How Disabled Tests Manifest in Test Maintainability Challenges?

Dong Jae Kim*
Software PEformance,
Analysis and Reliability
(SPEAR) Lab
Concordia University
Montreal, Quebec, Canada

Bo Yang*

Science and Software
Engineering
Concordia University

ABSTRACT

Software testing is an essential software quality assurance prac-
tice. Testing helps expose faults earlier, allowing developers to
repair the code and reduce future maintenance costs. However,
repairing (i.e., making failing tests pass) may not always be done
immediately. Bugs may require multiple rounds of repairs and even
remain unfixed due to the difficulty of bug-fixing tasks. To help test
maintenance, along with code comments, the majority of testing
frameworks (e.g., JUnit and TestNG) have also introduced annota-
tions such as @Ignore to disable failing tests temporarily. Although
disabling tests may help alleviate maintenance difficulties, they may
also introduce technical debt. With the faster release of applications
in modern software development, disabling tests may become the
salvation for many developers to meet project deliverables. In the
end, disabled tests may become outdated and a source of technical
debt, harming long-term maintenance. Despite its harmful implica-
tions, there is little empirical research evidence on the prevalence,
evolution, and maintenance of disabling tests in practice. To fill
this gap, we perform the first empirical study on test disabling
practice. We develop a tool to mine 122K commits and detect 3,111
changes that disable tests from 15 open-source Java systems. Our
main findings are: (1) Test disabling changes are 19% more common
than regular test refactorings, such as renames and type changes.
(2) Our life-cycle analysis shows that 41% of disabled tests are never
brought back to evaluate software quality, and most disabled tests
stay disabled for several years. (3) We unveil the motivations behind
test disabling practice and the associated technical debt by manually
studying evolutions of 349 unique disabled tests, achieving a 95%
confidence level and a 5% confidence interval. Finally, we present
some actionable implications for researchers and developers.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software.

* Dong Jae Kim and Bo Yang contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468609

Department of Computer Department of Computer

Montreal, Quebec, Canada Montreal, Quebec, Canada

k_dongja@encs.concordia.ca b_yang20@encs.concordia.ca jinqiu.yang@concordia.ca

Tse-Hsun (Peter) Chen
Software PEformance,
Analysis and Reliability
(SPEAR) Lab
Concordia University
Montreal, Quebec, Canada
peterc@encs.concordia.ca

Jinqiu Yang

Science and Software
Engineering
Concordia University

KEYWORDS
Test Disabling, Test Smell, Test Maintenance, Technical Debt

ACM Reference Format:

Dong Jae Kim*, Bo Yang?*, Jingiu Yang, and Tse-Hsun (Peter) Chen. 2021.
How Disabled Tests Manifest in Test Maintainability Challenges?. In Pro-
ceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °21),
August 23-28, 2021, Athens, Greece. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3468264.3468609

1 INTRODUCTION

Modern software development handles an increasing complexity of
feature enhancements. To ensure that the software quality remains
on par with consumer expectations, software testing has been play-
ing a pivotal role in software development. With the availability of
JUnit and other testing frameworks, writing test code is becoming
widely popular [14, 32]. Most large-scale systems utilize testing
practices routinely and expose faults early.

However, test code can be subject to age and quality issues like
the production code under test. For example, a test can also con-
tain test-specific design issues that may hinder its ability to guard
against regressions. Prior studies [15, 17] have found that flaky tests
may hinder the reliability of testing results that may fail for rea-
sons other than recent changes. Similarly, researchers introduced
the concept of test smells, which are design issues specific to the
test code that may negatively impact test code comprehension and
maintenance [3, 29].

To mitigate the efforts to fix broken tests, developers need to
maintain and improve test code continuously. Challenges in main-
taining and improving test code are more than fixing flaky tests and
refactoring test smells. A prior study by Pinto et al. [21] highlights
both the importance and potential of studying the evolution of how
tests are modified, added, or deleted. Understanding such evolution
is essential to understand how the test becomes obsolete, why it
is difficult to fix, and how it should be repaired. The findings can
inspire future research and provide better testing support and tools.

In the context of software testing, developers can disable tests
by commenting out the test method or class. In addition, with the
introduction of annotations in Java 5, frameworks such as JUnit and
TestNG introduce the annotations @Ignore and @Test(enabled=
false), allowing developers to disable failing tests temporarily. Al-
though disabling tests can be seen as an added flexibility for de-
velopers to alleviate maintenance difficulties, one can suspect that
it may introduce technical debt. With such flexibility, developers
may disable hard-to-fix tests as a compromising solution to meet

https://doi.org/10.1145/3468264.3468609
https://doi.org/10.1145/3468264.3468609

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

project deliverables. Despite the potential challenges that arise later
from disabling tests, there exist limited studies on disabled tests as
a source of technical debt. We believe that studying why developers
disable test code is of paramount importance for both practitioners
and researchers: (1) it indicates a source of potential technical debt
that can direct future research efforts, (2) it may provide additional
evidence on how bugs are fixed to improve automatic tool support,
and (3) can help prevent future encounters of bugs.

To the best of our knowledge, there are no studies in the lit-
erature investigating disabled tests as a source of technical debt
and providing tools for tracking all types of disabling changes in
the test code. To address this issue, we develop an automated tool
to identify all kinds of disabling and re-enabling practice at com-
mit level: (1) a commented-out test code instance, (2) commenting
out or deleting @Test, (3) using @lgnore from JUnit, and (4) set-
ting @Test(enable=false) in TestNG. Our approach could detect the
disabling/re-enabling practices with an overall precision of 96%.

In total, we study test disabling practices in 15 open-source
systems of different sizes and from diverse domains. Our study
focuses on understanding the disabled tests from the following
aspects: how often do developers disable a test (i.e., the prevalence
and evolution) and why developers disable a test (i.e., motivations
behind disabling and re-enabling a test). In particular, we answer
the following three research questions (RQs):

RQ1: How common are test disabling changes? Test disabling
practices are 19% more common than regular test refactorings, such
as renames and type changes. Even though we find that disabling
tests are prevalent, there is no prior study on how they may affect
test maintenance.

RQ2: What is the change pattern of disabled tests? Through
analyzing the change pattern and final destination of the disabled
tests, we find that most disabled tests stay disabled. Many of the
disabled tests have been disabled for several years. We also find that
for the disabled tests that are resolved, many are deleted directly.
RQ3: Why do developers utilize test disabling practice? We
qualitatively uncover test disabling practices and how they are used
to bypass maintainability challenges. We find that most tests were
disabled in the first place due to issues such as test failures, but many
tests remain disabled even when the bugs are fixed. Some bugs may
be marked as “Won’t Fix” with the tests being disabled. We also
find that developers often use disabling changes to handle other
maintenance challenges in testing, such as test dependency and
refactoring. Our findings highlight potential future directions on
helping developers improve test maintenance and detect potential
issues in test code.

In summary, our findings provide actionable implications for
two groups of audiences:

(1) Researchers: We open an avenue for further research directions
on detecting disabled tests and their relation with other aspects
of software development (i.e., quality, maintainability, and perfor-
mance improvements). We also highlight potential directions on
assisting developers in tracking disabled tests and their co-evolution
with production code.

(2) Developers: Our findings reveal the usage of disabled tests in
many different aspects of test maintenance. Disabled tests may be
used in ad-hoc ways to hide real faults or bypass test failures. Most
tests are temporarily disabled until a fix is found; however, the

Dong Jae Kim*, Bo Yang®, Jinqiu Yang, and Tse-Hsun (Peter) Chen

disabled tests are not re-enabled after the fix (i.e., a bug report is
closed). These findings indicate the need to assist developers with
the best testing practice to trace disabled tests in practice.

Paper organization. Section 2 studies related work. Section 3 dis-
cusses our methodology and provides preliminary results. Section 4
presents our quantitative analysis results, and Section 5 presents
our qualitative analysis results. Section 6 summarizes the implica-
tion of our findings. Section 7 discusses threats to validity. Section 8
concludes the paper.

2 RELATED WORK

In this section, we discuss prior studies in two areas: test mainte-
nance and evolution, and technical debt.

2.1 Test Maintenance and Evolution

Software testing is an important practice for developing high-
quality software. However, similar to source code, there may be
maintenance issues related to test code. Many prior researches focus
on studying various testing practices, such as test quality [2, 13, 24],
maintenance [14, 28], comprehension [3], and evolution [21, 22,
31]. Bavota et al. [3] found that similar to regular code smells,
test smells are prevalent in software systems and may hinder test
comprehension and maintenance. Kim et al. [14] are the first to
study test annotation maintenance. They uncovered test annota-
tion smells and provided opportunities for refactoring test code
using test annotations. They found that @lgnore is one of the com-
monly used annotations in test maintenance. Our work is different
as we target test disabling/ignore practices that are not limited to
annotation changes. Our work considers all types of test disabling,
from commenting out tests to using @Ignore. We also propose
approaches to track commented/uncommented test code with high
precision.

Through a survey, Peruma et al. [19] found that developers be-
lieve using @Ignored may increase compilation time and may be
harmful to code comprehension. Our work studies further why
test cases are disabled at the finer-level and shows that software
bug is only one of many reasons causing tests to become disabled.
Zaidman et al. [31] proposed several views to mine and visualize
the co-evolution of test and production code. Borle et al. [4] fur-
ther study a wide spectrum of how rigorously systems on GitHub
utilized test-driven development. They found that most test and
production code are not updated together (i.e., the use of TDD was
rare).

The most relevant prior work is the study done by Pinto et al.
[21]. They conducted an empirical study on how test suites evolve
(i.e., test deletion, addition, and modification) to understand the
reasons for test changes. They found that in addition to test repair,
most test changes are related to refactoring, deletion, and addition.
In particular, they found that the key reason for test deletion is
test obsolescence. Different from prior studies, our work is the first
to study test maintenance from the perspective of test disabling
practices. We implemented a Java annotation parser and a tool
to track how disabled tests evolve. We found that test disabling
changes are prevalent during test evolution, and many disabled
tests remain disabled. We also manually studied the reasons for the
tests to be disabled, and discussed potential challenges and future

How Disabled Tests Manifest in Test Maintainability Challenges?

directions on test maintenance. Moreover, Pinto et al. [21] reported
14.5% test code deletion that was once alive, while our study looks
at disabled tests that are deleted (i.e., 17.1%).

2.2 Technical Debt

Cunningham [6] discussed the concept of technical debt, where
short-term rewards may induce higher maintenance costs in the
long run. Potdar and Shihab [23] discussed the concept of self-
admitted technical debt (SATD), where developers intentionally
introduced some commented-code as a form of temporary fixes.
Wehaibi et al. [30] later showed that SATD induces less future defect
than non-SATD; however, SATD changes are more complex to
perform. Our work is the first to investigate technical debt specific
to practices of disabling test code by analyzing evolution history.
Tracking history has long been recognized as a crucial artifact for
many empirical studies for understanding the rationale for software
changes [7, 14, 22, 25]. Several approaches have been proposed
to help developers and researchers better leverage source code
histories. Tsantalis et al. [26] developed RefactoringMiner that can
accurately track commit-level refactoring history. Grund et al. [9]
implemented CodeShovel to accurately track method changes in
evolution history. In our work on tracking disabled tests, we propose
a new approach to handle newly added test code, commented-out,
and uncommented-out, which was never handled in prior studies.

3 METHODOLOGY

In this section, we discuss our methodology for tracking test code
evolution to identify test disabling-related changes. Tracking the
evolution of program elements in commit history is an ongoing
research direction, and most existing tools are not designed specif-
ically to work on annotations and commented-out code [10, 20,
26, 27]. Therefore, we propose an approach that detects disabled
tests through analyzing annotations and comments and tracks the
evolution of the detected disabled tests. Our approach first detects
all tests, including both disabled and active (i.e., enabled) tests in
each studied version (Section 3.2), and second performs version-by-
version comparison to track the evolution of the tests (Section 3.3).

3.1 Definition of Test Disabling Practice

When using testing frameworks such as JUnit or TestNG, developers
can use the @Test annotation to specify a method or methods in
a class as test cases. As systems evolve, some tests may become
obsolete or require some changes, and developers may want to
temporarily disable a test. Developers can use framework-supported
annotations (i.e., @lgnore), removing the @Test annotation, or
commenting out the test method/class to disable a certain test.
Our goal is to study such test disabling practices in the codebase
and their potential impact on test maintenance. In particular, we
consider the following code changes as test disabling changes (in
contrast, we consider the reverse operations as test re-enabling
changes):

(1) Adding @Ignore at both the class and method level.
(2) Setting @Test(enable=false).

(3) Deleting @Test annotation.

(4) Commenting out the entire test method or class.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

3.2 Detecting Disabled and Active Tests

Given one version, our approach first detects all the disabled and
active (i.e., enabled) tests. Detecting active tests is straightforward:
We leverages JavaParser to find all the tests with an @Test annota-
tion as the testing frameworks (JUnit 4 and 5, and TestNG) of the
studied systems require to have such an annotation for tests.

Detecting disabled tests requires one to design techniques per
each type of test disabling practice. Each type of disabling-related
change (as defined in Section 3.1) corresponds to one unique type
of disabled test. The first two types, i.e., adding @Ignore and setting
parameters in @Test, will result in adding explicit annotations to
the disabled test methods. The third type will produce methods in
test classes without an @Test(...) annotation. The fourth type will
result in complete test methods embedded in comments. Similar to
detecting active tests based on @Test annotation, for the first three
types, we also utilize JavaParser for analyzing method annotations.
For the last type, we propose an algorithm to identify commented-
out test methods.

3.2.1 Analyzing Annotations for Detecting Disabled and Active Tests.
For detecting active tests and some types of disabled tests, we use
the off-the-shelf JavaParser [1] to extract annotations per method
in test classes. The following rules are applied to decide the status
of a method in test classes.

o If the annotations contain @Test (without enable=false pa-
rameter), the associated method represents an active test.

o If the annotations contain either @Test(enable=false) or @Ig-
nore, the associated method represents a disabled test.

e If the annotations do not contain @Test, the associated
method represents a candidate disabled test.

Note that the lack of @Test annotation is indefinite to decide
a disabled test since it is common for developers to write non-
test methods (e.g., helper methods) in test classes. Such candidate
disabled tests will be further confirmed through analyzing the evo-
lution (i.e., tracking). If a previous/later version of a candidate
disabled test is an active test, this test method is confirmed disabled
for the current version.

3.2.2 Detecting Disabled Tests in Comments. In addition to the dis-
abled tests expressed by annotations, we also identify the tests that
are disabled through commenting out. Algorithm 1 describes how
we extract disabled tests in comments. The input commentTarget is
either a block comment or a list of comments in consecutive lines. A
commentTarget may contain zero or more commented-out tests. For
one commentTarget, our tool first detects an @Test annotation (line
8) and then continues to detect a ’{’ in the following comment lines.
The text in between could be an annotation and a method signature.
Then we use a JavaParser API parseMethodDeclaration to confirm
whether the text is indeed a method signature. In addition, we use
the existence of a paired right bracket to filter out incomplete test
methods that only contain method signatures.

3.3 Tracking the Evolution of Disabled Tests

Upon detecting (candidate) disabled and re-enabled tests in one
version, we continue to track the evolution in the commit history,
and pinpoint the related changes of such tests, e.g., one disabled test

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Algorithm 1 Commented out test method detection

1: Input: commentTarget

2: Output: coTests, i.e., is a list of commented-out tests
3: function DETECTCOTEsTS(commentTarget)

4 lines «— commentTarget.split(“\n")

5 coTests « []

6 for i<0; i<lines.length; i++ do

7: line«lines][i]

8 if line contains @Test then

9 location « location of the first occurence of ‘{’

10: in this or the following lines
11 break if location is null

> notMethodSignature is based on a JavaParser API
12: continue if notMethodSignature(

strinBetween(i, location) + “{}”)

13: end « findEndO f MethodBody(lines, location)
14: cotests.add(<the detected commented-out test>);
15: ie—end
16: end if
17: end for

18: end function

is later re-enabled. Tracking the evolution requires our approach
to match program elements in every two consecutive versions.

We adapt RefactoringMiner to perform the matching because 1)
RefactoringMiner is shown to have the highest precision (96.6%)
and recall (94%) compared to other refactoring tools and AST diff
tools [27]; and 2) RefactoringMiner can detect various types of
refactoring operations, such as method/class renaming, moving
and extracting methods, and modifying method signatures. Fur-
thermore, we incorporate tracking commented-out tests in our
approach. As commented-out code may be incompatible with the
live code and may result in compilation errors (not supported by
RefactoringMiner), we use a lightweight approach to handle the
commented-out test code. In particular, a TEST ID (<fully quali-
fied class name>::<method name>(<method parameter types list>)) is
constructed based on the extracted information of commented-out
tests (Section 3.2.2). For each commented-out test method, its TEST
ID is compared with the ones in the parent and child commits for
finding the paired test methods. The abovementioned points allow
our approach to collect an accurate and comprehensive dataset for
our study.

For each pair of matched tests in two consecutive versions, if the
status of the test is modified from active (i.e., enabled) to disabled,
we decide the commit is disabling-related changes. The reverse
status change is determined as a test re-enabling change. If there
is no matching test in the latter commit, the unmatched test is
deemed deleted. If there is no matching test in the prior commit,
the unmatched test is deemed newly added by the current analyzed
commit, e.g., one commit may introduce commented-out tests.
Approach Evaluation. We performed an evaluation of our ap-
proach with regards to 1) detecting disabled tests in comments
(Section 3.2) and 2) detecting disabled tests in commit history as
these two steps may produce incorrect results.

For 1) detecting disabled tests in comments, we took all the 168
detected commented-out tests, examined them manually to decide

Dong Jae Kim*, Bo Yang®, Jinqiu Yang, and Tse-Hsun (Peter) Chen

Table 1: Precision of test tracking, i.e., detecting the three
types of commit changes, including disabling a test, re-
enabling a test, and deleting a disabled test.

‘ Disabling Re-enabling Deleting an ‘ Total

a test atest disabled test
Sample 364 122 98 584
Precision 98% 96% 92% 97%

the correctness. Our approach yields a precision of 100%. However,
we cannot evaluate the recall due to the lack of oracles. For 2), as
tracking is performed at commit level (e.g., whether one commit is
disabling-related), we used stratified sampling to take a statistically
significant (95%+5%) sample of 584 cases on three types of changes,
namely disabling a test (364), re-enabling a test (122), and deleting
a disabled test (98). Then we manually examined the correctness
of each sampled commit. Table 1 shows the precision of the three
types of changes. Our approach achieves a precision of 97% for all
the sampled cases and a precision of 98%, 96%, and 92% for the three
change types, respectively.

Upon manual examination, we identify the following sources of
false positives. First, due to framework migrations, developers may
need to add or delete annotations. For example, migrating from
TestNG to JUnit4 will remove the @Test on the class, which will be
detected as ignoring a test class, and adding @Test on each method
will be detected as unignoring test methods. Second, due to the limi-
tations of RefactoringMiner, duplicating one file to two similar files
and merging two files into a single file cannot be detected. For exam-
ple, in Apache Camel (9da3f5af), the Web3jConsumerIntegrationTest
is duplicated to Web3jConsumerTransactionsTest and Web3jConsum-
erLogTest. However, RefactoringMiner only reports Web3jConsumer-
IntegrationTest is renamed to Web3jConsumerTransactionsTest. Thus,
we detect Web3jConsumerLogTest as a newly added class. In Apache
Flink (8d3a74f9), StatefulJobSavepointFrom12MigrationITCase and
StatefulJobSavepointFrom13MigrationI TCase are merged to State-
fulJobSavepointMigrationI TCase, but RefactoringMiner only reports
StatefulJobSavepointFrom12MigrationI TCase is renamed to State-
fulJobSavepointMigrationITCase. Thus, we detect StatefulJobSave-
pointFrom13MigrationITCase as a deleted class. Lastly, Refactor-
ingMiner does not work for commented-out tests, so renaming a
commented-out test will be detected as deleting a commented-out
test and adding a new commented-out test.

3.4 Studied Systems

Table 2 shows an overview of the studied systems. To obtain high-
quality repositories to make our results more reliable, we select
the studied systems by following three selection criteria. First, we
selected the top 1,000 Java systems on GitHub ordered by popu-
larity (i.e., stargazer count). We also ensured that the repositories
are not forks as they may not be part of the main branch and not
actively maintained. Although it would be interesting to study dis-
abled tests from other branches that consist of feature additions
or bug fixing activities, as they may involve more frequent usages
of test disabling, our research only considers disabled tests that
are merged into the main branch, as they may indicate more chal-
lenging maintainability tasks that could not be resolved at the time.

How Disabled Tests Manifest in Test Maintainability Challenges?

Table 2: An overview of the studied systems (from 2015 to
2020).

Test LOC Source LOC
Systems 2015 2020 2015 2020 Total # Commits
Camel 355K 533K 289K 607M 22,584
Cassandra 28K 78K 177K 216K 4,336
Cloudstack 51K 80K 1M 519K 4,698
Druid 22K 147K 64K 242K 4,181
Flink 82K 371K 105K 407K 13,997
Hadoop 349K 660K 463K 810K 13,668
Hbase 168K 287K 433K 409K 7,271
Hive 104K 269K 524K 1M 8,221
Ignite 162K 500K 253K 577K 15,397
Incubator-pinot 1.6K 75K 11K 196K 6,179
Kafka 2K 133K 11K 132K 5,845
Maven 14K 17K 44K 48K 660
Openfire 1.2K 5.2K 179K 94K 2,097
Orientdb 74K 188K 140K 360K 8,452
Storm 2.7K 35K 61K 240K 4,554
Total 1.4M 3.3M 3.8M 5.9M 122K

Second, we discarded the systems that are below the 90th percent
quantile in terms of size (i.e., lines of code), repository popularity
(i.e., stars), and the number of commits collectively. Namely, we
only study repositories that fall inside the top 10% in all of the men-
tioned criteria. Finally, we discarded inactive repositories that did
not have any commits in 2020. We ended up with 15 systems, i.e.,
Camel, Cassandra, Cloudstack, Druid, Flink, Hadoop, Hbase, Hive,
Ignite, Incubator-Pinot, Kafka, Maven, Openfire, Orientdb, Storm.
We analyze the code changes in these systems from January 2015
to January 2020. These studied systems cover different domains,
ranging from distributed databases, stream processing frameworks,
message brokers, and group chat servers.

4 A QUANTITATIVE STUDY ON THE TEST
DISABLING PRACTICE

In this section, we quantitatively analyze the prevalence of the test
disabling practice. We also study the time it takes for developers to
re-enable a test and the evolution patterns of disabled tests.

RQ1: How Common are Test Disabling Changes?

Motivation. Many prior studies focus on studying maintenance
challenges caused by technical debt [6, 16, 20, 25]. However, there
is less empirical evidence on the technical debt in the test code thus
far, especially on technical debt related to disabling practices. De-
velopers may disable tests as code evolves, which may cause future
maintenance challenges. As a stepping stone to understanding test
maintenance challenges, in this RQ, we study the frequency of test
disabling practices.

Approach. We study how frequently developers disable a test
at both class and method levels. Disabling tests at the class level
would prevent executing all test cases within the class, whereas
disabling at the method level would stop executing a single test
case (e.g., a method with an @Test annotation). To provide a com-
parative statistic, we show the prevalence of test disabling changes
(i.e., disable/re-enable/delete) along with common test code trans-
formations at the same program element level by following prior
studies [12, 14]. Specifically, we compare test disabling changes at
method level with Rename Method, Rename Parameter, and Change

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 3: Frequency comparison between test disabling
changes and the common test code refactorings at the same
program element level.

Method Level Class Level Total Total

Total Per Commit Total Per Commit Changes Commits

Test Disabling Changes 2,581 2.7 530 0.6 3,111 949
Refactoring 2,495 1.9 120 0.1 2,615 1,334
A % Percentage +3.4% +42% +341% +500% +19% -29%

Table 4: The frequency of various types of test disabling-
related changes. Disabling Tests shows the total number of
changes that disable tests. Re-enabled Tests shows the total
number of changes that re-enable tests and whether devel-
opers simultaneously modified the tests (i.e., modified vs.
unmodified). Deleting Disabled Tests shows the number of
changes that delete disabled tests.

Disabling Re-enabling Tests Deleting

Tests Modified Unmodified Disabled Tests

Method 2,581 314 486 762
Class 530 115 96 87

Total 3,111 (625%) 429 (8.6%) 582 (11.7%) 849 (17.1%)

Parameter Type, and at class level with Rename Class. We use a
tool, called RefactoringMiner, implemented by Tsantalis et al. [26]
to detect rename and type changes. Tsantalis et al. [26] reported
that RefactoringMiner could detect refactoring activities with an
average precision of over 99% and recall of over 93%. Despite differ-
ences in the two practices, such comparison is reasonable because
these common code refactorings occur at the same program level.
Results. Test disabling changes is prevalent during test main-
tenance and has a similar change frequency compared to test
refactorings. Table 3 compares the prevalence of the disabling
changes with that of the refactoring changes in test code. As shown
in Table 3, at the method level, the number of test-disabling changes
is comparable to the number of test refactorings (i.e., +3.4% differ-
ence), and at the class level, the test-disabling changes are per-
formed more frequently than the rename class refactorings (i.e.,
+341% differences). We also observe that the total test-disabling
changing commits are less than the total test refactoring com-
mits. Despite this, at both method and class level, the average
test-disabling changes per commit are higher than that of test refac-
torings (i.e., +19% difference). Based on these results, we find that
test disabling changes are prevalent in practice and are comparable
to traditional refactorings.

Table 4 presents the frequency of three types of test disabling-
related changes: disabling a test, re-enabling a test, or deleting a
disabled test. We find that 62.5% (i.e., 3,111/4,971) of the disabling-
related changes disable the test, which is the most frequent change
among all the change types. 20.3% (i.e., 1,011/4,971) of the disabling-
related changes re-enable the test. Moreover, a non-trivial percent-
age (i.e., 42%) of the re-enabling changes modify the test. In other
words, many of the disabled tests remain the same when they are
re-enabled. We also find that a significant number (17.1%) of the test
disabling changes delete disabled tests. In the next RQ, we further
study the destination of each disabled test and its change pattern.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Table 5: Change patterns of disabled tests. Unresolved tests
represent the tests that remain disabled at the end of the
studied period. Resolved tests represent the tests the are ei-
ther re-enabled or deleted completely at the end of the stud-
ied period.

Change Pattern Frequency
Change patterns for unresolved tests

DISABLED 1,229
DISABLED — RE-ENABLED — DISABLED 21
DISABLED — DELETED — DISABLED 1
Total 1,251
‘ Change patterns for resolved tests ‘

DISABLED — RE-ENABLED 871
DISABLED — DELETED 824
DISABLED — RE-ENABLED — DISABLED — RE-ENABLED 46
DISABLED — RE-ENABLED — DISABLED — DELETED 24
DISABLED — RE-ENABLED — DISABLED — RE-ENABLED — 1
DISABLED — RE-ENABLED

Total 1,766

Developers frequently disable tests in software development,
and the frequency of such practice is comparable to com-
mon refactorings at the same program element level. We also
find that many disabled tests may be re-enabled without any
changes or may be deleted directly.

RQ2: What is the Change Pattern of Disabled
Tests?

Motivation. As shown in RQ1, test disabling practice has a non-
negligible presence during test maintenance and evolution. In this
RQ, we further study the evolution patterns of disabled tests, their
destination (e.g., finally re-enabled or stay disabled), and how long
a test remains disabled. Studying the evolution of disabled tests
may quantitatively show the process of how developers maintain
disabled tests, whether the corresponding issues are fixed imme-
diately or persist for a long time, and whether the corresponding
issues are improperly fixed and cause the tests to become disabled
again in the future.

Approach. Our goal is to study the life-cycle of every disabled test.
In RQ1, we analyze the test disabling changes by studying their
frequency. However, bugs that are hard to fix may cause multiple
rounds of changes to the test code. Hence, we carefully track the
evolution history by utilizing the full commit-level history of the
disabled test to report their evolution pattern and final destination.
To study the change pattern more accurately, we trace refactoring
activities (e.g., rename) performed on disabled tests, using Refactor-
ingMiner [26]. Additionally, we study the longevity of disabled tests
by mining the number of days between the changes that disable the
tests and the changes that either re-enable or delete the disabled
tests.

Results. Many disabled tests (41%) remain disabled in the stud-
ied period. For the resolved disabled tests, 47% were deleted in
the codebase. Table 5 shows the evolution patterns of disabled
tests, which highlights how disabled tests evolve ever since they
were born. Note that since a test may undergo multiple rounds
of changes in the studied period, the total frequency of evolution
patterns should be lower than RQ1 where we report the total raw

Dong Jae Kim*, Bo Yang®, Jinqiu Yang, and Tse-Hsun (Peter) Chen

Table 6: The distributions of the average time (in days) for
a disabled test to become re-enabled, deleted, or remain dis-
abled (i.e., developers did not modify the test in the studied
period after it was re-enabled).

Time (in days)

Min. 25% 50% 75% Max. Mean
Re-enabled 8.4 17.1 394 65.9 431.2 61.8
Deleted 4.8 19.9 92.3 2221 696.6 158.7

Remain Disabled 142.0 508.0 793.2 1096.4 1475.7 797.4

frequency. We also categorize the statistics into unresolved and
resolved cases to indicate the final destination of disabled tests.
Unresolved tests refer to the tests that stay disabled, and resolved
tests refer to the ones either being re-enabled or deleted. We find
that most disabled tests (41%, 1,251/3,017) stay unresolved as the
destination. For the resolved cases, 28% (848/3,017) become deleted,
and 30% (918/3,017) become re-enabled. There are 21 cases where
developers tried to resolve a disabled test but eventually changed
them back to being disabled. After some investigation, we find that
these tests are disabled again due to three main reasons. First, de-
velopers revert the commit due to a mistake. Second, developers
re-disable the test code later when the test fails again. Third, devel-
opers re-disable the test code whenever there is a version update of
one external dependency. There are also 24 cases where developers
tried to resolve the ignored test but eventually deleted them. We
observe that these tests were disabled for a long time and may have
become obsolete as developers suggest deleting the tests instead of
updating them.

Table 6 shows the distributions of the average time (in days)
it takes for a disabled test to become re-enabled or deleted (i.e.,
resolved). We also show similar statistics for the tests that stay
disabled (i.e., unresolved). We observe that the median time for
developers to re-enable a test is 39 days. However, it often takes
over three months (median is 92 days) for developers to delete a
disabled test. In general, there is a higher possibility that a disabled
test may become deleted if it has been disabled for a more extended
period. One likely explanation is that many of the disabled tests may
have become obsolete. We notice similar patterns of obsoleteness
across all types of disabled tests.

Finally, for the tests that remain disabled, most of them have
been disabled for several years. It is likely that these disabled tests
are “forgotten” by developers and remain in the codebase. In RQ3,
we manually study the reasons for the tests to be disabled and
re-enabled.

Overall, it takes a longer time for the disabled tests to be deleted
(median time is three months) than to be re-enabled (median
time is 39 days). Many tests that remain disabled have been
disabled for years.

5 A QUALITATIVE STUDY ON DISABLED
TESTS

RQ3: Why do developers utilize test disabling

practice?

Motivation. As previous RQs reveal, disabling tests is a ubiquitous
practice during software evolution. The test disabling practice is a

How Disabled Tests Manifest in Test Maintainability Challenges?

double-edged sword. On the one hand, it provides developers with
convenience in bypassing test-related issues. On the other hand, it
may be used to bypass some maintenance difficulties, which can
result in a silent and long waiting period for the tests to be re-
enabled, if ever. Test disabling mechanism may hinder software
reliability as the disabled tests may remain disabled indefinitely
in codebases. In particular, there is a lack of tools to manage the
life cycle of disabled tests and assist developers in proactively re-
enabling the temporarily disabled tests. In this RQ, we perform a
qualitative study to understand why developers utilize test disabling
practice, i.e., the scenarios that developers utilize such convenience
of disabled tests. Categorizing the scenarios will reveal the common
challenges developers may face in maintaining disabled tests and
test maintenance in general. Obtaining such understanding on
disabling tests will inspire future tools that can better manage
disabled tests for improving quality assurance activities.
Approach. To understand the motivations of utilizing test disabling
practice, we analyzed and categorized a statistically significant sam-
ple of disabled test instances. We combined the disabled tests from
all the studied systems and adopted the stratified sampling tech-
nique to sample each studied system independently for producing a
statistically significant sample (95+5%). We also found 9 incorrectly
detected instances by our tool, i.e., a 2.6% false positive rate, and
excluded them in Table 7.

Our manual study involves two phases:
Phase I. The first two authors of the paper (A1l and A2) indepen-
dently derived an initial categorization by manually inspecting
the relevant software artifacts such as commit messages, test code,
comments surrounding the test code, and bug reports if available.
Additionally, we use git log to check out other relevant commits on
the same set of modified source code files to gain supplementary
insights if the current commit lacks sufficient information.
Phase II. A1 and A2 unified the derived reasons and compared the
assigned reason for each evolution pattern. Any disagreement was
discussed until reaching a consensus. The inter-rater agreement
of the coding process has a Cohen’s kappa of 0.7, indicating a
substantial level of agreement [5]. To encourage the replication of
our results, we have made the dataset available’.
Results. Table 7 shows our manually derived taxonomy of the rea-
sons developers disable the tests. Below, we discuss each category
in detail.
- Hiding Test Failure (40%). Developers frequently disable some
tests when test failures occur. The most common cause (81/131)
is that bugs are introduced during software maintenance. While
working on fixing the bugs, developers may temporarily disable the
failing test cases, especially when the bugs require non-trivial effort
and time to fix. However, only 32/131 of the disabled tests are re-
enabled after the relevant bugs are fixed. In this case, we also notice
that developers do pay a certain effort to provide some traceability
of the disabled tests, such as creating bug reports on disabled test
cases as a reminder to re-enable such tests. In contrast, some issues
are difficult to fix, and test failures may have persisted for a non-
trivial time. Developers adopt test disable to remove test failures
explicitly without working on fixing the bugs. 7/131 of the tests
were disabled due to failure and were never re-enabled in our studied

Uhttps://github.com/boyang9602/FSE_Ignore_Test

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

period. For such cases, test disabling practice is used by developers
as a convenient way of bypassing test failures while keeping the
test code in the repository. However, we found that there is no
traceability provided for developers to track these disabled tests.
We could not find any mention of the disabled tests in Jira issues
or in documents. These disabled tests may remain forgotten with
the issues remain unfixed.

Another main motivation (42/131) is to avoid test failures caused
by flaky tests. As flaky test results are nondeterministic, diagnosis
can be challenging. After developers fix the issues (i.e., flaky tests
no longer fail), they may re-enable the tests. In our studied cases,
only 7/42 flaky tests are re-enabled later, aligning with the study
by [15], who reported that over half of flaky tests remain unfixed.
We also uncovered two test failures due to slow tests, for which
developers simply disable the slow tests without either fixing the
test or the source code. Finally, one failure is caused by library in-
compatibility in Travis CI In Openfire (ddb20ffe), developers discuss
that @Parameterized is not supported by the Ant build system
installed in Travis CI, causing failure in tests where @Parameter-
ized is used. Developers disable the affected tests as a convenient
solution while waiting for the incompatibility to be resolved by
framework developers.

In total, only 31% of the tests are re-enabled after the bug fix.
The remaining disabled tests are either disabled indefinitely
(i.e., due to lack of solution) or deleted. We also find that, for
such permanently disabled tests, there is often a lack of trace-
ability in GitHub or Jira issues.

- Precautions during Feature Maintenance (23%). Developers
commonly utilize test disable practice to avoid potential test failures
during maintenance activities, such as adding new features and
refactoring. For 62/78 cases, we find that developers precariously
disable the test cases that may fail in the process of feature imple-
mentation due to incomplete functionalities (e.g., the feature takes
more than one commit to finish). For example, in Flink (df448625),
developers commented out the tests related to retrieving log files
and left a comment saying that “TODO activate this test after logging
retrieval has been added to the new web frontend”. We also notice
that developers may indicate relevant bug issue IDs when disabling
test cases. For example, in Hadoop (18fe65d75), developers left a
comment as ‘requires HDDS-801. Requires once feature is in place”.
Although we find that developers may try to add traceability on
disabled tests, the current practice remains ad-hoc (i.e., by using
only comments in the code). Developers may use disabled tests to
harbor some temporary tests and delete such tests after the feature
is complete, i.e., being replaced by an official test (e.g., Orientdb
(0fc9beel). Nevertheless, among the 62 cases we examined in this cat-
egory, only 30 tests are re-enabled, and the others remain disabled in
the studied systems.

In addition to new features, we find that developers may dis-
able the tests of deprecating features (instead of removing them).
Developers may choose to disable the tests temporarily while re-
placing deprecated features and adopt the disabled tests once the
new implementation is finished. However, we observe there are
cases where the tests for the deprecated features remain disabled

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Dong Jae Kim*, Bo Yang®, Jinqiu Yang, and Tse-Hsun (Peter) Chen

Table 7: Qualitative analysis result: a taxonomy of why developers disable tests.

Categories Motivation #Frequency
- Hiding Test Failures 133 (40.6%)
Disabling tests while working on bug fixes Developers temporarily disable failing tests while working on fixing the bugs. 81
Flaky test Developers may disable flaky tests to avoid occasional failures. 42
Won’t-fix bugs in code/test Developers disable tests to avoid failures as they will not work on fixing the 7
failures due to difficulty.
Slow test Test failures due to long running time, so developers disable such tests to avoid 2
failures.
Library incompatibility JUnit annotation (@Parameterized) was not supported by Ant in the used CI 1
platform. Thus, the test was disabled.
- Precautions During Feature Maintenance 78 (23.8%)
New/Improved Features In the process of implementing new or improving existing features, developers 62
may temporarily disable relevant tests or introduce new tests that are disabled
(e.g., commented-out tests) to avoid potential failures.
Deprecation Developers may disable relevant tests in the process of deprecating features. 12
Refactoring Developers may disable tests during refactoring. 4
- Diverting to Manual Testing 38 (11.6%)
Require manual input Developers need to manually run tests that need to be manually configured 24
(e.g., database setup and secret keys).
Expensive Test Developers need to manually run tests that are expensive to run and may not 13
have to be run all the time (e.g., performance and migration test).
Experimentation Developers manually run tests that are under experimentation. 1
- Dependency Issue 21(6.4%)
Difficulties in maintaining external dependencies External dependency is hard to maintain due to various reasons. Developers 17
may need to disable tests when there are bugs in the external dependency,
unexpected version changes, or dependencies are hard to integrate or use.
Waiting for functionality update in external dependency Developers disable tests while waiting for feature improvement in the external 4
dependencies.

- Test Design Issues 16 (4.9%)
Selective test inheritance Developers disable tests to disable unneeded inherited tests, while selectively 14
reusing some inherited tests.

Redundant Test Developers disable tests that are redundant and covered by a different test class. 2
- Other Reasons 41 (12.5%)
Unknown Lacks of explicit mention of why tests are disabled (e.g., no relevant Jira issues 32

and comments).
Obsoleteness Developers disable obsolete tests. 5
disable by mistake Developers accidentally disable the test. 4

in the codebase. Lastly, developers sometimes disable tests during
refactoring (4/78). For example, in Openfire-97f7cf3f and in Trust-
StoreConfigTest.java, developers commented out the entire class
prior to extracting OpenfireX509Extended TrustManagerTest and
removing few code duplications using a helper class, KeystoreTes-
tUtils.java.

Developers may temporarily disable tests during feature main-
tenance or refactoring. However, we find that 50% of such
disabled tests remain disabled.

- Diverting to Manual Testing (11.2%). Developers may disable
some tests with the plan to manually running them. For the studied
cases in this category, test reconfigurability was the most common
problem causing developers to disable the test (24/38). For exam-
ple, we find that some tests are disabled for manual testing due
to the need to manually configure the access key and secure key
(e.g., Camel (ba22a8175f94a)) or setup databases (e.g., CloudStack
(96¢38bf4)). Such cases require manual testing as the tests depend
on resources that must be manually started or configured prior

to the test execution. Another 13/38 of the tests in this category
are disabled because they are expensive to run (e.g., migration or
performance tests). For example, as discussed in Flink (b7ae3e5338):
ManualWindowSpeedITCase), “When doing a release, we should man-
ually run theses tests on the version that is to be released and on an
older version to see if there are performance regressions.” However,
it is difficult to know if developers remember to manually run
these tests before each release, and disabling these tests may result
in higher maintenance costs (e.g., only discovering issues before
the release). Finally, we find one rare case in Camel (bd1661b248):
JavaSocketTests, where the developer introduces a commented-out
test code as it is part of experimental code.

Developers manually test expensive resources that should only
be executed under particular circumstances, such as migration
or performance testing.

Dependency Issue (6.2%). Without good mocking strategies, we
find that external dependencies may become hard to maintain
(17/21) and a source of technical debt, causing tests to fail and

How Disabled Tests Manifest in Test Maintainability Challenges?

be disabled. For example, in Camel (35b83b1d), we find that bugs in
the external dependencies cause test failures (i.e., “Upgrade smack
due to bug in smack 4.0.6”). In another case, in Camel (40ae73c4),
due to unexpected version changes in external dependencies, the
test fails and is disabled (i.e., ‘Tt looks like the problem is embedded
XMPP server. It was overridden to 2.21 currently”). In total, only 5/17
cases were re-enabled after the issue was fixed. Interestingly, as
shown in IGNITE-9920, the test continues to be disabled even if the
bug report is reported closed with a WONT'T FIX resolution due
to difficulties in test maintenance. The other tests remain disabled
due to similar reasons.

Developers may also disable tests while waiting for new fea-
tures to be added in external dependencies. For example, in Druid
(4b3bd8bd), developers comment out several tests as they need to
wait for an external dependency (i.e., Joda) to release a new feature.
However, we find that only 1/4 cases become re-enabled later.

Developers may disable tests due to issues/updates in external
dependencies. However, 71% of the disabled tests in this cate-
gory remain disabled or are deleted due to reasons such as test
maintenance difficulties.

Test Design Issues (5%). Developers may disable tests when chang-
ing/improving test design. We find that developers may leverage
inheritance to reuse part of the tests in parent classes. However,
developers may disable some of the inherited yet unneeded tests
in child classes. A reverse may also happen where developers re-
enabled the disabled tests in the child classes (Ignite (63b9e1653d)).
Our finding shows that there may be maintenance or designing
challenges when handling test inheritance. Therefore, developers
need to decide whether an inherited test should be executed or
not. Additionally, there are cases where developers find the same
tests that exist in multiple test classes and decide to disable the
redundant tests.

Developers may disable tests to bypass test design limitations
related to test inheritance.

- Other Reasons (12.5%). We categorize the remaining disabled
tests that do not belong to any of the above-mentioned categories
as “Other Reasons”. We find that there are 32 cases of disabled tests
where we cannot find any discussion/comment. We categorize these
cases as unknown. For example, developers may only include a com-
mit message, such as “Disable Test”, without any other explanation
or reference to other software artifacts (e.g., Jira), where only 7
out of 32 were eventually re-enabled. We find 5 cases where de-
velopers disable the tests because they become obsolete. Finally,
there are 4 cases where developers disable the test accidentally (e.g.,
commented out the test) and thus were re-enabled immediately
afterward.

Developers did not provide the reasons nor traceability (e.g.,
Jira issues) for many (32/338) of the disabled tests. Most of such
disabled tests remain disabled in the studied systems. We also
find cases where developers disabled obsolete tests, and they
may also disable some tests by mistake.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

6 DISCUSSION AND IMPLICATION

Based on our empirical findings, we present actionable implications
and future work for two groups of audiences: 1) researchers and 2)
application developers and testers.

6.1 Discussion and Implication for Researchers

R1: Developers use disabled tests to bypass test failures, which
may affect test maintenance and code quality. Future studies
should investigate its impact on software quality.

As we find in RQ2, tests may be hard to fix immediately and

may remain disabled for an extended period. Some re-enabled tests
are again disabled later due to inadequacy of the bug fixes as bug
fixing tasks are difficult. Moreover, as found in RQ3, developers
may disable tests to temporarily hide test failures, such as disabling
flaky tests, while the bugs remain unfixed. Although these tests
are necessary for revealing faults, they may no longer guard the
software against regressions and uncover the possible presence
of new bugs. Therefore, future research must study the impact
of disabled tests on software quality from two aspects. First, an
interesting direction is to study the relationship between disabling
tests and software defect proneness to provide additional insights
into the impact of disabled tests on software quality. Second, future
studies may quantitatively assess the impact of disabled tests on
fault detection capabilities using mutation analysis [11].
R2: There is a lack of automated support on tracking dis-
abled tests, which may lead to “forgotten” tests. Future stud-
ies may consider providing traceability support to develop-
ers.

During our manual study, we notice that many disabled tests are
not referenced in issue reports and are not tracked by any software
artifact. For example, developers may commit test disabling changes
with only mentioning in the commit message that a test is disabled.
In some cases, we find that the bug may be resolved, but the test
is still disabled. Due to the lack of traceability and documentation,
most of these disabled tests may then be “forgotten”, and stayed
disabled for several years and are never re-enabled. Future research
may consider providing automated traceability to track the disabled
tests and better assist developers during test evolution.

R3: Developers may disable some tests and divert them to
manual testing. Future studies should investigate approaches
to provide better automation support.

As we find in RQ3, 11% of the tests are disabled because they
are difficult to run automatically or are time-consuming. However,
delaying test execution may result in accumulated maintenance
overhead (e.g., bugs are only revealed at the late stage of the devel-
opment or before the release). Since these tests need to be manually
executed, it is also possible that developers may forget to run them.
Future studies may also investigate better mocking approaches and
adopt test reduction or prioritization [8, 18] to ensure these tests
can still be included in part of the continuous integration process
while maintaining acceptable test overhead.

R4: Future studies should investigate the impact of test obso-
lescence and the co-evolution between test and source code.

In our study, we find that developers use test disabling for a wide
range of maintainability tasks, yet only a few were ever re-enabled
in practice. Many of the disabled tests are deleted as they become

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Figure 1: An example of an invalid block comment that can-
not be detected by the tool. Invalid comment represents a
mix between natural language and code.

Original Method ‘ Commented using Block Comment

1 @Test 1
/% this is a demox/ this is a demo

3 public void demo() { 3 public void demo() {

t i 4 }*/

/*@Test

obsolete. As systems evolve, some tests may become outdated and
may need to be updated. However, it is not clear to which degree
do developers maintain tests to keep up with the development,
and whether there are replacement tests for the tests that were
deleted. Future studies on test obsolescence and their co-evolution
with source code may provide better support to developers on test
maintenance.

6.2 Discussion and Implication for Developers

D1: Assisting developers with best testing practices about
how to maintain disabled tests.

As found in RQ1 and RQ2, test disabling is prevalent in test
maintenance, but most disabled tests remain disabled. Developers
often disable tests due to a bug; however, they rarely open a new
Jira issue to track the process of re-enabling the test code. For
example, out of the 141 samples that remain disabled (RQ3), only
10% are related to unresolved issues and 22% of the tests that remain
disabled do not have any documentation on Jira. For the remaining
68% of the disabled tests, they remain disabled even after the issues
were fixed. As an example, in Hive (22df53b6), several tests remain
disabled and forgotten even after their bug issues were closed (e.g.,
HIVE-18341). To better trace these disabled tests, developers should
consider adding Jira issues, or similar artifacts, to document tests
that require an update. Otherwise, the non-traceability of disabled
test code may lead to worse software quality in the long term.

7 THREATS TO VALIDITY

In this section, we discuss threats to validity of our study.

7.1 Internal Validity

Since commented code may exist in countless different formats, it
may be impossible to find a generalized rule to detect all the cases.
Figure 1 shows one such example, where there is a mix between the
commented-out code and natural language. Therefore, our tool may
not be able to detect all the commented-out methods. Nevertheless,
to minimize the threat, we treat the consecutive line comments as
a single target and detect each target as multiple commented-out
methods. We apply the same rule when there could be blank lines
between the different parts of a commented-out method. Namely,
we allow our rules to be tolerant for a single line of code, but we
treat it as two different targets for a number higher than one. De-
spite this issue, the precision of our tool for test status is high (98%),
where in fact there are no false positives in terms of commented
out tests. Our approach also relies on RefactoringMiner to detect
and track refactoring changes. As shown by Tsantalis et al. [26],
RefactoringMiner has high precision and recall, which should not
affect our results. It is possible that some commented-out code is

Dong Jae Kim*, Bo Yang®, Jinqiu Yang, and Tse-Hsun (Peter) Chen

only meant as a template code for future implementation and could
be non-compilable. Our tool does not check for these instances,
and they may exist in our study and skew our understanding of
the manual study. Moreover, we only consider @Test annotation to
determine the test method and test class. It is also possible that files
that use an older version of Junit (i.e., Junit3) may not use @Test an-
notation to indicate a test method or class. Our tool does not check
for these instances and may miss some disabled tests. Finally, we
do not consider partially commented out tests, such as commenting
out assertions. Compared to disabling a test completely, partially
commented out tests may involve more complex change, such as
when tests contain multiple assertions in a test.

7.2 External Validity

Our studied systems are all open source implemented in Java, so
the result may not be generalized to all systems. To minimize the
threat, we follow a set of criteria to select systems that are popular
on GitHub, large in scale, and actively maintained. The studied
systems cover various domains and are frequently used in com-
mercial settings. Future studies are encouraged to replicate our
experiment on other systems and systems implemented in different
programming languages.

7.3 Construct Validity

In RQ3, we conduct a manual study on the reasons that the tests
become disabled. We conduct the study on a statistically significant
sample using a 95% confidence level and 5% confidence interval. To
reduce the biases in our manual study result, two of the authors
independently studied the sample and compared the results. Any
discrepancy is discussed until a consensus is reached. We com-
puted the Cohen’s Kappa, and found that the level of agreement is
substantial between the two authors (0.7).

8 CONCLUSION

Similar to source code, there are bugs and maintenance challenges
in test code. As a result, developers may bypass a test failure by
disabling the test, i.e., adding @Ignore or comment out the test. Such
tests disabling practices, when misused, may cause technical debt
and harm the long-term maintenance. In this paper, we conduct
the very first empirical study on test disabling practice in Java
systems. We first implement a tool to detect and track the changes
of disabled tests in software development history. Then, we conduct
both quantitative and qualitative studies on test disabling changes.
We find that: 1) Test disabling is a prevalent practice in test evolution
and has a similar frequency level compared to test refactoring at the
same program element level. 2) Most disabled tests remain disabled
and have been disabled for years. Many of the disabled tests are
either re-enabled without any code change or deleted directly. 3)
Our manual study highlights the reasons for the tests to be disabled.
We find that most tests are disabled due to maintenance challenges
(e.g., flaky tests and required to do manual testing) rather than
waiting for bug fixes. Moreover, most disabled tests remain disabled
even after the bugs are fixed. Our discussions provide possible
future research directions to further improve test maintenance and
suggestions to developers to better track disabled tests so that they
are not “forgotten”.

How Disabled Tests Manifest in Test Maintainability Challenges?

REFERENCES

[1] [n.d.]. JavaParser. Retrieved Feb, 2021 from https://javaparser.org/
[2] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.

[3

[9

[10

(11

[12

[13

[14

[15

[16

[17

[18

= =

]
]

]

]

]

Test Code Quality and Its Relation to Issue Handling Performance. IEEE Trans.
Software Eng. 40, 11 (2014), 1100-1125. https://doi.org/10.1109/TSE.2014.2342227
Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David W.
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 28th IEEE International Conference
on Software Maintenance, ICSM 2012, Trento, Italy, September 23-28, 2012. IEEE
Computer Society, 56-65. https://doi.org/10.1109/ICSM.2012.6405253

Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and Abram Hindle.
2018. Analyzing the effects of test driven development in GitHub. Empir. Softw.
Eng. 23, 4 (2018), 1931-1958. https://doi.org/10.1007/s10664-017-9576-3

Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37-46.

Ward Cunningham. 1993. The WyCash portfolio management system. OOPS
Messenger 4, 2 (1993), 29-30. https://doi.org/10.1145/157710.157715

Beat Fluri, Michael Wiirsch, and Harald C. Gall. 2007. Do Code and Comments
Co-Evolve? On the Relation between Source Code and Comment Changes. In
14th Working Conference on Reverse Engineering (WCRE 2007), 28-31 October 2007,
Vancouver, BC, Canada. IEEE Computer Society, 70-79. https://doi.org/10.1109/
WCRE.2007.21

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA
2015). Association for Computing Machinery, New York, NY, USA, 2114A$222.
https://doi.org/10.1145/2771783.2771784

Felix Grund, Shaiful Chowdhury, Nick C Bradley, Braxton Hall, and Reid Holmes.
[n.d.]. CodeShovel: Constructing Method-Level Source Code Histories. ([n. d.]).
Felix Grund, Shaiful Alam Chowdhury, Nick Bradley, Braxton Hall, and Reid
Holmes. 2021. CodeShovel: Constructing Method-Level Source Code Histories.
In Proceedings of the 43rd International Conference on Software Engineering (ICSE
2021). 13.

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649-678.
https://doi.org/10.1109/TSE.2010.62

Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type
Changes in Java. 6294AS641.

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang. 2021. The Secret Life
of Test Smells - An Empirical Study on Test Smell Evolution and Maintenance.
Empirical Software Engineering (2021).

Dong Jae Kim, Nikolaos Tsantalis, Tse-Hsun (Peter) Chen, and Jinqiu Yang. 2021.
Studying Test Annotation Maintenance in the Wild. In Proceedings of the 43rd
International Conference on Software Engineering.

Wing Lam, Kivan¢ Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
study on the lifecycle of flaky tests. In ICSE "20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel
and Doo-Hwan Bae (Eds.). ACM, 1471-1482. https://doi.org/10.1145/3377811.
3381749

Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
2018. SATD detector: a text-mining-based self-admitted technical debt detection
tool. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
ACM, 9-12. https://doi.org/10.1145/3183440.3183478

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong,
China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-
Anne D. Storey (Eds.). ACM, 643-653. https://doi.org/10.1145/2635868.2635920
Zi Peng, Tse-Hsun Chen, and Jingiu Yang. 2020. Revisiting Test Impact Analysis
in Continuous Testing From the Perspective of Code Dependencies. IEEE Trans-
actions on Software Engineering (2020), 1-1. https://doi.org/10.1109/TSE.2020.
3045914

[19

[20

[23

[24

[26

[27

[28

[29

[30

(32]

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2019. On the distribution of test smells in
open source Android applications: an exploratory study. In Proceedings of the 29th
Annual International Conference on Computer Science and Software Engineering,
CASCON 2019, Markham, Ontario, Canada, November 4-6, 2019, Tima Pakfetrat,
Guy-Vincent Jourdan, Kostas Kontogiannis, and Robert F. Enenkel (Eds.). ACM,
193-202. https://dl.acm.org/doi/abs/10.5555/3370272.3370293

Tri Minh Triet Pham and Jinqiu Yang. 2020. The Secret Life of Commented-Out
Source Code. In ICPC °20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020. ACM, 308-318. https://doi.org/10.1145/
3387904.3389259

Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding

myths and realities of test-suite evolution. In 20th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA

- November 11 - 16, 2012, Will Tracz, Martin P. Robillard, and Tevfik Bultan (Eds.).
ACM, 33. https://doi.org/10.1145/2393596.2393634

Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2013. TestEvol: a tool
for analyzing test-suite evolution. In 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, David Notkin,
Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, 1303-1306.
https://doi.org/10.1109/ICSE.2013.6606703

Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In 2014 IEEE International Conference on Software Maintenance
and Evolution. IEEE, 91-100.

Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the Relation of Test Smells to Software Code Quality. In
2018 IEEE International Conference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 1-12. https:
//doi.org/10.1109/ICSME.2018.00010

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /“icomment: bugs
or bad comments?*/. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17,
2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.). ACM, 145-158. https:
//doi.org/10.1145/1294261.1294276

Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering (2020), 21. https://doi.org/10.1109/
TSE.2020.3007722

Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE '18). ACM, New York, NY, USA, 483-494. https:
//doi.org/10.1145/3180155.3180206

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical inves-
tigation into the nature of test smells. In Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 4-15.
https://doi.org/10.1145/2970276.2970340

Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). Citeseer,
92-95.

Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the Impact
of Self-Admitted Technical Debt on Software Quality. In IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016 - Volume 1. IEEE Computer Society, 179-188.
https://doi.org/10.1109/SANER.2016.72

Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.
Studying the co-evolution of production and test code in open source and indus-
trial developer test processes through repository mining. Empir. Softw. Eng. 16, 3
(2011), 325-364. https://doi.org/10.1007/s10664-010-9143-7

Ahmed Zerouali and Tom Mens. 2017. Analyzing the evolution of testing library
usage in open source Java projects. In IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria,
February 20-24, 2017, Martin Pinzger, Gabriele Bavota, and Andrian Marcus (Eds.).
IEEE Computer Society, 417-421. https://doi.org/10.1109/SANER.2017.7884645

https://javaparser.org/
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1007/s10664-017-9576-3
https://doi.org/10.1145/157710.157715
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3183440.3183478
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1109/TSE.2020.3045914
https://doi.org/10.1109/TSE.2020.3045914
https://dl.acm.org/doi/abs/10.5555/3370272.3370293
https://doi.org/10.1145/3387904.3389259
https://doi.org/10.1145/3387904.3389259
https://doi.org/10.1145/2393596.2393634
https://doi.org/10.1109/ICSE.2013.6606703
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1109/SANER.2016.72
https://doi.org/10.1007/s10664-010-9143-7
https://doi.org/10.1109/SANER.2017.7884645

	Abstract
	1 Introduction
	2 Related Work
	2.1 Test Maintenance and Evolution
	2.2 Technical Debt

	3 Methodology
	3.1 Definition of Test Disabling Practice
	3.2 Detecting Disabled and Active Tests
	3.3 Tracking the Evolution of Disabled Tests
	3.4 Studied Systems

	4 A Quantitative study on the Test Disabling Practice
	5 A Qualitative Study On Disabled Tests
	6 Discussion and Implication
	6.1 Discussion and Implication for Researchers
	6.2 Discussion and Implication for Developers

	7 Threats to validity
	7.1 Internal Validity
	7.2 External Validity
	7.3 Construct Validity

	8 Conclusion
	References

