
Blessing or Curse? Investigating Test Code
Maintenance through Inheritance and Interface

1st Dong Jae Kim
DePaul University

Chicago, Illinois, United States
djaekim086@gmail.com

2nd Tse-Hsun (Peter) Chen
Concordia University

Montreal, Quebec, Canada
peterc@encs.concordia.ca

Abstract—Since the advent of object-oriented programming
languages, inheritance and interface have been fundamental
concepts in software design principles, facilitating code reuse
and extensibility in software systems. Despite their potential
benefits, inheritance, and interface remain underexplored in
software test code. Currently, there is a limited established
standard for how inheritance and interface may impact test
reusability, extensibility, and maintainability, nor for under-
standing the potential design challenges that may arise from
improper usage. Addressing these research gaps is crucial for
optimizing test maintainability and software quality. In this
paper, we address this gap in empirical research by conducting
the first comprehensive study on the prevalence and maintenance
of inheritance and interface within test code. To accomplish
this goal, we use RefactoringMiner’s AST differencing API to
detect inheritance and interface changes in modified test classes
within the software evolution commit history by studying 12
open-source Java systems. Our key findings are as follows: (1)
Among the 23,651 commits that modify test classes, 4,429 (18%)
involve changes to their inheritance relationships, whereas a
significantly smaller subset, 233 (1%), pertain to changes in
their interface relationships. (2) 59.5% of test classes already
incorporate inheritance when initially created, while 40% of
test classes incorporate interfaces. (3) We manually categorized
the use of inheritance and interfaces and their impact on test
maintainability to provide valuable insights for developers. In
summary, this study takes the first step in exploring how the
use of inheritance and interfaces in test code affects software
reusability and extensibility, offering meaningful insights for both
developers and researchers

I. INTRODUCTION

In the rapidly evolving software industry, customers in-
creasingly demand new features alongside reliable and high-
quality products. To meet these demands, code reusability has
become crucial for enabling developers to extend functionality,
eliminate redundancies, and enhance maintainability.

To achieve reusability, object-oriented programming lan-
guages like Java have introduced polymorphism, allowing
objects to be instances of multiple classes [14]. Polymorphism
is primarily achieved through subtyping using inheritance and
interfaces. Inheritance allows a subclass to inherit properties
and behaviors from its superclass [13], while interfaces ensure
adherence to specified contracts defined in the superclass.
These mechanisms enable developers to write code once and
apply it across various contexts, thereby enhancing productiv-
ity in software development.

Despite the advantage of reusability, the use of inheritance
has raised concerns regarding potential technical debt in
the industry. Inheritance can create tight coupling between
classes [21], reducing flexibility [23]. Empirical studies in
academia have shown a strong correlation between inheritance
and increased defect proneness in software systems [8, 11,
27, 18]. As a result, the inheritance-related metric is often
used in defect prediction and vulnerability detection mod-
els [32, 4, 26, 3]. However, utilization of inheritance and
interface remain underexplored in software test code, despite
the significant time (25%) developers spend on testing [25].
Initial consensus indicates that developers should caution
against using inheritance in test code practices [10, 24, 6]. Yet,
there are limited insights into how inheritance and interface
impact test reusability, extensibility, and maintainability, nor
for understanding the potential design challenges that may
arise from improper usage. Addressing these research gaps is
crucial for optimizing test maintainability and software quality.
In this study, we take the initial step toward understanding test
reusability and extensibility from the perspective of inheritance
and interfaces in test code within open-source software sys-
tems. Our approach involves mining code changes by using
the state-of-the-art API differencing tool, RefactoringMiner
2.0 [29], such as additions, removals, and replacements of
extends and implements inheritance and interface. We
analyze these developer-driven changes to assess the impact of
inheritance and interface usage on test maintainability in real
software development by addressing the following research
questions:
RQ1: Do inheritance and interface play prominent roles
in the initial development of test code and how does it
compare to source code? At the beginning of test evolution,
40% of the test classes were initially committed into the
repository without inheritance or interfaces but were added
later. In comparison, the source code is more stable, with only
16% of classes showing changes in inheritance or interfaces.
This indicates that inheritance and interfaces play a more
significant role in the maintenance and evolution of test code
compared to source code. Despite controversial ideas behind
inheritance, its use may be prevalent in the test code.
RQ2: How does test code reusability change with inheri-
tance and interface modifications? Inheritance modifications
significantly impact test reusability; adding an extends in-

237

2024 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/24/$31.00 ©2024 IEEE
DOI 10.1109/ICSME58944.2024.00031

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(IC

SM
E)

 |
 9

79
-8

-3
50

3-
95

68
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SM

E5
89

44
.2

02
4.

00
03

1

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

creases the number of inherited test methods (average increase
of 8), while removal reduces it (average decrease of 10). In
contrast, changes to the interface have a minimal effect on
test reusability. Hence, developers should carefully manage
inheritance changes, as changes to inheritance can significantly
modify test reusability.
RQ3: How do inheritance and interfaces contribute to test
design and maintainability? We conduct a manual analysis
on developer-driven inheritance and interface modification to
determine how test inheritance and interface may impact test
code design. We develop a manual categorization of use cases
in which developers may utilize inheritance and interface
usages to achieve test reusability and extensibility.
RQ4: What potential issues arise from using inheritance
in test maintainability? We document design issues caused
by inheritance that impact test execution and comprehension,
discussing their manifestations in software systems. Finally,
we have made our replication package, containing all datasets
and code, available [2].
Paper organization. Section II discusses background and
motivations. Section III discusses our experimental design.
Section IV presents our quantitative analysis results, and Sec-
tion V presents our manual categorization results. Section VI
summarizes the implication of our findings. Section VII dis-
cusses related work. Section VIII discusses threats to validity.
Section IX concludes the paper.

II. PROMISE AND PERILS OF INHERITANCE AND
INTERFACES IN TEST CODE

Object-oriented programming languages like Java al-
low developers to declare keywords like extends and
implements to achieve reusability across classes. For in-
stance, with A extends B, class A gains access to all the
concrete implementations of methods, attributes, and fields in
class B. Conversely, with A implements B, interface B
acts as a contract for a class, specifying the required methods
that all implementing classes must define without dictating the
actual code for those methods. Consequently, implementing
classes must provide new definitions for these methods to
determine their unique behavior, facilitating code reuse.

We conjecture that test developers commonly adopt inher-
itance and interface usages within the test code. Hence, we
investigated the prevalence of inheritance and interface usage
in test code by mining open-source projects on GitHub. We
began with the Java-med dataset [1], consisting of the top
1,000 most-starred Java systems from GitHub. From the list of
java classes in the repository, we checked (i) whether the test
class contains inheritance or interface usage and (ii) whether
a class is a test class. To determine whether a test class
contains inheritance or interface usage, we searched for the
extends and implements keywords in the class modifiers.
To check if a class is a test class, we examined if the filename’s
Prefix/Suffix contains the “T/test” keyword. We omitted
systems that do not have test classes. As a result, among
the 1,000 repositories initially considered, we identified 583

repositories that contained test classes. Within these reposito-
ries, we found that 42% have at least one inheritance usage,
and 25% have at least one interface usage. These findings
indicate inheritance and interface usage are prevalent in test
code. Based on this analysis, we believe that inheritance and
interfaces may play a significant role in test code maintenance.

III. EXPERIMENT DESIGN AND PRELIMINARY ANALYSIS

In this section, we first introduce the systems studied. Then,
we discuss our experimental design for tracking inheritance
and interface changes in software evolution to understand their
prevalence in the test code. Figure 1 shows the overview of
our experiment design. In summary, we first detect all commits
that undergo inheritance and interface changes from the begin-
ning of software history until the end of 2021 (Section III-A).
Then, we perform a version-by-version comparison to map the
inheritance and interface changes for the modified Java classes
to get the complete evolution of inheritance and interface
changes (Section III-B).

TABLE I: An overview of the studied systems, and the changes
in test and source code from the beginning of history to the
end of 2021.

Test Src
Systems Test LOC Test Class Src LOC Src Class

cayenne 32K→33K 382→441 112K→260K 2K→4K
commons-collections 2K→37K 5→230 2K→30K 5→360
cucumber-jvm 26→24K 1→187 26→26K 1→598
cxf 70K→228K 618→2K 182K→457K 2K→6K
httpcomponents-client 2K→70K 11→618 69K→70K 618→686
iotdb 20→70K 1→392 4K→241K 42→2K
jclouds 20→166K 1→2K 20→233K 1→4K
kylin 20→9K 1→129 20→58K 1→593
maven 20→19K 1→196 20→73K 1→841
ranger 102→8K 4→49 37K→223K 319→1K
ratis 313→3K 7→18 313→53K 7→608
wicket 313→56K 7→639 313→160K 7→3K
Total 106K→723K 1K→6.9K 406K→1884K 1K→23.6K

Studied Systems. Table I provides an overview of the systems
we studied. To select these systems, we began with the initial
583 repositories identified in Section II having at least one
test class. From these repositories, we refined our selection
based on specific criteria to ensure the quality and relevance
of the systems examined. Firstly, systems must use inheritance
and interface. Secondly, as we investigated test evolution, we
established additional requirements: we discarded projects that
are below 90 percentile in terms of size (i.e., lines of code),
repository popularity (i.e., stars) and the number of commits.
We also ensured that the repositories were not forks. Through
this process, we selected 12 systems for our in-depth anal-
ysis. These systems include Cayenne, Commons-Collections,
Cucumber-JVM, CXF, Httpcomponent-client, Iotdb, Jclouds,
Kylin, Maven, Ranger, Ratis, and Wicket. Since we aim to
provide detailed quantitative and manual categorization results,
we focused on a small sample of high-quality systems.

A. Detecting Inheritance and Interface Changes

To gain preliminary insights into how inheritance and
interfaces may impact test code maintenance during software

238

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The overview of the end-to-end process tracking the evolution of inheritance and interface in test and source code.
TClass represents test class.

evolution, we began by identifying inheritance and interface
changes between consecutive commits. Specifically, we de-
velop to a tool to detect inheritance and interface addition,
deletion, and replacement changes. For this task, we utilized
RefactoringMiner to detect inheritance changes at the commit
level [29].

We have chosen RefactoringMiner for its high precision
(96.6%) and recall (94%) in comparison to other refactoring
tools and abstract syntax tree (AST) differencing tools [29].
Additionally, RefactoringMiner serves as an AST differenc-
ing tool at its core, providing an API to compare AST
diffs across commits, making it adaptable for identifying
both semantic-preserving changes (e.g., refactoring) and non-
semantic-preserving operations (e.g., addition, deletion, or
replacement). Hence, we did not modify RefactoringMiner’s
algorithm but used its internal API to analyze similarities
and differences in AST changes across commits. This capa-
bility is pivotal for determining whether changes such as A
extends B to A extends C are semantically preserving.
For example, if classes B and C represent distinct classes, the
change is not semantically preserving. However, this change
may also represent a rename from B to C, which does preserve
the semantic integrity of the code. Below, we elaborate on
our extension of RefactoringMiner to detect inheritance and
interface changes and outline our analysis steps performed
across commits.

Using RefactoringMiner to Detect Inheritance and Inter-
face Changes. We use RefactorMiner to detect and analyze
all inheritance and interface changes across commit history.
The current version of RefactoringMiner detects the following
class-level refactoring operations, we denote it as Type 1:

1) Add/Remove Class Modifier Abstraction
2) Extract - SuperClass/SubClass/Interface/

Class

However, Type 1 refactoring operations may miss many
inheritance and interface changes. For example, Add/Remove
extends can occur without any of extract subclass/su-
perclass/interface refactoring when the class already exists.
Moreover, for Add/Remove Abstraction, not all SuperClass
require Abstract modifiers. Hence, we use RefactoringMiner
to detect all potential inheritance and interface changes.

Specifically, we use RefactoringMiner’s AST differencing API
to detect the following additional types of inheritance and
interface declarations modification referred to as Type 2 (AST)
changes, as listed below:

1) Add/Remove/Replace Class Extends
2) Add/Remove/Replace Class Implements
More formally, to detect Type 2 (AST) changes across

commit history, we first rely on RefactoringMiner to match
class-level program elements that have the same TypeName
(e.g., equal Class Type and Qualified Name) across two
consecutive commits. We then use RefactoringMiner’s AST
differencing API to detect inheritance and interface changes
among the matched program elements. Here, Ip represents the
set of inheritance and interface type declarations of the pro-
gram element in the parent commit, and Ic represents the set
of inheritance and interface type declarations of the matched
program element in the child commit. The added inheritance
type declarations are computed as I+ = Ic \ (Ip ∩ Ic). The
removed inheritance type declarations are computed as I− =
Ip \ (Ip ∩ Ic). The replaced inheritance type declarations are
computed as I∼ = (I− ∩ I+). We then run RefactoringMiner
to all studied systems over their entire software history until
the end of 2021. We find that incorporating Type 2 (AST)
changes detects 68% more inheritance and interface changes
that were previously omitted by Type 1 changes.

TABLE II: Statistics on the changes of inheritance and inter-
face, comparing both the source code and test code, where (+)
is addition, (-) is removal and ∼ is replacement changes.

Extension Implementation Total # Evolution
Type (+) (-) (∼) (+) (-) (∼) # Changes Graph

Test 329 1255 2872 90 70 80
Total 4,429 Total 233 4,696 3,043

Source 930 563 6451 2132 1428 2592
Total 7,944 Total 6,152 14,096 6,721

Preliminary Analysis: Detecting Inheritance and Inter-
face Changes Across Commits. Table II shows the Type
2 (AST) changes that we detected in each system’s entire
software evolution history up until the end of 2021. We
considered such changes in both source code and test code
for comparison, since prior works may only consider source
code [8, 11, 27, 18]. Following [30], to determine that a class

239

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

is a test class, we ensure that class’s Prefix/Suffix in
its name is “T/test”. For each studied system, we present the
change at three different levels for the test & source code,
i.e., add (+), remove (-), replacement (∼). More intuitively,
replaced inheritance occurs when TestClassA extends
B is replaced by TestClassA extends C. This would be
counted as one replacement (∼), but not one add (+) and one
remove (-).

As shown in Table II, we have identified 4,429 inheritance
and 233 interface changes within the test code. This indi-
cates inheritance is widely adopted by test developers over
the interface in test code. To understand the prevalence of
inheritance and interface-related changes that occur in test
code, we compare them with the number of commits that
modify test classes, totaling 23,651. We observe that out of
23,651 commits that modify the test classes, 4,429/23,651
(18%) change their inheritance relationship, whereas much
less, 233/23,651 (1%) change their interface relationship.
Hence, we observed a substantial dependency on inheritance
usage and relatively less reliance on interface for test main-
tainability during software evolution. Specifically, among the
4,429 inheritance changes, the majority, 2,844/4,429 (64%),
entailed the replacement of inheritance, while 1,260/4,429
(28%) involved the addition of inheritance, and 325/4,429
(7%) led to the removal of inheritance in the test code. Shifting
our focus to interface changes within the test code, we also
identified 233 interface changes. Among these changes, the
majority, 90/233 (64%), involved the replacement of interface,
while 75/233 (28%) consisted of the addition of interface,
and 68/233 (7%) consisted of the removal of interface in the
test code. The high frequency of addition and replacement
inheritance and interface changes indicates that test developers
may use inheritance to design and maintain their test code.
Nevertheless, the non-negligible removal of inheritance and
interface implies that developers may encounter challenges
over time, hence removing them in the test. This observation
motivated our study to investigate further and manually
categorize how inheritance and interface are used in the
test code.

Fig. 2: An example of class evolution graph.

B. Tracking the Evolution of Inheritance and Interface
Changes

Upon detecting inheritance and interface changes in one
commit, we continue to track the evolution in the commit his-
tory to detect the history of changes for all modified Java class.

Detecting the complete evolution of inheritance and interface
can provide preliminary insights into how they influence test
maintainability. Tracking the evolution requires our approach
to match program elements in every two consecutive commits.
For example, class that was moved and renamed several times
should belong to the same evolutionary history. Below, we
further explain our commit-by-commit mapping.
Building Java Code Evolution Graph. Refactoring changes,
such as Rename, can affect the tracking of inheritance and
interface evolution. Therefore, to improve the accuracy of
tracking the evolution changes, we apply RefactoringMiner
to detect class-level refactoring, such as rename/move pack-
age, move/rename class, and extract superclass/subclass/class.
These refactorings give traces of the complete history of
modified Java classes, which is critical for mapping Java
classes’ history from class creation and modification to per-
sistence in its entire commit history. In particular, we build a
class evolution graph, where Np is the node representing the
class signature before class-level refactoring, Nc is the node
representing the class signature after class-level refactoring,
and Epc represents the edge between Np and Nc. Namely,
there is an edge Epc if the two nodes have the same fully
qualified names or their fully qualified name belong to the
class-level refactoring changes mentioned earlier. Figure 2
shows an example of a graph that tracks code evolutions for
class TestBagUtils for Apache/Commons-Collections. The test
code undergoes several rename/move refactorings, and finally,
inheritance type declaration changes. Refactorings such as
extract superclass are less trivial to track as both the extracted
superclass and the original class may undergo further changes.
Hence, we consider both edge between Np→Nc superclass and
Np→Nc subclass as evolution on node Np. Hence, each class
may undergo several inheritance and interface changes in the
evolution.
Preliminary Analysis: Detecting Code Evolution. We con-
duct a preliminary analysis of the test and source code using
our code evolution graph. Figure 2 provides an overview
of the evolution graph for a class that undergoes multiple
inheritance and interface changes during software evolution,
and Table II shows their frequency in test & source class.
As shown in Table II, after mapping inheritance and interface
changes into the code evolution graph, we obtained 3,043 test
classes and 6,721 source classes that undergo inheritance and
interface changes. In other words, the number decreases as
some changes may come from similar evolution history within
the test code as indicated in Figure 2. This shows that test
and source classes may undergo multiple inheritance or
interface changes throughout history, which indicates their
importance in test maintainability. In Section IV, we explore
possible factors behind these changes.

IV. QUANTITATIVE ANALYSIS OF INHERITANCE AND
INTERFACE USAGE IN TEST CODE

In this section, we perform a quantitative analysis to under-
stand the prevalence and evolution of inheritance and interface
utilization in the test code.

240

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

RQ1: Do inheritance and interface play prominent roles in
the initial development of test code and how does it compare
to source code?
Motivation. To understand the importance of inheritance and
interface in test development and maintenance, it is crucial
to determine if inheritance and interface are present from the
start or if it is introduced later in software development. If
the prevalence of inheritance and interface is low at the early
stages of software, and predominant later on, it may suggest
that developers frequently rely on inheritance and interface to
maintain test code.

TABLE III: For test and source code that undergoes inher-
itance and interface changes in evolution, we measure the
prevalence of the initial version of the test and source Class
vs. the snapshot analyzed at the end of 2021.

Test Class # Source Class

Inheritance or Interface is present from the beginning of code creation.
Inheritance 1,615 (53%) 2,985 (44%)
Inheritance & Interface 142 (4%) 964 (14%)
Interface 89 (2.5%) 1,720 (25%)

Inheritance or Interface is added later on during software evolution.
1,197 (40%) 1,052 (16%)

Total = 3,043 Total = 6,721

Approach. We study the prevalence of inheritance and inter-
face during test class creation by examining the evolution
graph. Take Figure 2 as an example, we trace the evolu-
tion graph to its earliest commit, 8ffb78e, and retrieve its
parent commit (ab33c74b), representing the initial test code
state before adding any inheritance and interface changes.
At commit ab33c74b, we use the Tree-Sitter [28] tool to
parse the test class, identifying extends and implements
keywords added at the start of test creation. In our analysis
of inheritance frequency, we exclude relationships associated
with TestCase and Assert, as they are integral parts of the JUnit
Test Framework and do not indicate test class written by test
developers.
Result. Inheritance and interface is initially present in 59.5%
of the test code upon its creation. This percentage is even
higher, at 83%, for source code. We observed that 59.5%
changes in inheritance and interface occur in test classes
already having inheritance and interface. This percentage is
even higher, at 83%, for changes within the source code.
We also observed that only 2.5% of test classes undergoing
interface changes already have interfaces upon creation and a
much higher percentage, 25%, of source code includes inter-
faces in the first version of the studied systems. In summary,
inheritance undergoes more frequent changes in source code
than test code when inheritance and interface already exist
from the initial creation of the class.
40% of test classes without inheritance eventually add inher-
itance during software evolution, while source classes show
a lower percentage, with only 16%. We observe that many test
classes that do not have inheritance and interface, (a) 10/1,197
(1%) adopt only interface, (b) 10/1,197 (1%) adopt both

inheritance and interface, and (c) 1,177/1,197 (98%) adopt
inheritance in test code. Conversely, for source classes that
do not have inheritance/interface, (a) 843/1,052 (80%) adopt
only interface, (b) 51/1,052 (4.8%) adopt both inheritance and
interface, and (c) 158/1,052 (15%) adopt inheritance in test
code. In summary, although inheritance and interface play a
lesser role in the initial design of test code than the source
code, test developers eventually adopt more inheritance than
source code. Moreover, the source code adopts more interfaces
than the test code.

Developers adopt inheritance and interfaces into their test
code more frequently over time. Initially, 40% of test
classes lacked inheritance or interfaces, but these were
added later. In comparison, the source code is more stable,
with only 16% of classes showing changes in inheritance
or interfaces. This indicates that inheritance and interfaces
play a more significant role in the maintenance and evolu-
tion of test code compared to source code.

RQ2: How does test code reusability change with inheritance
and interface modifications?

Motivation. As observed in RQ1, developers frequently rely
on inheritance and interfaces to develop and maintain their
test code. Thus, in this RQ, we further investigate how these
changes affect test reusability. Understanding this impact is
crucial, as it shows initial evidence that developers use test
maintenance by reducing redundancy and improving extensi-
bility.
Approach. To measure test reusability, we define three metrics:
(i) changes in the depth test hierarchy and the changes in
the number of methods that are either (ii) inherited or (iii)
overridden. Firstly, to measure the depth of the test hierarchy
tree (DIT), we use the metric proposed by [20]. We developed
a static analysis tool that recursively visits superclasses using
the Visitor Pattern to measure the hierarchy for a test class.
If the superclass is an interface, we recursively visit its
superclasses since it can further extend other object classes.
We continue recursion until the terminating condition, Java’s
root Object() class, is met. We define depth as the longest
number of classes visited to reach from the leaf class to
the root (e.g., Object()). Secondly, our static parser analyzes
whether the test method is inherited from the superclass or
overridden by the child classes. We consider a method to be
overridden if and only if (1) it has the same signature, i.e., the
same method name, the same number of parameters, and is
not static; (2) the method is a subtype of a supertype method;
and (3) the type erasure of the parameter is equal for generic
types [16]. Once overridden methods are detected, identifying
inherited methods becomes straightforward. Any method sig-
nature statically present in the superclass but is not overridden
is categorized as inherited. Subsequently, we apply our static
parser to the results from RefactoringMiner (Section III-A).
For exmaple, for each Java class undergoing inheritance and
interface changes, we calculate the delta between the depth

241

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Impact of inheritance and interface changes on test reusability features, such as on the depth of test class hierarchy
tree, number of inherited and overridden test methods.

Test Hierarchy Changes Number of Inherited Method Changes Number of overridden Method Changes

mean median min max mean median min max mean median min max
Type of Code Changes

Extension Addition 1.31 1.0 0 4 8.57 4.0 0 69 0.97 0 0 7
Removal -1.30 -1.0 -3 -1 -9.55 -4.0 -38 0 -0.68 0 -6
Replacement 0.07 0 -3 4 0.03 0 -43 40 0.03 0 -38 7

Implementation Addition 0.33 0 0 2 0.41 0 0 8 0.67 0 0 6
Removal -1.0 -1.0 -1 -1 0 0 0 0 -1.0 -1.0 -1 -1
Replacement 0.03 0 -1 1 -0.03 0 -1 0 0.02 0 0 1

of hierarchy, number of inherited and overridden before and
after the code changes. Namely, changes in the depth of the
test hierarchy for a TestClass1 from 4 to 3 are indicated
by the delta of -1, indicating a decrease in the hierarchy.

Result. Inheritance generally increases the depth of hierar-
chy by an average of 1, it has a much greater impact on the
number of inherited test methods, with an average increase
of 8 and instances reaching up to 69, highlighting the
significant role of inheritance in test reusability. Figure IV
shows statistics of how changes in inheritance and interfaces
impact reusability in test code, specifically focusing on the
depth of the test class hierarchy tree and the number of
inherited and overridden test methods. We analyze three types
of code changes, such as add/remove/replace class
extension/implementation. In the test code, adding
an extends increases the DIT with an average of 1.31,
while removing an extends decreases the DIT by an average
of -1.30. Replacing an extends can lead to both increases
and decreases in the DIT. Generally, changes in inheritance
tend to increase the depth of the hierarchy. For instance, in
the studied system commons-collections system (9752389b),
replacing an abstract class TestAbstractIntArrayList increases
the inheritance depth from 1 to 3. A similar trend is observed
in changes to interface changes. Adding an implements
results in a slight increase in hierarchy depth (mean of 0.33),
whereas removing an implements may lead to a decrease
in hierarchy depth (mean of -1.0). Interestingly, some projects
may not show any change in depth despite modifications
such as adding an extends. This is often due to external
libraries (e.g., Apache Directory with AbstractLdapTestUnit)
that provide abstract classes for reusable functionality. Test
code inherited from such APIs cannot be statically determined
by our parser, highlighting the limitations in accurately mea-
suring the impact of inheritance changes. Nevertheless, it still
demonstrates the prevalence of inheritance and interface usage
in promoting reusability in test code.

Developers should carefully manage inheritance changes,
as a modification to inheritance can significantly impact test
reusability. While the depth of the hierarchy may provide an
initial indication of test reusability, we also analyze reusability
from the perspective of test methods that become inherited and
overridden due to such modifications. Understanding inherited
or overridden test methods may show that developers introduce

test hierarchy to reuse or extend test methods that may help
test source code functionality. While adding an extends may
increase the depth of hierarchy (e.g., mean of 1), there is a
much greater impact on the number of inherited test methods.
For example, adding an extends results in an average of
8 inherited test methods, with some instances as high as 69
test methods. In contrast, the average number of inherited
test methods decreases significantly (e.g., mean of -43) when
an extends is removed, suggesting the important role of
inheritance in test method reusability and extensibility. More
interestingly, replacing an extends has a stable mean in the
number of inherited test methods (mean of 0.03). However, we
observe extreme cases where the number of impacted inherited
test methods can be as high as adding 40 additional test
methods or removing 43 test methods. In contrast, changes to
implements are relatively stable, suggesting less prevalence
of interface utilization in the test code. Finally, we provide
statistics on changes in the number of overridden test meth-
ods. While overridden test methods generally follow similar
trends as inherited counterparts, the impact is less pronounced.
Adding an extends increases overridden test methods by an
average of 0.97, with a maximum of 7, whereas removing
an extends leads to an average decrease of 0.68 overridden
methods. Replacing an extends shows minimal change, with
an average of 0.03 overridden methods, although it may range
from -38 to 7 methods. In summary, our results show that mod-
ifications to the inheritance hierarchy can substantially impact
the reusability of the test method, depending on whether they
involve adding or removing inheritance relationships.

Inheritance changes promote test reusability by increasing
hierarchy depth and the number of inherited and overridden
tests. In contrast, interface changes have a more lim-
ited effect. However, developers should carefully manage
inheritance changes, as modification to inheritance can
significantly impact test reusability.

V. MANUAL CATEGORIZATION

Motivation. We conducted a manual analysis to uncover how
developers use inheritance and interfaces to enhance test case
design. Our goal is to develop a catalog on how inheritance
and interfaces enhance test design and maintainability, which

242

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

can inform researchers, practitioners, and testing framework
designers on how to improve test quality.
Approach. Our manual categorization comprises the following
phases: (1) We used stratified random sampling [15], with
a 95% confidence level and a 5% confidence interval, to
obtain 226 samples. (2) To create a categorization, the first
two authors (A1 and A2) independently derived an initial
list of category for test inheritance changes by manually
inspecting relevant commit messages, test source code, and
bug reports. (3) Authors A1 and A2 then unified their lists
and compared their category for each inheritance and interface
change until reaching a consensus. The inter-rater agreement
for the coding process had a Cohen’s kappa of 0.75, indi-
cating a very moderate level of agreement [7]. We divide our
manual categorization into two research questions (RQs): RQ3
examines use case of inheritance and interfaces in test code,
while RQ4 investigates the design issue that may arise from
inheritance usage.
RQ3: How do inheritance and interfaces impact test main-
tainability?
Test Code Reusability (60%). Developers frequently utilize in-
heritance to enhance test code reusability in software testing.
This approach focuses on reusing utility functions and test
fixtures to streamline the initialization of test environments.
For instance, in Cxf - 9c9d5c4b, a developer created a su-
perclass named AbstractSTSTokenTest.java, which encapsu-
lated reusable components such as fixtures (e.g., @Before
or @BeforeClass) and utility functions related to web ser-
vice startup. This design facilitates efficient test development
across various scenarios by allowing two subclasses in the
same commit to reuse functionality. Similarly, in systems
like Commons-collections - 15cf438, developers use inheri-
tance (e.g., extending a class with AbstractTestSortedMap)
to achieve comprehensive test coverage. This system often
involves multiple algorithms with shared source code func-
tionalities, necessitating unified testing. For example, testing
list data structures requires handling edge cases common to all
lists (e.g., listEquals). Thus, adopting inheritance not only
simplifies test case management but also enhances coverage
through effective reuse.
Bug Handling and Prevention (9.3%). Developers may utilize
inheritance to effectively address bugs arising from inconsis-
tencies in the test environment, such as failures to establish
necessary pre-conditions (e.g., initialization of file storage or
cluster servers) before executing tests. For instance, in Kylin
- ae503d9, a test failed due to an improperly configured
environment where the required metadata was not set up
by the test code. Similarly, in the studied system Cxf -
f1953fce, test failures occurred because the test environment
was not properly reset after executions, affecting subsequent
test cases. To mitigate these issues, developers use inheritance
by extending a base class to reuse methods that establish the
necessary pre-conditions (e.g., fixtures), thereby resolving the
associated bugs.
Test Code Extensibility (5.9%). Developers utilize inheritance
to implement the Template Method design pattern, defining

the testing boilerplate in a superclass while allowing sub-
classes to make minor changes in test behavior. For example,
Commons-collections includes different implementations of
the Iterator class (e.g., ProxyIterator.java, FilterIterator.java).
In Commons-collections - d3a61e7, to test various implemen-
tations of the Iterator class, developers use inheritance to
create abstract methods (e.g., makeFullIterator) in the super-
class. This approach allows subclasses to implement concrete
versions of these abstract methods, reflecting the specific class
under test. Thus, inheritance facilitates developers to create
new tests as new source code behavior is added.
Source Code Stubbing (1%). Developers may use inheritance
or interfaces to stub dependencies in the source code under
test by creating a nested test class that inherits the necessary
methods from the source code. This allows the test case to
utilize the nested class, which instantiates the dependent source
code to meet the preconditions for testing. For instance, in
ResponseIOExceptionTest.java from the studied system Wicket
- f75b829, developers use the nested class within the test
class to implement code dependencies. The study by Wang
et al. [31] also highlights the widespread use of inheritance in
nested test classes for stubbing behaviors of the source class.
Their research primarily focuses on refactoring to replace
inheritance-based stubbing, aiming to decouple source code
from test code for better maintainability. However, our analysis
reveals limited use of Mockito, with many developers prefer-
ring delegation over inheritance when implementing stubbing
behaviors.
Test Code Selection and Organization (1%). Marker inter-
faces are empty interfaces that provide type information to
the JVM at runtime, enabling specific actions based on this
information [9]. In the studied system Commons-collections
- 787edf0, we discovered an interesting use of the marker
interface to control test case execution. Developers created
a test class that extended an abstract class and implemented
a nested interface representing the marker interface. This
approach allowed the test code to inherit test cases from
the abstract class and determine the instantiating type of the
current test class, corresponding to the interface. Depending
on this type, the test code could control whether a test should
be executed. While uncommon, we found that developers use
marker interfaces to categorize and selectively execute tests
within the testing framework or tool.
Junit Migration (9.4%). Test framework (e.g., JUnit) migra-
tion is another core use for changing test inheritance. For
example, Junit5 ships with new annotation-based features,
such as @ParameterizedTest and @ExtendWith, and a new
interface for dealing with the test-fixture lifecycle that re-
moves the need for test inheritance. Before @Parameter-
izedTest, JUnit4 requires a child class to define the test
arguments and a base class to define parameterizable @Test
cases. With JUnit5, developers can now utilize @Value-
Source/@MethodSource to inject arguments to the test
cases directly instead of adding bloated dependencies with an-
other class. Secondly, with @ExtendWith annotations, while
it removes the need to extend the base class to configure test-

243

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

fixture, we find that logically, there is no difference from using
inheritance as they may accomplish the same functionality.
However, it may improve code readability and ease of code
extensibility.

We identified various uses of inheritance and interfaces
in real-world test code design, with a strong emphasis on
improving test reusability. Additionally, we observed how
developers may use interfaces to support test development
and selection.

RQ4: What potential issues arise from using inheritance in
test maintainability?

public class Test1 extends BaseTest {

}

Move Test
Code

public abstract class BaseTest {

}

@Test
@BeforeClass

Fig. 3: Issue 1: Empty Inheritance. In Test1, we see an empty
class because the code moved to the BaseTest. However, it
may cause other subclasses depending on Test1 to create
arbitrary inheritance relationship.
i

Issues with obsolete test code (1%). While inheritance en-
hances test code reusability, it can also lead to maintainability
issues. We have observed that developers may unintentionally
extend a class that turns out to be empty, thus undermining the
intended reusability achieved through inheritance. For instance
in the studied system Jclouds (commit 180265fe), developers
eliminated the inheritance (e.g., Remove Class Extension) as
it did not contain any code. To gain a deeper understanding
of the motivations behind adding such empty code segments,
we analyze its commit history and its code changes. In our
examination, as depicted in Figure 3, we identified that in
Jclouds (commit 72ba1639), developers extracted a BaseTest
and transferred code from Test1 into this new class for code
reusability. However, it appeared that all of the code was
relocated to BaseTest, leaving the original test code as an
empty and unnecessary intermediary step in the test code
hierarchy. This empty step served no purpose in the testing
process.

public class Test1 extends BaseTest {
 @Test
 TestMethod{

 }
}

public abstract class BaseTest {

}

UtilityMethod1

UtilityMethod2
Utility Method is
Never Utilized

Fig. 4: Issue 2: Under-utilized Inheritance. Test1 inherits
utility methods from BaseTest, yet none of them are actu-
ally utilized.

Moreover, we came across instances where test code ex-
tends a BaseTest, yet none of the inherited methods are
utilized by the ChildTest. As depicted in Figure 4, in Cayenne
(de8123a2), developers may view the BaseTest as unnecessary

and remove it from inheritance hierarchy. While this issue
shares similarities with the category of empty inheritance, it
presents a more significant challenge in terms of code com-
prehension. Specifically, it may not be immediately evident
whether the code in BaseTest is being used in the ChildTest.
Hence, there is a need to monitor changes to inheritance to
prevent the adoption of bad practices.

public class Test1 extends BaseTest {
 @BeforeClass
 @AfterClass
 @Test

}

Non-abstract class BaseTest {
 @AfterClass
 @Test

}

Executed in both parent
and child

TestMethod
TestMethod

Fig. 5: Issue 3: Duplicate Test Execution. In TestMethodName
is executed both in Test1 and Test2.

Issues with test runtime (1%). Inheritance enables test code
reusability, facilitating a straightforward way to test for com-
mon source code functionality. However, it may also introduce
test execution duplication, potentially increasing execution
time. In Figure 5, we provide an example from the Cxf
project (commit d95ed565), where a test class extends a base
class that contains the test cases. Although the intention is
to reuse test cases from the superclass within the subclass,
the absence of the Abstract modifier allows the superclass’s
test cases to be executed both in itself and in the subclass.
While this issue may not lead to software faults, it may lead
to prolonged execution time which may increase the cost to
test the software system. These findings emphasize the need
for careful consideration when using inheritance in testing
to avoid unnecessary duplication and inefficiency.

public class Test1 extends BaseTest {
 @Before
 TestFixture {

 }
}

Duplicate
Fixture

public abstract class BaseTest {
 @Before
 TestFixture {

 }
}

Fig. 6: Issue 4: Obstructing Code Comprehension. Developers
add duplicate fixture in both Test1 and Test2.

Issues with test comprehension (1%). Incorporating inheri-
tance in test code can hinder code comprehension. For in-
stance, in Figure 6 (Iotdb project, commit 855675f4), devel-
opers created a test fixture in the subclass with identical names
and functionality as in the superclass. Although the commit
message mentions ”Fix unclosed file”, the file was already
closed by the fixture method inherited from the superclass.
Unfortunately, the developers overlooked the presence of the
inherited method and added a redundant fixture in the sub-
class. While the new method overrides the inherited one and
does not result in duplicate test execution, it highlights that
using inheritance can negatively impact code comprehension.
Moreover, in CXF d47f3a58 we observe that the subclass
improperly overrides the fixture from the BaseTest, i.e., uses
super keyword to reuse functionality but forgets clear state.

244

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

To fix this, the developers fix test flakiness by adding clear()
in a subclass. Based on this scenario, although overriding tests
can provide developers with more flexibility, it also increases
the possibility of unintended consequences. As previously re-
ported in Maven-Surefire [10], experts recommend completely
avoiding inheritance in testing to minimize bugs. However,
this may not always be feasible, e.g., labor-intensive, due to
the prevalence of test code inheritance in practice. Moreover,
in some projects, like Jclouds, where inheritance has a very
high depth, possibly up to a depth of 10, it can become
challenging to discern which tests are overridden or inherited,
which can impede effective test code writing. Hence, there is
an opportunity to analyze the relationship between inherited
methods and their purpose in test design to determine if the
inheritance is necessary.

While there are advantages to using inheritance, it also
presents potential issues. The challenge lies in compre-
hending these advantages and disadvantages of inheritance,
which involve facilitating extensible test code while carry-
ing the risk of introducing problems.

VI. IMPLICATIONS AND FUTURE WORK

Based on our empirical findings, we present actionable
implications and potential future work.

Implications for Test Developers

D1: Developers need clearer guidance on the effective use
of inheritance and interface in test code. Our findings in
RQ1 suggest the value of inheritance and implementation in
guiding early test case design. Our RQ3 unveils motivations
for these changes, primarily driven by the desire to enhance
test code design. Despite ongoing controversy and ambiguity
regarding interfaces [8, 11, 27, 18, 32, 4, 26, 3, 23, 21, 22],
open-source projects demonstrate the prevalence of inheritance
and interface design, and it proves beneficial in specific use
cases to aid test code design. Hence, this underscores the
need to provide clear guidance to developers on effective
uses of inheritance and interface in the test code. Our derived
motivations behind their uses may assist developers in making
informed decisions.
D2: Developers should employ automated tools to address
obsolete code resulting from inheritance during software
evolution. In RQ3, we identified various issues stemming
from the use of inheritance in test code. For instance, we
discovered instances of empty inheritance, considered as ob-
solete tests, which can significantly increase code complexity.
Similarly, developers may occasionally eliminate underutilized
inheritance, where inheritance is implemented for reusability
but remains unused. While these issues may initially appear
problematic, as discussed in RQ3, they are artifacts of soft-
ware evolution caused by developers. Obsolete inheritance
resulted from refactoring activities that involve extracting a
superclass and pulling up methods and attributes for the sake
of reusability. On the other hand, underutilized inheritance

reflects developers’ initial intentions to improve test code
with new features, which, unfortunately, end up going unused
during the software evolution process. We do not consider
these issues to be severe, as they do not significantly impact the
effectiveness of testing. Furthermore, these issues can be easily
mitigated through the use of automatic tools while maintaining
the benefits of inheritance in the creation of effective test cases.
D3: Developers should consider improving readability
when using inheritance for reusability. As our finding in
RQ3 reveal, many developers resort to test inheritance to
increase code coverage. For instance, in studied systems like
Commons-Collections we observe the advantages of utilizing
test inheritance. This system deals with various collection
handling algorithms, each having distinct implementations.
However, they often share common functionalities that require
thorough testing, and test inheritance provides a convenient
means to accomplish this. In scenario like this, test inheritance
is proves beneficial. However, there may be potential issues
with inheriting test cases. For example, these test cases are
silently executed, sometimes without developers’ awareness.
In RQ3, we see case that developers accidentally omitted
the Abstract modifier from the base test case. This omission
enabled Junit to instantiate the test class and executes its test
case both in the superclass and subclass, leading duplicate
execution. One mitigation strategy on raising awareness about
inherited test cases is to improve the readability. When using
inheritance, instead of allowing it to be silently executed, we
could explicit allow the test case call superclass’s test case,
super.TestCase(). This practice serves as a form of code
documentation that enhances readability. This presents a trade-
offs that developers should carefully consider for the sake of
long-term maintainability.

Implications for Researchers

R1: Future research in test case minimization should con-
sider test inheritance. As highlighted by our analysis in RQ3,
test inheritance, while offering benefits, can lead to instances
of duplicate test execution. In systems that extensively rely
on test inheritance, it can be challenging for developers to
entirely eliminate such scenarios. Therefore, future research
can apply program analysis techniques to identify and manage
cases of duplicated test execution stemming from test case
inheritance. Furthermore, there are promising research direc-
tions that extend beyond detection. Researchers should explore
reduction and minimization techniques specifically tailored to
the context of inheritance. These reduction technique poses a
significant challenge since inheritance impacts many classes,
and their removal may require further refactoring to preserve
behavior of the test code. Consequently, we recommend that
future advancements in test case reduction techniques take into
account the nuances of test inheritance and devise strategies
to mitigate redundancy within this unique context.
R2: There exist widespread refactoring that replace in-
heritance with annotation. Future automated tool support
may consider this unique refactoring. In RQ3 we find
several instances where developers uses annotations (e.g.,

245

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

@ExtendWith) from testing frameworks like Junit to replace
test inheritance. @ExtendWith is annotation introduced by
Junit5 to extend the behavior of test classes or methods,
i.e., adding conditional testing to the test code, when certain
JVM or operation system is absent. Using @ExtendWith may
provide benefit over inheritance due to better separation of
concerns in the test code. For example, each @ExtendWith
can focus on specific aspect of testing, which makes the
test code more maintainable. This is beneficial for cases we
find in RQ3, where inheritance contain many different aspect
of the test automation (e.g., as you cannot create multiple
inheritance), such as reusing test cases, utility method (e.g.,
performance testing and mocking) and fixture. Hence, there
needs to be further research on when it is beneficial to use
annotation or inheritance.

VII. RELATED WORKS

Inheritance Evolution and Maintenance. Many works investi-
gated the evolution of inheritance in source code. For exam-
ple, Shaheen and du Bousquet [19] studied the relationship
between inheritance and the number of methods to test.
They claim that testing should be more expensive if the
inheritance depth is high, as the inherited method should
be re-tested. Nasseri et al. [11] studied whether inheritance
evolves breadth-wise or depth-wise, and developers consider
depth-wise as hard to maintain and prefer breadth-wise inher-
itance. Nasseri et al. [12] studied the evolution of inheritance
from the perspective of class re-location to understand what
motivates their move and try to give insights on potential
maintenance challenges. Giordano et al. [5] studied the evo-
lution and impact of delegation and inheritance on code
quality. They find that their evolution often leads to code smell
severity being reduced and improved maintainability. While
these works investigate inheritance in source code, we focus
on studying the benefits and issues associated with inheritance
from test code perspective.
Inheritance Maintenance in Test Code. Limited works inves-
tigated the evolution and maintenance of test inheritance.The
work by Wang et al. [31] conjectured that despite the existence
of powerful mocking frameworks, developers often turn to
inheritance to mock source code under test. Hence, they
proposed a tool to refactor mocking via inheritance with a
mocking framework. Our work is different in fact that we aim
to derive how inheritance can be of benefit to developers, as
well as their negative impact on maintainability. Peng et al.
[17] studied the impact of code dependencies on continuous
integration. They found that inheritance causes the majority
of dependency in test cases and proposed test dependency-
related smells. Different from our work, they emphasize test
dependencies and little on the impact of test code reusability
through inheritance.
Quality Issue in Inheritance. Many prior studies extensively
studied the quality issue, such as the change/defect proneness
of using inheritance [8, 11, 27, 18, 32, 4, 26, 3]. For exam-
ple, researchers found that ineffective use of inheritance is

correlated to software quality issues and maintenance difficul-
ties [8, 11, 27, 18]. Prior studies even used inheritance as a
proxy to measure software complexity and to predict software
defects in industry systems [32, 4, 26, 3]. Unfortunately,
these researches on inheritance primarily analyzed the source
code, largely overlooking inheritance in the test code. Hence,
whether inheritance impacts software maintainability remains
unclear. In our work, we do not dismiss use of inheritance.
Instead, we comprehensively discuss both its advantages and
disadvantages, taking into account requirements and motiva-
tions of developers.

VIII. THREATS TO VALIDITY

Internal Validity. Our findings depend on the accuracy of
RefactoringMiner to detect inheritance changes. We mitigate
this threat by validating the tool thoroughly during our manual
analysis in RQ3. We observed that the extension of Refactor-
ingMiner detects inheritance and interface changes with 100%
precision with 0 false positives.
External Validity. Our studied systems are all open source and
implemented in Java, so the result may not be generalized to
other systems. However, our studied projects are high-quality
and used in many commercial settings. The usage patterns
we derived in RQ3 also encompass many critical aspects of
test code execution and maintenance, which should also exist
in closed-source projects. Hence, we believe that the findings
will be similar in closed-source projects or other programming
languages that use inheritance. Nevertheless, to minimize the
threat, we follow a set of criteria to select popular systems on
GitHub, large in scale, and actively maintained, and frequently
used in commercial settings. Future studies are encouraged
to replicate our experiment on other systems implemented in
different programming languages.
Construct Validity. In RQ3, we conduct a manual analysis
to understand how developers use inheritance and interface
on test maintenance. We perform the study on a statistically
significant sample using a 95% confidence level and a 5%
confidence interval. To reduce the biases in our manual catego-
rization, two of the authors independently studied the sample
and compared the results. Any discrepancy is discussed until
a consensus is reached. We computed Cohen’s Kappa and
found that the level of agreement is substantial between the
two authors (0.75).

IX. CONCLUSION

This paper presents the first empirical study on inheritance
and interface in tests to fill the knowledge gap regarding
the evolution and maintenance of tests since prior studies
focused mainly on source code inheritance/interface. Our study
reveals many actionable implications and research directions:
1) We observe that 59.5% of test classes already incorporate
inheritance when initially created, while 40% of test classes
incorporate interfaces. Notably, interfaces are less likely to
undergo modification over time compared to inheritance. 2)
Test code and source code undergoes many inheritance/inter-
face changes during evolution, and test code takes longer time

246

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

to change inheritance/interface 3) Such changes significantly
increase code complexity. 4) Despite the controversial nature
of inheritance, it still offers extensibility in test design. Finally,
we report three issues, underscoring the need for careful
inheritance use in specific cases.

DATA AVAILABILITY

We have made our replication package available, which
contains all the datasets and code available [2].

REFERENCES

[1] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
code2seq: Generating sequences from structured repre-
sentations of code. arXiv preprint arXiv:1808.01400,
2018.

[2] Anonymized Author. replication package, 2014. URL
https://anonymous.4open.science/r/Blessing-or-Curse-I
nvestigating-Test-Code-Maintenance-via-Inheritance-a
nd-Interface-F174/README.md.

[3] Shyam R Chidamber and Chris F Kemerer. A metrics
suite for object oriented design. IEEE Transactions on
software engineering, 20(6):476–493, 1994.

[4] Istehad Chowdhury and Mohammad Zulkernine. Using
complexity, coupling, and cohesion metrics as early indi-
cators of vulnerabilities. Journal of Systems Architecture,
57(3):294–313, 2011.

[5] Giammaria Giordano, Antonio Fasulo, Gemma Catolino,
Fabio Palomba, Filomena Ferrucci, and Carmine
Gravino. On the evolution of inheritance and delegation
mechanisms and their impact on code quality. In 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 947–958.
IEEE, 2022.

[6] Petri Kainulainen. Three reasons why we should not use
inheritance in our tests, 2014. URL https://www.petrikai
nulainen.net/programming/unit-testing/3-reasons-why-w
e-should-not-use-inheritance-in-our-tests/.

[7] Tarald O Kvålseth. Note on cohen’s kappa. Psychological
reports, 65(1):223–226, 1989.

[8] Cristina Marinescu and Mihai Codoban. Should we be-
ware the inheritance? an empirical study on the evolution
of seven open source systems. In 2014 9th International
Conference on Software Engineering and Applications
(ICSOFT-EA), pages 246–253. IEEE, 2014.

[9] Marker. Marker interface, November 2022. URL https:
//www.baeldung.com/java-marker-interfaces.

[10] Maven. Maven apache pony mail, 2023. URL https:
//lists.apache.org/thread/cpm046p745j7nj0dvw9mtxfmth
kgobp6.

[11] Emal Nasseri, Steve Counsell, and M Shepperd. An
empirical study of evolution of inheritance in java oss.
In 19th Australian Conference on Software Engineering
(aswec 2008), pages 269–278. IEEE, 2008.

[12] Emal Nasseri, Steve Counsell, and M Shepperd. Class
movement and re-location: An empirical study of java

inheritance evolution. Journal of Systems and Software,
83(2):303–315, 2010.

[13] Oracle. Inheritance, 2022. URL https://docs.oracle.com/
javase/tutorial/java/IandI/subclasses.html.

[14] Oracle. Polymorphism, 2022. URL https://docs.oracle.
com/javase/tutorial/java/IandI/polymorphism.html.

[15] Van L Parsons. Stratified sampling. Wiley StatsRef:
Statistics Reference Online, pages 1–11, 2014.

[16] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. Spoon: A Library
for Implementing Analyses and Transformations of Java
Source Code. Software: Practice and Experience, 46:
1155–1179, 2015. doi: 10.1002/spe.2346. URL
https://hal.archives-ouvertes.fr/hal-01078532/document.

[17] Zi Peng, Tse-Hsun Chen, and Jinqiu Yang. Revisiting
test impact analysis in continuous testing from the per-
spective of code dependencies. IEEE Transactions on
Software Engineering, 2020.

[18] Lutz Prechelt, Barbara Unger, Michael Philippsen, and
Walter Tichy. A controlled experiment on inheritance
depth as a cost factor for code maintenance. Journal of
Systems and Software, 65(2):115–126, 2003.

[19] Muhammad Rabee Shaheen and Lydie du Bousquet.
Relation between depth of inheritance tree and number
of methods to test. In 2008 1st International Conference
on Software Testing, Verification, and Validation, pages
161–170. IEEE, 2008.

[20] Frederick T Sheldon, Kshamta Jerath, and Hong Chung.
Metrics for maintainability of class inheritance hierar-
chies. Journal of Software Maintenance and Evolution:
Research and Practice, 14(3):147–160, 2002.

[21] Stackoverflow. why inheritance is strongly coupled where
as composition is loosely coupled in java?, 2013. URL
https://stackoverflow.com/questions/19146979/why-inh
eritance-is-strongly-coupled-where-as-composition-is-l
oosely-coupled-in-j.

[22] Stackoverflow. Prefer composition over inheritance?,
2013. URL https://stackoverflow.com/questions/49
002/prefer-composition-over-inheritance.

[23] Stackoverflow. How can i resolve this redundancy caused
by inheritance and nested class?, 2020. URL https://stac
koverflow.com/questions/56063575/how-can-i-resolve-t
his-redundancy-caused-by-inheritance-and-nested-class.

[24] Stackoverflow. Should i use inherited tests?, 2023. URL
https://stackoverflow.com/questions/59312507/should-i
-use-inherited-tests.

[25] Philipp Straubinger and Gordon Fraser. A survey on
what developers think about testing. In 2023 IEEE
34th International Symposium on Software Reliability
Engineering (ISSRE), pages 80–90. IEEE, 2023.

[26] Ramanath Subramanyam and Mayuram S. Krishnan. Em-
pirical analysis of ck metrics for object-oriented design
complexity: Implications for software defects. IEEE
Transactions on software engineering, 29(4):297–310,
2003.

[27] Amjed Tahir, Steve Counsell, and Stephen G MacDonell.

247

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

An empirical study into the relationship between class
features and test smells. in 2016 23rd asia-pacific soft-
ware engineering conference (apsec), 2016.

[28] Tree-sitter. Tree sitter, November 2023. URL https:
//tree-sitter.github.io/tree-sitter/.

[29] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig.
Refactoringminer 2.0. IEEE Transactions on Software
Engineering, 2020.

[30] Michele Tufano, Shao Kun Deng, Neel Sundaresan,
and Alexey Svyatkovskiy. Methods2test: A dataset of
focal methods mapped to test cases. In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 299–303, 2022.

[31] Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, and
Sunny Wong. An automatic refactoring framework for
replacing test-production inheritance by mocking mecha-
nism. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages
540–552, 2021.

[32] Thomas Zimmermann, Nachiappan Nagappan, and Lau-
rie Williams. Searching for a needle in a haystack:
Predicting security vulnerabilities for windows vista. In
2010 Third international conference on software testing,
verification and validation, pages 421–428. IEEE, 2010.

248

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on April 22,2025 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

