Spark framework developers may consider
reating more targeted tutorials to help developers avoid such
ssues. For example, developers spend the most time on solving
onfiguration issues. Although Spark introduces almost all con-
iguration parameters in the official documentation, the Spark
ommunity can provide more explanations and descriptions of
he commonly used configurations commonly and how to resolve

ommon configuration issues.

12
5. Threats to validity

Internal Validity. Threats to internal validity are related to ex-
periment errors or biases. In our study, we rely on studying the
Stack Overflow posts to understand the problems that developers
have when developing Spark applications. To ensure that the
questions are representative, we chose to study the questions
with a score higher than zero by following prior studies (Wang
et al., 2018; Ponzanelli et al., 2014), which indicates that other de-
velopers also upvoted the questions. We study the questions with
accepted answers, which may inadvertently exclude a certain
types questions, e.g., questions specific to the asker’s environ-
ment. However, without an accepted answer, we cannot know
the real cause and solution to the problem. We also exclude the
questions without code snippets, since we want to study the
code snippets to better understand the root causes and fixes. We
manually studied 1000 Spark-related posts. To reduce biases in
our manual study process, two authors independently categorize
the posts. Any difference is discussed until a consensus is reached.
We computed the Cohen’s Kappa and found the agreement value
is high (0.825). To measure the popularity and difficulty of the
studied Spark questions, we need to extract some representative
metrics. To minimize the threat that the metrics may not be
representative, we follow previous studies (Yang et al., 2016;
Rosen and Shihab, 2015; Bajaj et al., 2014; Nadi et al., 2016) and
use the same metrics to measure popularity and difficulty. We
also normalize the metrics based on the year that a question was
first posted, since elder questions may receive more votes or view
counts by nature. We find that, the ranking of the categories of
the questions remain stable before and after the normalization.
External Validity. Threats to external validity are related to the
generalization of our results. Since there are over 12,000 Spark-
related posts after the filtering process, it is manually infeasible
to study all of them. Therefore, we chose to study a statistically
significant sample. To increase the generalization of our sampled
data, we conduct the study on 1000 randomly selected posts, re-
sulting in a statistically significant sample using a 95% confidence
level and 3% confidence interval. Although we have a relatively
large sample, it is difficult to guarantee that our samples cover
all types of problems. Some problems with very small percentage
in our sample data are also hard to guarantee that there is the
same percentage on the entire dataset. There may also exist
a certain degree of subjectiveness and ambiguities during the
manual study process. To reduce this threat, the two authors
independently studied the posts and discuss the categorization
result.

6. Conclusion

Due to the increased data size, developers start to leverage
big data frameworks such as Apache Spark for data processing
and analysis. Although Spark abstracts the underlying distributed
data computation details, there may still be issues caused by
the abstraction and other challenges associated with big data
development. To understand the challenges that developers en-
counter and help inspire future research direction, in this paper,
we conduct an in-depth study on the issues that developers
encounter when developing Spark applications. We sample 1000
Q&A posts from Stack Overflow and conduct a detailed man-
ual analysis on each post. We classified the problems into 11
categories and found that data processing is the most common
problem that developers. We also found that developers often
encounter issues related to framework integration (e.g., integrate
Spark applications with HDFS) and configuration. Then, we com-
puted the view counts and the time it takes to receive the first
accepted answer to study the popularity and difficulty of the
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uestions in different categories. We found while data process-
ng and basic Spark questions receive more view counts, they
end to be solved within an hour. On the other hand, questions
elated to configuration and performance require more time to
nswer. Finally, we manually derived 11 root causes based on the
ampled posts. We found that incorrect/inefficient API usage is a
ommon challenge across various types of questions, including
ramework integration, data processing, configuration, etc. Our
indings summarize the challenges that developers encounter and
e discussed the implication of our findings and future research
irection in assisting developers with big data development.
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