
Empirical Software Engineering (2022) 27:63
https://doi.org/10.1007/s10664-022-10118-5

Can pre-trained code embeddings improve model
performance? Revisiting the use of code embeddings
in software engineering tasks

Zishuo Ding1 ·Heng Li2 ·Weiyi Shang1 ·Tse-Hsun (Peter) Chen1

Accepted: 10 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Word representation plays a key role in natural language processing (NLP). Various repre-
sentation methods have been developed, among which pre-trained word embeddings (i.e.,
dense vectors that represent words) have shown to be highly effective in many neural
network-based NLP applications, such as named entity recognition (NER) and part-of-
speech (POS) tagging. However, the use of pre-trained code embeddings for software
engineering (SE) tasks has not been extensively explored. A recent study by Kang et al.
(2019) finds that code embeddings may not be readily leveraged for the downstream tasks
that the embeddings are not trained for. However, Kang et al. (2019) only evaluate two
code embedding approaches on three downstream tasks and both approaches may have not
taken full advantage of the context information in the code when training code embeddings.
Considering the limitations of the evaluated embedding techniques and downstream tasks
in Kang et al. (2019), we would like to revisit the prior study by examining whether the lack
of generalizability of pre-trained code embeddings can be addressed by considering both the
textual and structural information of the code and using unsupervised learning. Therefore,
in this paper, we propose a framework, StrucTexVec, which uses a two-step unsupervised
training strategy to incorporate the textual and structural information of the code. Then, we
extend prior work (Kang et al. 2019) by evaluating seven code embedding techniques and
comparing them with models that do not utilize pre-trained embeddings in six downstream
tasks. Our results first confirm the findings from prior work, i.e., pre-trained embeddings
may not always have a significant effect on the performance of downstream SE tasks. Nev-
ertheless, we also observe that (1) different embedding techniques can result in diverse
performance for some SE tasks; (2) using well pre-trained embeddings usually improve the
performance of SE tasks (e.g., all six downstream tasks in our study); and (3) the structural
context has a non-negligible impact on improving the quality of code embeddings (e.g.,
embedding approaches that leverage the structural context achieve the best performance in
five out of six downstream tasks among all the evaluated non-contextual embeddings), and
thus, future work can consider incorporating such information into the large pre-trained

Communicated by: Dan Hao

� Zishuo Ding
zi ding@encs.concordia.ca

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10118-5&domain=pdf
http://orcid.org/0000-0002-0803-5609
mailto: zi_ding@encs.concordia.ca

 63 Page 2 of 38 Empir Software Eng (2022) 27:63

models. Our findings imply the importance and effectiveness of combining both textual and
structural context in creating code embeddings. Moreover, one should be very careful with
the selection of code embedding techniques for different downstream tasks, as it may be
difficult to prescribe a single best-performing solution for all SE tasks.

Keywords Machine learning · Source code representation · Code embeddings · Neural
network

1 Introduction

In recent times, distributed representations of words, also called word embeddings, have
shown to be highly effective in many neural network models-based natural language
processing (NLP) tasks, such as named entity recognition (NER), part-of-speech (POS) tag-
ging (Li et al. 2018a), and sentence classification (Komninos and Manandhar 2016). In NLP,
various word embedding techniques have been developed to encode words with different
meanings into a low-dimensional vector space. Meanwhile, distributed code/program rep-
resentations (i.e., code embeddings) have also proven to be useful in assisting in software
engineering tasks, such as automatic program repair (Chen and Monperrus 2018; Wang
et al. 2018; White et al. 2019), software vulnerability prediction (Harer et al. 2018; Pradel
and Sen 2018), method name prediction (Alon et al. 2019; Allamanis et al. 2015), and code
clone detection (Büch and Andrzejak 2019).

Researchers have worked on a number of approaches for representing source code into
vectors in SE tasks. Among these, some directly apply word embedding techniques to source
code to produce representations for code tokens, for example, Theeten et al. (2019) use
Word2vec (Mikolov et al. 2013a, b) to generate embeddings for software libraries, while
other researchers have proposed task-specific approaches for SE tasks. For example, Alon
et al. (2019) propose a path-attention network to learn source code embeddings for the task
of method name prediction. These generated source code embeddings that are trained on
large source code datasets can later be used for other SE tasks, and thus are also called
pre-trained code embeddings.

Although different code embeddings learning techniques have been proposed, the use of
the pre-trained code embeddings for different SE downstream tasks has not been extensively
explored. A recent study by Kang et al. (2019) evaluates two code embedding approaches
(i.e., GloVe (Pennington et al. 2014) and code2vec (Alon et al. 2019)) on three downstream
SE tasks, namely code comment generation, code authorship identification, and code clone
detection. They find that the pre-trained code embeddings may not be readily leveraged for
the downstream tasks that the embeddings are not trained for.

Intuitively, pre-trained code embeddings can bring more knowledge about the seman-
tic and syntactic meanings of code tokens as they are trained on large external datasets.
Thus, models using pre-trained code embeddings are expected to perform better than mod-
els without that information. On the other hand, both studied embedding techniques only
utilize partial information during the embedding training and do not take full advantage of
the information from the source code. In particular, GloVe treats the source code as plain
text and only considers the unstructured local textual information, and code2vec parses each
method in the source code to an abstract syntax tree (AST) and focuses on the utilization
of the structural information extracted from such ASTs. Hence, we would like to find out
whether the poor performance of the pre-trained code embeddings can be addressed by

Empir Software Eng (2022) 27:63 Page 3 of 38 63

combining both the textual and structural information in the source code, as well as how
the different types of information affect the performance of downstream tasks. In addition,
we would like to understand how the advancement of embedding techniques in recent years
impacts the findings from the prior research.

Therefore, in this paper, we revisit and extend the assessment of using pre-trained code
embeddings across a wider variety of SE tasks, aiming to provide more insights to guide
further research that leverages code embeddings. Note that the main goal of the paper is not
meant to propose entirely new methods. Instead, the goal and main contribution of the paper
is to revisit the findings from prior research in order to understand whether they still hold
with the fast progress of related research in recent years and with the consideration of extra
information (e.g., method invocation).

Our work extends prior work (Kang et al. 2019) from two aspects. First, in addition to
GloVe and code2vec, we evaluated more code embedding techniques. In particular, we pro-
pose a two-stage embedding learning approach called StrucTexVec, designed specifically
for source code data with the special consideration of learning from both the textual and
structural information. In particular, in the first stage, to capture the structural informa-
tion, we pre-train the embeddings by customizing the dependency-based word embedding
approach (Li et al. 2018a). Unlike code2vec, which only considers the AST information
within every single method, StrucTexVec also utilizes method call and variable reference
information. In the second stage, to incorporate the textual context information, we re-train
the embeddings on the tokenized source code. The code embedding learning is framed as
an unsupervised learning procedure, as we aim to generalize the learned embeddings to
different downstream tasks. Thus, StrucTexVec does not require any manual labeling of
the training data. In addition, we also consider Word2vec (Mikolov et al. 2013a, b), fast-
Text (Bojanowski et al. 2017) and the recently released contextual embedding techniques,
such as CodeBERT (Feng et al. 2020) and CuBERT (Kanade et al. 2020) for training
code embeddings. In total, we evaluate seven code embedding techniques with different
configurations.

Second, we also extend prior work (Kang et al. 2019) by considering more down-
stream tasks. To assess the effectiveness of using pre-trained code embeddings in SE tasks
and understand the impact of structural and textual information on creating generalizable
code embeddings, we conduct a comprehensive quantitative evaluation in six downstream
SE tasks: code comment generation, code authorship identification, code clone detection,
source code classification, logging statement prediction and software defect prediction. We
apply and compare the seven learned code embeddings in these benchmark tasks. The source
code and benchmark tasks are publicly available. The contributions of this paper are as
follows:1

– We revisit and extend previous work by evaluating more embedding techniques across
a wider variety of downstream SE tasks.

– Our findings confirm the challenge of using pre-trained code embeddings in down-
stream SE tasks (Kang et al. 2019), as using pre-trained code embeddings may not
always achieve boosting in performance.

– We observe that using pre-trained embeddings performs better than not using them in all
the downstream tasks. However, different embedding techniques can result in diverse
performance, and there does not exist an embedding technique that outperforms others
in all nor even the majority of the tasks.

1We share the trained embeddings together with the downstream tasks at Google Drive.

https://drive.google.com/drive/folders/1a1JDjDQZH_00Ek75ydwm72wUDxK-XB67?usp=sharing

 63 Page 4 of 38 Empir Software Eng (2022) 27:63

– We also observe that both the structural and textual information have a non-negligible
impact on the quality of pre-trained code embeddings and find that the structural infor-
mation has a larger impact on the quality of the code embeddings than the textual
information. Researchers may consider incorporating the structural information into
CodeBERT or CuBERT for further improvement.

Our findings suggest that future research and practice should take careful consideration
on the selection of code embedding techniques before training their models for different
tasks, as it may be impossible to prescribe a single best-performing solution for all SE tasks.

Paper Organization We present the background in Section 2 and describe our proposed
approach, StrucTexVec in Section 3. Section 4 presents the experimental setup. Section 5
presents our experimental results and answers to research questions. Section 6 discusses our
lessons learned. Section 7 presents the prior research that is related to this paper. Section 8
presents threats to the validity of our study. Finally, Section 9 concludes this paper.

2 Background

In this section, we discuss the background related to this revisiting study. We first introduce
the training context and then talk about the code embedding techniques that are evaluated
in this work.

2.1 Training Context

In this part, we introduce two types of training contexts for code embeddings: (1) textual
context, which is the plain text of the source code, and (2) structural context, which refers
to the abstract syntax trees (ASTs) of the source code.

Textual Context Like natural languages, programming languages are repetitive and pre-
dictable (Hindle et al. 2012), and thus researchers (Theeten et al. 2019; Efstathiou and
Spinellis 2019; Bojanowski et al. 2017) consider source code as plain text and directly apply
existing word embedding techniques to source code. More specifically, to make source
code suitable for embeddings training, the source code is usually tokenized into a sequence
of tokens (Theeten et al. 2019; Efstathiou and Spinellis 2019; Bojanowski et al. 2017).
For example, the following source code2 in Listing 1, after tokenization, is converted to a
sequence of code tokens, shown in Listing 2. The generated token sequence is used as the
training corpus and finally fed into embeddings techniques.

Structural Context Another representation of source code is the abstract syntax tree (AST).
AST represents source code with a tree structure. Figure 1 is the AST representation of the
code snippet in Listing 1, where the leaf nodes of the tree are the tokens from the source
code, while the non-leaf nodes are a set of AST node types that provide the syntax structure
of the code. Due to its ability of capturing not only the lexical information but also the
syntactic structure of source code, AST has proven to be useful in a wide range of software

2https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/commons/io/
filefilter/AndFileFilter.html

https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/commons/io/filefilter/AndFileFilter.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/commons/io/filefilter/AndFileFilter.html

Empir Software Eng (2022) 27:63 Page 5 of 38 63

Listing 1 Code snippet from Apache Commons project

engineering tasks, including code embeddings (Alon et al. 2019; Zhang et al. 2019; Tufano
et al. 2018). For example, Alon et al. (2019) takes the AST nodes as input and train a
path-attention network for generating code embeddings.

2.2 Embedding Learning Techniques

With the rapid development of deep learning in SE applications, various distributed code
representation techniques have been proposed, which can be categorized into two broad cat-
egories: (1) non-contextual embeddings (e.g., Word2vec, GloVe), which learn unique fixed
representations for tokens in the vocabulary without considering the meanings of tokens in
different contexts, and (2) contextual embeddings (e.g., CodeBERT and CuBERT), which
are generally obtained from the transformer-based models and the representations of tokens
are adjusted based on different contexts. In this section, we first introduce the two cat-
egories, and then describe the existing embedding learning techniques (i.e., Word2vec,
GloVe, fastText, code2vec, CodeBERT and CuBERT) that are evaluated in this work.
Table 1 also summarizes these techniques in more detail.

2.2.1 Non-contextual Embeddings

Non-contextual embeddings map source code tokens into a low-dimensional semantic
space, where each code token is assigned with a unique real-valued vector. Non-contextual
embeddings act as a static look-up table E ∈ R

|V |×d to map a token in the vocabulary, V

to a d-dimensional vector. The embeddings are usually learned from a large corpus, and
can be applied to downstream tasks to either initialize the weights of the embedding layer
(i.e., the input layer) of deep learning models or be used as feature vectors for traditional
machine learning models. In this section, we introduce several state-of-the-art distributed
code representation approaches in detail.

Word2vec Word2vec has become popular in software engineering tasks (Zhang et al. 2019)
due to its high efficiency. In particular, Word2vec (Mikolov et al. 2013a, b) has two model

Listing 2 Code tokens after tokenization

 63 Page 6 of 38 Empir Software Eng (2022) 27:63

type

specifier
name

public boolean

name

accept

parameter_list

parameter

decl

type

specifier name

final File

name

file

block

block_content

if_stmt

if

if

condition

expr call

name

name name name

this fileFilters isEmpty

function

...

...

Fig. 1 The AST of the code snippet from Listing 1. The leaf nodes of the tree are the tokens from the source
code, while the non-leaf nodes are a set of AST node types that provide the syntax structure of the code

architectures: Continuous Bag-of-Words (CBOW) and skip-gram, both consider the source
code as plain text and take the textual context as input for training the embeddings.

An illustration of the CBOW and skip-gram models are shown in Fig. 2, where wt is one
target token from the vocabulary, and Cwt are the context tokens of the target word wt .

Continuous Bag-of-Words Model. The CBOW model tries to predict the target token
by considering its context within the local window. Formally, given a sequence of tokens
D, and wt is the t th token (i.e., target token) in the corpus, the objective of the model is to
maximize the following objective function:

L =
∑

wt∈D
log p

(
wt |Cwt

)
(1)

where Cwt are the local context tokens of the target token wt , and p is the conditional
probability of generating the central target token wt from given context tokens Cwt .

Skip-GramModel. As Fig. 2b shows, the skip-gram model shares a similar architecture
with the CBOW model. Rather than predicting the target token based on the local context,
it tries to predict the context tokens based on the target token. Thus, the objective of this
model becomes to maximize the function:

L =
∑

wt∈D

∑

wc∈Cwt

log p (wc|wt) (2)

The conditional probability, p (wc|wt) is defined using the following softmax function:

p (wc|wt) = exp(Vwt
ᵀUwc)∑

w∈D exp(Vwt
ᵀUw)

(3)

where Vw and Uw denote the “input” and “output” vectors of token w in the vocabulary D,
respectively.

Limitations. As discussed above, Word2vec is one of the shallow window-based meth-
ods, which adopts simple neural networks to learn the embeddings based on the tokens
within a local context window, and thus, it may fail to take the advantage of some global

Empir Software Eng (2022) 27:63 Page 7 of 38 63

Table 1 Summary of different embedding techniques

Technique Category Task type Corpus type Corpus level Description

Word2vec Non- Unsupervised Code as Token Word2vec considers source

Contextual plain code as plain text and adopts

text simple neural networks to

learn the embeddings based

on the tokens within a local

context window, and thus, it

may fail to take the advantage

of (1) some global information,

(2) the character level informa-

tion, and (3) the structural

information (e.g., AST).

GloVe GloVe also considers source code

as plain text and learns the

embeddings based on the global

word-word co-occurrence

statistics. However, it only

considers the token level

information and ignores the

character level information as

well as the structural

information (e.g., AST).

fastText Character fastText extends the skip-gram

model (cf. Section 2.2.1) and

takes into account subword

information. However, it still

ignores the global and structural

information.

code2vec Supervised AST Token code2vec is a supervised approach

which means to guarantee good

results, it requires human labeled

data for training. Besides,

code2vec is trained on the task

of method name prediction and

thus, the code embeddings

produced by code2vec is task-

specific and may not generalize

well to other tasks downstream

(Kang et al., 2019).

 63 Page 8 of 38 Empir Software Eng (2022) 27:63

Table 1 (continued)

Technique Category Task type Corpus type Corpus level Description

CodeBERT Contextual Unsupervised Code as Character Both CodeBERT and CuBERT

CuBERT plain text are transformer-based models

& and learn the context-sensitive

code representations of tokens. However,

documen- there may still exist limitations

tation for these two models. The first one

is that they both treat the source

code as plain text and do not

consider the structural information

explicitly. Another limitation is

the high computation cost for

training such huge models (both

have millions of parameters),

making it almost impossible for us

to modify and re-train the models

by ourselves.

information. For example, considering the preprocessed source code in Listing 2, assum-
ing the window size is 10, and the target token is the method name “accept”, then the first
returned value “false” can be captured as one of the context tokens by the window. How-
ever, the last returned value “true” is missed as its distance to the target token is beyond the

Input Projection Output Input Projection Output

Fig. 2 An illustration of CBOW and skip-gram models architecture

Empir Software Eng (2022) 27:63 Page 9 of 38 63

window size, which is not in accord with the programming rules: both should be the context
tokens of “accept”, as they are the returned values, which should be directly connected to
the method.

GloVe To better capture the global statistic information of the training corpus, Pennington
et al. (2014) propose GloVe (Global Vectors for Word Representation). GloVe is also an
unsupervised embedding learning algorithm and uses token-token co-occurrence statistics
to obtain vector representations for source code tokens. Similar to Word2vec, in this model,
the source code is treated as plain text, and the textual context is considered as the training
context. The goal of GloVe is to minimize the following weighted least squares errors:

J =
|D|∑

i,j=1

f
(
Xi,j

) (
wT

i w̃j − log Xi,j

)2
(4)

where X denotes the matrix of token-token co-occurrence counts, f
(
Xi,j

)
is a weighting

function, wi and w̃j are word and separate context word vectors, respectively.
Limitations. Models like Word2vec or GloVe learn the embeddings at the token level.

Although they can effectively capture the semantic properties of different tokens, they
ignore the character level information. Considering the naming conventions for vari-
ables/methods in programming languages, for example, the Java camel cases or lowercase
with tokens separated by underscores in Python, the insufficient use of the character level
information is an non-negligible limitation for the embedding techniques that work at token
level. Besides, these techniques also suffer from the out-of-vocabulary (OOV) problem for
the tokens that do not appear in the existing training corpus, especially for programming
languages, as developers usually combine different tokens together as one.

fastText fastText3 (Bojanowski et al. 2017) is a recently proposed technique that exploits
the internal structure of words (i.e., character level information), and tries to tackle the OOV
problem by using character level units. In particular, fastText also considers the source code
as plain text, where each token is represented by a set of n-grams appearing in this token.
It then learns representations for the character n-grams and represents words as the sum of
the character n-gram vectors. fastText extends the skip-gram model (cf. Section 2.2.1) by
using a new softmax function which takes into account the subword representation. Similar
to skip-gram, the goal of fastTest is also to maximize the function:

L =
∑

wt∈D

∑

wc∈Cwt

log p (wc|wt) (5)

where D is the given sequence of tokens, Cwt is the local context tokens of the target token
wt . The conditional probability, p (wc|wt) is defined using the following softmax function:

p (wc | wt) = es(wt ,wc)

∑
w∈D es(wt ,w)

(6)

s(wt , wc) =
∑

g∈Gwt

z�
g vwc (7)

where s (wt , wc) is a score function, Gwt is the set of n-grams appearing in wt , zg and vwc

are vectors of the n-gram g and wc, respectively.

3https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText

 63 Page 10 of 38 Empir Software Eng (2022) 27:63

Listing 3 An example code snippet with public decelerations for class, method and variable

Limitations. Although fastText has the ability to capture the character level information,
the three embedding techniques discussed above still consider source code as plain text
and take the textual context for embedding training. However, source code is by nature
different from plain text, as it also contains structural information, which may be helpful for
generating distributed representations of code tokens.

Code2vec Code2vec is a recently released code representation model by Alon et al. (2019)
that takes into account the structural context (i.e., the abstract syntax tree representation of
the source code). Given the AST representation of a code snippet, code2vec collects the
paths between every two AST leaf nodes, and thus it represents the code snippet as a bag
of paths. Code2vec then employs a path-attention network with fully connected layers to
learn vector representations of the tokens and method names. The embeddings are trained
in a supervised process with the objective to minimize the cross-entropy loss of predicting
method names,

L(p‖q) = −
∑

y∈Y

p(y) log q(y) (8)

where, p(y) is the distribution of the ground truth, if y is the true label of the case, then
p(y) = 1, and 0 otherwise (i.e., binary indicator of whether y is the actual label.), q(y) is
the predicted probability.

Limitations. As code2vec is a supervised approach which means to guarantee good
results, it requires human labeled data for training. Besides, it is trained on the task
of method name prediction, and thus, the code embeddings produced by code2vec are
task-specific and may not generalize well to other downstream tasks (Kang et al. 2019).

Limitations of Non-contextual Embeddings. Non-contextual embeddings (e.g.,
Word2vec and GloVe) have been playing an important role for improving the results of
downstream tasks. Despite the powerful ability of representing source code tokens into
vectors, these non-contextual embeddings also have their limitations: they are context-
independent and assign each token with a single static representation. Therefore, they cannot
effectively capture the different nuances of the same token in different contexts. For exam-
ple, given the following code snippet in Listing 3, non-contextual embeddings assign the
keyword “public” with only one unique vector, despite that they appear three times with
different functionalities. However, considering the fact that they are modifiers for differ-
ent levels of source code (i.e., class, attribute, and method), they should have different
representations to better capture the properties.

2.2.2 Contextual Embeddings

To address the limitations of non-contextual embeddings, researchers recently proposed sev-
eral methods to learn the context-dependent code embeddings (also known as PLM, short for

Empir Software Eng (2022) 27:63 Page 11 of 38 63

pre-trained language models), such as CodeBERT and CuBERT. Unlike static code embed-
dings, contextual embeddings are dynamic representations of tokens, that is the same token
can have different representations based on the different surrounding context. For example,
the three “public” keywords in Listing 3 would be assigned different vectors with respect to
their different contexts. Recall that non-contextual embeddings act as a look-up table where
each row of the real numbers are the vector representation of the corresponding token. How-
ever, for contextual embeddings, they are actually complicated transformer-based models,
which take a sequence of code tokens as input and can return a set of fine-tuned embeddings
for each token respectively. Formally, given a target token, wt , together with the whole code
snippet where it appears, w1, · · · , wt , · · · , wn, the adjusted vector for wt is

[
vw1 , · · · , vwt , · · · vwn

] = f (w1, · · · , wt , · · · , wn) (9)

where f is the pre-trained model with millions of parameters.
The pre-trained models (contextual embeddings) are usually trained on a general and

large corpus and can be specialized to different downstream tasks by adding a task-specific
layer and fine-tuning the parameters based on the training dataset of the specified task. In
our work, to make the contextual embeddings suitable for our downstream tasks, we extract
the embedding layer of the model and save the weights into the Word2vec format and then
use them as described in Section 2.2.1.

In this section, we first introduce the BERT architecture as a background and then
describe two recent applications of BERT on learning contextual embeddings for source
code (i.e., CodeBERT and CuBERT).

BERT The contextual embeddings are popularized by BERT (Bidirectional Encoder Rep-
resentation from Transformer) (Devlin et al. 2019). As shown in Fig. 3, BERT uses the
bidirectional Transformer encoder which can effectively exploit both the left and right
contexts of a target token.

In the work of Devlin et al. (2019), the authors present two main models: BERTBASE
which has a total number of 110M parameters and BERLARGE with 340M parameters.

Fig. 3 The overall architecture of BERT. E and T are the input and output vectors respectively, and Trm is
the encoder of Transformer

 63 Page 12 of 38 Empir Software Eng (2022) 27:63

To effectively learn the model parameters, two objectives are designed for BERT: masked
language model (MLM) and next sentence prediction (NSP).

Unlike the most common language model, which uses the previous sequence of tokens
to predict the next token (the loss function is shown in (10)):

L = −
∑

wt∈D
log p (wt | w1, · · · , wt−1) (10)

in masked language model, some of the tokens in a sequence are randomly masked and the
goal is to predict these masked tokens based on their surrounding unmasked context tokens:

L = −
∑

wt∈M
log p (wt | w1, · · · , wt−1, wt+1, · · · , wN) (11)

where M represents the masked tokens and w1, · · · , wt−1, wt+1, · · · , wN represent the
rest of tokens in the sequence.

BERT also utilizes the next sentence prediction as the second objective to capture rela-
tionships between sentences for some sentence-based downstream tasks (e.g., question
answering (QA)). In this task, the goal is to predict whether the sentence is the next sentence
of the current:

L = − log p(y | st, st+1) (12)

where y = 1 if st+1 is the next sentence of st and y = 0 otherwise.
To apply BERT to downstream tasks, Devlin et al. (2019) also propose to use the two-

step training strategy: (1) pre-training on unlabeled data and (2) fine-tuning using labeled
data from the downstream tasks.

Since the release of BERT, researchers have made a few changes to the original model
and achieved continuous improvements. For example, Liu et al. (2019) find that training
the BERT model without the NSP loss can slightly improves downstream task perfor-
mance. Thus, they propose RoBERTa (short for A Robustly Optimized BERT Pretraining
Approach), which improves the performance of BERTBASE on downstream tasks by
re-training the model with larger batches and more data, but without NSP loss.

CodeBERT and CuBERT Given the revolutionized success of BERT for many NLP tasks, it
has been widely applied to many other domains. For example, Feng et al. (2020) propose
CodeBERT, which shares exactly the same model architecture as RoBERTaBASE. Kanade
et al. (2020) propose CuBERT to learn contextual code embeddings using the BERTLARGE
model.

Both CodeBERT and CuBERT use the BERT model architecture and treat the source
code as plain text for training. The differences between CodeBERT and CuBERT mainly
come from the way of constructing the training corpus. CodeBERT considers the natural
language texts (i.e., the description documentation of source code) and source code as two
different types of data and constructs the training corpus (i.e., bimodal data and unimodal
data) based on these two types of data. However, CuBERT does not separate the natural
language texts and source code and mix natural language tokens with source code tokens
during training.

Limitations. Based on our understanding, we find that there may still exist limitations
for these two models. The first one is that they both treat the source code as plain text and do
not consider the structural information explicitly. Another limitation is the high computation
cost for training such huge models (both have millions of parameters.), making it almost
impossible for us to modify and re-train the models by ourselves. For example, CodeBERT

Empir Software Eng (2022) 27:63 Page 13 of 38 63

spends more than ten days to finish the training using 16 interconnected NVIDIA Tesla
V100 GPUs.

3 StrucTexVec: Embedding with Structural and Textual Information

To understand the impact of the structural and textual information on the performance of
downstream tasks, we propose StrucTexVec, which consists of a context generation phase
followed by a two-stage embedding learning phase. Figure 4 outlines the overall framework
of StrucTexVec. StrucTexVec preprocesses a collection of source code files to generate the
textual and structural context. In the embedding learning phase, the customized dependency-
based skip-gram technique (Li et al. 2018a) is used to train the token embeddings based on
the structural context. Then, to incorporate the textual information, StrucTexVec re-trains
the token embeddings (our focus is the token embeddings, and thus the path embeddings are
ignored during the re-training stage) on the tokenized textual context. Below, we elaborate
on each of the phases of StrucTexVec.

3.1 Context Generation

In this section, we describe the procedures of generating the textual and structural context
from source code files.

3.1.1 Textual Context Generation

Word2vec, GloVe, and fastText all use a window with a fixed length to construct the target
word’s context (Mikolov et al. 2013a, b; Pennington et al. 2014; Bojanowski et al. 2017)
from the training corpus. In software engineering tasks, many existing approaches consider
the source code as plain text (i.e., sequences of tokens) and achieve promising results (Alla-
manis et al. 2014; Allamanis et al. 2016; Hindle et al. 2012; Wang et al. 2016). Similarly, in
this work, we also utilize the textual context and treat the source code files as plain text.

As described in Section 2.1, to convert the source code into the trainable textual context,
the source code is first tokenized into a sequence of tokens, where all the non-identifiers
(e.g., quotation marks) are removed. Meanwhile, following previous studies (Alon et al.
2019; Kang et al. 2019; Chen et al. 2016), the tokenized source code are lowercased.

Structual context
generation

Textual context
generation

Source files

Textual
context

Structual
context Embeddings

pre-training

Token&Path
embeddings

Embeddings
re-training

Token
embeddings

1. Context Generation 2. Embedding Learning

Fig. 4 The overall framework of StrucTexVec

 63 Page 14 of 38 Empir Software Eng (2022) 27:63

3.1.2 Structural Context Generation

Apart from using the textual context for source code embedding training, some
researchers (Alon et al. 2018; Bielik et al. 2016; Raychev et al. 2015) also utilize the struc-
tural context for software engineering tasks. Therefore, in our work, we also adopt the
structural context. In particular, to enrich the context, our structural context contains three
components: (1) AST paths, (2) method calls, and (3) variable references.

In StrucTexVec, we use srcML4 (Collard et al. 2011) to represent source code as abstract
syntax trees. As described in Section 2.1, the leaf nodes are tokens in the source code which
are connected by a set of srcML tags that provide the syntax structure of the code.

Based on the XML tree representation provided by srcML, we then extract the structural
context into a sequence of path triples. Our work shares an analogous way with that of Alon
et al. (2019) to extract within-method triples. However, rather than only considering the
information within a single method as in Alon et al. (2019), we enrich the structural context
by mining the following three types of context: (1) AST paths, (2) method calls, and (3)
variable references as described below.

AST Path Context Given the ASTs of the source code, we perform a structural traversal to
extract a collection of path triples. In each triple, 〈w1, p, w2〉, w1 and w2 are two differ-
ent leaf nodes in one method’s AST, p is the shortest path between these two nodes. The
leaf nodes are source code tokens and the shortest path describes the syntactic relationship
between any two of them. Algorithm 1 presents the details to construct such path triples.

4https://www.srcml.org/.

https://www.srcml.org/

Empir Software Eng (2022) 27:63 Page 15 of 38 63

For example, as shown in Fig. 1, given two source code tokens, e.g., “public”,
and “accept”, the AST node sequences in the shortest path is
〈specif ier, type, f unction, name〉. Considering the traversal directions, the final rep-
resentation of the path becomes specif ier↑-type↑-f unction-name↓, where the ↑ and
↓ are traversing directions and no direction means that it is an inflection node of a path.
Thus, we get the path triple, 〈 “public”, specif ier↑-type↑-f unction-name↓, “accept”〉.
Similarly, we can change the target node and the source node to collect more path triples
for embedding learning.

Method Call Context We aim to extract the method calls within one project. We first
identify all project-defined methods and the methods that are called by the identified
project-defined methods. Then, we start to collect the call chain information between these
methods. To accelerate the process of constructing call graphs, we use a heuristic that
involves only faster shallow exact method name matching. More specifically, srcML pro-
vides a function tag that helps us to identify all the project-defined methods and a call tag
to label the methods that are called by another method.

For example, the previous code snippet (see Listing 1) defines a method “accept”, and
assume it is called in another method that is defined in this project, “connect”, and therefore,
we have the triple, 〈“connect”, call, “accept”〉, where the “accept” is the project-defined
method name and called by the method “connect”.

Variable Reference Context We also extract the variable references. We first identify all
class variables and instance variables in one Java file using srcML, and then we collect
methods that contain references to the previously identified variables by using the heuristic
of exact variable name matching.

For example, in the previous code snippet (see Listing 1), the variable “fileFilters” is
declared and initialized as an instance variable and referenced in method “accept”, and
therefore, we have the triple, 〈“accept”, ref erence, “fileFilters”〉, where “accept” is the
method which contains references to the instance variable “fileFilters”.

The output of our context generation phase (i.e., the structural and textual context) are
used as the input for the embedding learning phase.

3.2 Embedding Learning

In order to combine both the textual and structural knowledge into code embeddings, Struc-
TexVec adopts a two-step training strategy: (1) pre-training token and path embeddings
using the customized dependency-based model (Li et al. 2018a) and (2) re-training the token
embeddings using Word2vec (Mikolov et al. 2013a, b).

3.2.1 Path-Based Model for Embedding Pre-training

As explained in Section 2, the original Word2vec models use a local fixed-size window
to construct a word’s context, and then the context words are used for embedding train-
ing (Mikolov et al. 2013a, b). Different from the original models, Li et al. (2018a) improve
Word2vec by integrating the syntactic dependency information between words into the
embeddings. Since it is a recently released model and achieves competitive results on differ-
ent tasks in natural language processing (Li et al. 2018a), in this work, following previous

 63 Page 16 of 38 Empir Software Eng (2022) 27:63

work (Bojanowski et al. 2017) which extends the skip-gram model of Word2vec, we also
customize the improved skip-gram as a path-based skip-gram for training code embeddings,
aiming to incorporate the structural context of source code.

Path-Based Skip-Gram Figure 5 is an overview of the customized path-based skip-gram
(PSG). In the original work of Li et al. (2018a), a word is modeled by its context of the
syntactic dependency information. In our model, words are replaced with the tokens in the
source code, and the dependency information is changed to the paths between these tokens
in the ASTs of the source code. By doing this, we can apply the model to our extracted
structural context. Following Li et al. (2018a), we use negative sampling to improve the
computation efficiency. As Fig. 5 shows, in the modified model, the token (i.e., V“public”)
is the target token, the path (i.e., Vspecif ier↑-type↑-f unction-name↓) is the token’s connecting
path, the negative token (i.e., V¬“public”) is selected from the vocabulary and the negative
path (i.e., V¬specif ier↑-type↑-f unction-name↓) is selected from the path sets. All the negative
samples are randomly selected based on the frequency of occurrence in the training corpus.
We build two vocabularies, the tokens in the training corpus and those in the extracted paths.
The vector representations of both vocabularies are updated during the training process.

After that, we concatenate the two negative parts together and form a negative sample
for later embeddings learning. We take the following as the objective function of the model:

L =
∑

wt∈D

∏

w̃t∈CD(wt)

∏

u∈{w}∪NEGw̃t (wt))

L(wt , w̃t , u)), (13)

where NEGw̃t (wt)) is defined as the negative sampling set for target token wt , CD(wt) is
the context set for wt , and L(wt , w̃t , u) = Lwt (u) · log[σ(x

ᵀ
w̃t

θu)] + [1 − Lwt (u)] · log[1 −
σ(x

ᵀ
w̃t

θu)], where σ(·) is the sigmoid activation function, θu is the parameter vector of NS
neuron, and Lwt (u) is an indicator function of which value depends that u is a positive
example or negative example.

We would like to note that the path-based model is different from code2vec in the follow-
ing aspects: (1) our path-based model is an unsupervised approach, which does not require
any manual labeling of the training data, aiming to produce more generalizable embeddings;
(2) we attempt to include more types of information, such as the method call context and
the variable reference context, which are not included in code2vec and Word2vec.

The path-based model produces a vector for each token and each path that captures the
structural context of the source code. (i.e., the Token&Path embeddings in Fig. 4).

...

Neuron(θu)

Positive Sample Negative Samples

Vpublic

V¬specifier
↑
-type

↑
-function-name

↓Vspecifier
↑
-type

↑
-function-name

↓

V¬public

Fig. 5 The overview of the path-based skip-gram model with negative sampling (take “public” as an
example)

Empir Software Eng (2022) 27:63 Page 17 of 38 63

3.2.2 Word2vec for Embedding Re-training

To further incorporate the textual context of code tokens, we adopt the original skip-gram
to re-train the code embeddings produced by the path-based skip-gram. Here, we use the
token vectors produced by the pre-training stage to initialize the embeddings instead of
using the original random initialization. As introduced in Section 2.2.1 skip-gram takes a
sequence of tokens as input, in this work, words are replaced with tokens in the textual
context.

The output of our two-stage embedding learning process (i.e., the token embeddings) are
used as the input for our downstream tasks.

4 Experimental Setup

In this section, we present details of our dataset used for training the code embeddings. We
also introduce six common downstream tasks for quantitative evaluation of the pre-trained
embeddings, three of which, i.e., (1) code comment generation, (2) code authorship iden-
tification and (3) code clone detection, are used for evaluating pre-trained embeddings in
prior research (Kang et al. 2019); while (4) source code classification, (5) logging statement
prediction and (6) software defect prediction, are newly added in this paper.

4.1 Dataset for Learning Pre-trained Embeddings

In this work, we use the Java-Small dataset5 to build the pre-trained embeddings for all the
non-contextual embedding techniques. This dataset is collected from Java projects hosted
on GitHub. Note that for CodeBERT and CuBERT, due to the limitations of the computation
resources, we use their released models, instead of training CodeBERT and CuBERT from
a scratch. We save their embedding layers into Word2vec/GloVe format to integrate into our
evaluation pipelines.

After fetching the files of the training projects, we first perform filtering to remove the
irrelevant files and only keep the source code files with the .java extension. As illustrated in
Fig. 4, we composite two types of contexts from the filtered source code files: (1) structural
context, which refers to extracted path triples in the source code and (2) textual context,
which is the plain text of Java files.

4.2 Settings for Embedding Learning

At the pre-training stage, the token vectors are randomly initialized and trained using
the path-based model. At the re-training stage, the token vectors are initialized by the
embeddings produced by the path-based model and further trained using the skip-gram
implemented in Gensim6 (Řehåřek and Sojka 2010).

Moreover, to investigate the impact of pre-trained embeddings on software engineer-
ing tasks, we also evaluate the other six existing embedding techniques as described in
Section 3.2.2 and compare their performance with the models without pre-trained embed-
dings. To ensure a fair comparison across all the embedding techniques, we either follow

5https://s3.amazonaws.com/code2vec/data/java-small data.tar.gz
6https://radimrehurek.com/gensim/

https://s3.amazonaws.com/code2vec/data/java-small_data.tar.gz
https://radimrehurek.com/gensim/

 63 Page 18 of 38 Empir Software Eng (2022) 27:63

the parameter settings in previous work (e.g., 128 dimensions) or use the default parame-
ter values when the parameters are not specified in previous work (e.g., training epochs).
To avoid bias, we do not try to fine-tune these settings only for our method. The detailed
parameter settings are shown in Table 2.

The embeddings of StrucTexVec, GloVe, fastText and Word2vec are all trained in CPUs
and code2vec is trained in an NVIDIA GTX 1080 Ti GPU, and it takes less than 30 min to
finish the training process of each of the embedding techniques, which is acceptable. For
CodeBERT and CuBERT, we do not train them from a scratch and choose to use the already
released models, as it requires not only more GPUs but also a long period (several days) to
finish the training. For example, CodeBERT spends more than ten days to finish the training
using 16 interconnected NVIDIA Tesla V100 GPUs.

4.3 Evaluation Tasks

In this section, we briefly describe the six downstream tasks that are used to evaluate our
pre-trained embeddings, as well as the corresponding datasets and evaluation metrics. Five
of the six tasks use neural network-based methods and one task (i.e., software defect predic-
tion) uses a traditional machine learning method (i.e., logistic regression). Our focus is the
impact of the embeddings on different downstream tasks, i.e., whether the pre-trained code
embeddings can improve the model performance or not.

Besides, for comparison between different embedding techniques, all the embeddings are
used in the same manner for downstream tasks, that is for each task, only the embeddings
are changed, and other parameters are kept the same. For example, for deep learning-based
tasks, the code embeddings are used to initialize the embedding layer, and OOV tokens are
randomly initialized, which can be later updated based on the training data from different
tasks.

Code Comment Generation is a task to automatically generate code comments for a
code snippet (McBurney and McMillan 2014; Sridhara et al. 2010; Moreno et al. 2013;
Hu et al. 2018), which is helpful in program understanding and maintenance. Code com-
ment generation is considered as a downstream task in previous work (Kang et al. 2019) to
evaluate the effectiveness of code embeddings.

In our work, we follow the work of Kang et al. (2019) and evaluate the embeddings based
on the approach proposed by Hu et al. (2018). Hu et al. (2018) treat the code comment
generation task as a neural machine translation task, where the input is the source code

Table 2 Parameter settings for different embedding techniques

Non-contextual embeddings Contextual embeddings

Word2vec GloVe fastText code2vec StrucTexVec CodeBERT CuBERT

Vocabulary 109,743 192,363 109,743 507,271 192,362 50,265 50,297

Epoch 5 5 5 20 10 & 5 – 2

Window 5 5 5 5 5 – –

Negative 5 – 5 – 4 & 5 – –

Dimension 128 128 128 128 128 768 1024

Note: (1) Dimension: following the settings in prior work (Li et al. 2018a; Alon et al. 2019; Zhang et al.
2019), we set the dimension of the trained token vectors to 128. For CodeBERT and CuBERT, we take the
results from their released models. (2) Epoch: StrucTexVec contains a two-step training, in our experiments,
10 epochs for pre-training and 5 epochs for re-training, both are the default values of the released source code

Empir Software Eng (2022) 27:63 Page 19 of 38 63

snippet and the output is the code comment. Thus, they adopt an encoder-decoder model.
In particular, they use two Long Short-Term Memory (LSTM) layers for both encoder and
decoder, and 500 hidden units for each layer. During model training, both the learning rate
and dropout rate are set to 0.5. The model is trained for 50 epochs. The training dataset
is provided by Hu et al. (2018), which was initially collected from GitHub. The dataset
contains over 330,000 <method, comment> pairs for training and 5000 pairs for validation
and 5000 for testing.

We follow the work of Hu et al. (2018) and Kang et al. (2019) and use the machine
translation evaluation metric BLEU (Papineni et al. 2002) to measure the quality of the
generated comments.

Code Authorship Identification is a task of identifying the author of a given
code (Abuhamad et al. 2018; Islam et al. 2015). This task has attracted increasing attention
in the field of privacy and security, where it can be used to identify the authors of malware
and other malicious programs. We follow the work of Kang et al. (2019) and select this task
as a downstream task.

In our work, we evaluate the embeddings based on the approach proposed by Kang et al.
(2019). Kang et al. (2019) treat the code authorship identification task as a multi-class clas-
sification problem, where the input is the code snippet and output is the author. They build
a neural network-based model, which contains two LSTM layers and a fully connected
layer. During model training, we set the batch size to 64 to guarantee a relatively smaller
training loss. The model is trained for 50 epochs. We use the same dataset as that of Kang
et al. (2019), which was collected from Google Code Jam. The dataset contains 2250 pro-
grams written by 250 authors, among which there are 2000 programs for training and 250
programs for testing, and within each part the classes are balanced.

We follow the previous work (Kang et al. 2019) and use the test accuracy to measure the
performance of the models with different code embeddings.

Code Clone Detection is a task of checking whether two code snippets are similar or
not. It is a useful task for program maintenance (Mayrand et al. 1996; Dubinsky et al. 2013;
Thummalapenta et al. 2010; Barbour et al. 2011; Kamiya et al. 2002; Sajnani et al. 2016;
White et al. 2016; Wei and Li 2017). For example, if a bug is identified in one code fragment,
all the other duplicate code fragments also need to be checked for the same bug. This task is
also identified as a downstream task to evaluate code embeddings in prior work (Kang et al.
2019).

In general, there are four different types of code clones based on the kind of similarity
two code fragments have (Roy and Cordy 2007):

– Type-1 clone refers to identical code fragments except for changes in comments,
whitespace and layout.

– Type-2 clone refers to identical code fragments except for differences in identifier
names or literal values, comments, types, and layouts.

– Type-3 clone refers to code fragments that are syntaxally similar but have statements
added, modified, or removed.

– Type-4 clone refers to code fragments that are syntaxally different but with the same
functionality.

In our work, we use the approach proposed by Zhang et al. (2019), as it is recently pro-
posed and gives competitive results. Zhang et al. (2019) consider the code clone detection
task as a binary classification task, where the input is two code snippets and the output is
1 if they are duplicate and 0 otherwise. They use a bidirectional Recurrent Neural Network

 63 Page 20 of 38 Empir Software Eng (2022) 27:63

based model, and the model is trained for 15 epochs with a batch size of 128. This task con-
tains two datasets, which are constructed from standard BigCloneBench (BCB) (Svajlenko
et al. 2014) and Online Judge system (namely, OJClone).

We follow the work of Zhang et al. (2019) and use F1-measure (F1) as the evaluation
metric in this task.

Source Code Classification is a typical classification task that classifies code fragments
into corresponding categories. This task is identified as a downstream task as it is widely
studied in the literature (Zhang et al. 2019; Gilda 2017; Mou et al. 2016; Kawaguchi et al.
2006; Vásquez et al. 2014) and has various applications (Zhang et al. 2019; Gilda 2017;
Mou et al. 2016; Kawaguchi et al. 2006; Vásquez et al. 2014).

In our work, the source code classification task is considered as a multi-class classifi-
cation problem. We apply a convolutional neural network proposed by Kim (2014) to the
source code. We choose to use this model as it is widely used for classification tasks and
achieves competitive results, and we want to cover more different types of neural network
models. The input to the model is the source code and output is its class label (e.g., func-
tionality). During training, we use the default parameters, that is we set the learning rate
to 0.01, batch size to 64 and dropout rate to 0.5. We train the model with 50 epochs. The
dataset is collected from the Online Judge system7 and provided by Mou et al. (2016).

Similar to the task of code authorship identification, we follow the work of Zhang et al.
(2019) and use the test accuracy as the evaluation metric.

Logging Statement Prediction is a task of predicting whether there is a need to insert
logging statements for a given code snippet. Logging statements play important roles in
the daily tasks of developers (Li et al. 2018b; Ding et al. 2022), and this task can provide
logging suggestions that are helpful for software developers (Li et al. 2018b).

Li et al. (2018b) consider the logging statement prediction task as a binary classification
problem, where the input is the code snippet without the logging statement and output is the
decision whether to insert a logging statement or not. In this task, we also use the approach
proposed by Kim (2014) as in the task of source code classification. The evaluation dataset
is provided by Li et al. (2018b), which contains five subject systems.

In this work, same as prior work (Li et al. 2018b), the balanced accuracy (BA) metric is
used to evaluate the performance of the model with different embeddings.

Software Defect Prediction is a task of predicting whether the code snippet contains
defects or not. Defect prediction can help avoid future bugs in software releases and improve
the quality of software (Wang et al. 2016). This task is selected as a downstream task
because it is widely studied in the literature (Wang et al. 2016).

For this task, following prior work by Wang et al. (2016), we leverage the Logistic
Regression (LR) classifier where the input features are the average of the embeddings of the
code tokens in a file and the output is the 1 if there is a defeat detected or 0 otherwise. The
dataset is provided by Wang et al. (2016) and they use F1 score as the evaluation metric.
Thus, we follow their work and use the same metric for this task.

5 Experimental Results

In this section, we show the quantitative results on the previously identified downstream
tasks, and based on the results, we aim to answer the following research questions:

7https://sites.google.com/site/treebasedcnn/

https://sites.google.com/site/treebasedcnn/

Empir Software Eng (2022) 27:63 Page 21 of 38 63

RQ1: How Effective Are Pre-trained Embeddings in Improving the Performance
of Downstream SE Tasks?

To evaluate the effectiveness of using pre-trained code embeddings, we compare mod-
els using pre-trained embeddings, including the non-contextual embeddings and contextual
embeddings, to models that do not use pre-trained code embeddings (i.e., None). Mod-
els using pre-trained embeddings can perform better than models without pre-trained
embeddings. Table 3 shows the evaluation results of utilizing different code embeddings
on six downstream tasks. The best results are highlighted in bold. As shown in the table,
models using pre-trained embeddings achieve the best results in all the six tasks. For exam-
ple, by using embeddings produced by code2vec, we obtain a 2.6% absolute increase in
accuracy on source code classification task compared to the model without pre-trained
embeddings. In addition, we observe that there is a slight improvement in the tasks of code
comment generation and logging statement prediction when using the embeddings gen-
erated by StrucTexVec than other prior non-contextual pre-trained embeddings that only
consider structural or textual information, which implies the effectiveness of combining
both the textual and the structural context in creating generalizable code embeddings. We
further analyze the datasets of these two tasks and find that when there is a relatively larger
training dataset, StrucTexVec performs better. For example, for the task of code comment
generation, there are more than 330,000 training samples, and there are more than 20,000
training samples for the task of logging statement prediction. Moreover, we find that in
all the evaluated tasks, code embeddings trained in an unsupervised manner do not always
outperform embeddings trained on a specific task. The results demonstrate that existing neu-
ral networks can benefit from the pre-trained embeddings, which challenges the findings
of Kang et al. (2019). The findings highlight the potential of applying well-trained code
embeddings to downstream SE tasks.

On the other hand, we find that including more types of training information cannot
always guarantee better results, and other factors (e.g., training model, different pre-
processing strategies) can also have an impact on the quality of the generated embeddings.
For example, both the CodeBERT and CuBERT are trained only based on the textual infor-
mation, but both of them achieve results comparable with the approaches considering both
the textual and structural information (e.g., StrucTexVec). Besides, although StrucTexVec
attempts to include more structural information (i.e., AST paths, method call, and vari-
able reference), it cannot always outperform code2vec in the six downstream tasks. To
understand why the performance may differ even though we use more types of training
information, we do a further analysis between these two techniques. As a result, we summa-
rize that the performance difference can come from the following aspects: (1) The difference
between the training objectives. For the training objectives, our method is a task-agnostic
embedding approach, which does not need to be trained together with the downstream tasks;
code2vec is task-specific and trained together with the downstream task (i.e., method name
prediction.). Thus, for the tasks that share similar intrinsic properties with the downstream
task that is used to train the embeddings, code2vec would perform better. For example, the
task of source code classification, which is to classify code fragments into corresponding
categories, is similar to the method name prediction, where a category (i.e., method name)
is assigned to a code fragment based on its functionality. (2) The difference between the
training models. As we described in Section 3.2, during the embedding learning, we simply
concatenate the embeddings of the token and the AST path into one single vector and then
use this vector for future training. However, in code2vec, the paths and tokens are treated

 63 Page 22 of 38 Empir Software Eng (2022) 27:63

Ta
bl
e
3

E
va

lu
at

io
n

re
su

lts
on

th
e

te
st

se
to

f
si

x
do

w
ns

tr
ea

m
ta

sk
s.

T
he

se
co

nd
la

st
ro

w
sh

ow
s

th
e

pe
rc

en
ta

ge
of

th
e

be
st

re
su

lt
pr

od
uc

ed
by

ea
ch

ap
pr

oa
ch

on
22

da
ta

se
ts

an
d

th
e

la
st

ro
w

is
th

e
w

ei
gh

te
d

av
er

ag
ed

pe
rc

en
ta

ge
of

be
st

re
su

lts
on

si
x

do
w

ns
tr

ea
m

ta
sk

s
(i

.e
.,

ea
ch

ta
sk

’s
co

nt
ri

bu
tio

n
to

th
e

pe
rc

en
ta

ge
is

w
ei

gh
te

d
by

its
nu

m
be

r
of

da
ta

se
ts

)

D
ow

ns
tr

ea
m

E
va

lu
at

io
n

D
at

as
et

N
on

e
N

on
-c

on
te

xt
ua

le
m

be
dd

in
gs

C
on

te
xt

ua
le

m
be

dd
in

gs

ta
sk

s
m

et
ri

cs
W

or
d2

ve
c

G
lo

V
e

fa
st

Te
xt

co
de

2v
ec

St
ru

cT
ex

V
ec

C
od

eB
E

R
T

C
uB

E
R

T

C
od

e
co

m
m

en
t

B
L

E
U

G
itH

ub
14

.9
15

.4
15

.9
14

.6
15

.3
16

.0
16
.7

16
.1

ge
ne

ra
tio

n

C
od

e
au

th
or

sh
ip

A
cc

ur
ac

y
G

oo
gl

e
C

od
e

id
en

tif
ic

at
io

n
Ja

m
87

.5
80

.2
87

.5
77

.1
85

.4
86

.5
87

.0
89
.1

C
od

e
cl

on
e

F1
B

C
B

92
.7

93
.8

93
.8

93
.8

93
.5

93
.6

93
.5

93
.6

de
te

ct
io

n
O

JC
lo

ne
85

.1
86

.8
81

.4
78

.0
89
.7

88
.1

85
.9

81
.6

A
vg
.

88
.9

90
.3

87
.6

85
.9

91
.6

90
.9

89
.7

87
.6

So
ur

ce
co

de
A

cc
ur

ac
y

O
J

da
ta

se
t

88
.5

87
.0

89
.2

77
.7

91
.2

89
.1

79
.8

75
.8

cl
as

si
fi

ca
tio

n

L
og

gi
ng

B
al

an
ce

A
ir

av
at

a
95
.6

94
.3

94
.2

93
.1

94
.8

94
.5

93
.8

93
.4

st
at

em
en

t
A

cc
ur

ac
y

C
am

el
76

.6
77

.8
77

.5
76

.4
77

.4
79
.2

77
.1

75
.0

pr
ed

ic
tio

n
C

lo
ud

St
ac

k
85

.9
86

.0
85

.5
84

.7
86

.9
87
.3

86
.0

86
.7

D
ir

ec
to

ry
-S

er
ve

r
82

.9
84

.1
85

.6
84

.7
84

.0
86

.6
88
.0

81
.9

H
ad

oo
p

76
.7

73
.6

71
.5

71
.7

72
.3

71
.0

75
.4

77
.6

A
vg
.

83
.6

83
.2

82
.8

82
.1

83
.1

83
.7

84
.1

82
.9

So
ft

w
ar

e
de

fe
ct

F1
A

nt
1.

5–
>

1.
6

28
.0

35
.5

36
.0

32
.9

47
.6

34
.2

36
.4

54
.8

pr
ed

ic
tio

n
A

nt
1.

6–
>

1.
7

33
.1

44
.9

45
.1

39
.6

48
.4

43
.4

51
.9

52
.9

C
am

el
1.

2–
>

1.
4

23
.3

43
.3

45
.5

43
.8

43
.2

46
.8

45
.6

44
.2

C
am

el
1.

4–
>

1.
6

26
.3

47
.0

49
.8

46
.0

50
.0

50
.2

51
.2

50
.3

jE
di

t3
.2

–>
4.

0
32

.7
52

.0
56

.2
55

.9
56

.6
59

.5
61
.5

59
.4

jE
di

t4
.0

–>
4.

1
40

.6
60

.5
60

.1
59

.7
57

.9
64
.7

62
.4

59
.9

Empir Software Eng (2022) 27:63 Page 23 of 38 63

Ta
bl
e
3

(c
on

tin
ue

d)

D
ow

ns
tr

ea
m

E
va

lu
at

io
n

D
at

as
et

N
on

e
N

on
-c

on
te

xt
ua

le
m

be
dd

in
gs

C
on

te
xt

ua
le

m
be

dd
in

gs

ta
sk

s
m

et
ri

cs
W

or
d2

ve
c

G
lo

V
e

fa
st

Te
xt

co
de

2v
ec

St
ru

cT
ex

V
ec

C
od

eB
E

R
T

C
uB

E
R

T

L
og

4j
1.

0–
>

1.
1

45
.5

65
.7

67
.6

62
.7

66
.7

62
.7

70
.4

72
.0

L
uc

en
e

2.
0–

>
2.

2
58

.1
62

.6
60

.6
65
.1

63
.3

63
.9

63
.8

62
.6

L
uc

en
e

2.
2–

>
2.

4
60

.8
66
.3

64
.7

65
.5

60
.6

65
.2

64
.4

63
.8

PO
I

1.
5–

>
2.

5
68

.1
64

.8
80

.1
67

.4
81

.7
77

.8
83

.4
85
.1

PO
I

2.
5–

>
3.

0
67

.5
72

.4
72

.9
72

.6
74
.8

71
.4

72
.3

72
.4

X
al

an
2.

4–
>

2.
5

49
.9

41
.7

42
.9

44
.3

53
.6

47
.5

41
.5

50
.4

A
vg
.

44
.5

54
.7

56
.8

54
.6

58
.7

57
.3

58
.7

60
.6

Pe
rc

en
ta

ge
of

be
st

re
su

lt
(%

)
4.

5
9.

1
4.

5
9.

1
18

.2
18

.2
18

.2
27
.3

W
ei

gh
te

d
av

er
ag

ed
pe

rc
en

ta
ge

of
be

st
re

su
lt

(%
)

3.
3

9.
7

9.
7

9.
7

27
.8

9.
4

20
.0

20
.0

N
ot

e:
(1

)T
he

w
ei

gh
te

d
av

er
ag

ed
pe

rc
en

ta
ge

of
be

st
re

su
lts

on
si

x
do

w
ns

tr
ea

m
ta

sk
s

fo
re

ac
h

te
ch

ni
qu

e
is

ca
lc

ul
at

ed
as

:
∑

t∈
ta

s
k
s

#
of

b
e
s
t

p
e
rf

o
r
m

in
g

d
a
ta

s
e
ts

#
of

to
ta

l
d
a
ta

s
e
ts

in
t

6
∗1

00
%

.(
2)

Fo
rC

od
eB

E
R

T
an

d
C

uB
E

R
T,

w
e

sa
ve

th
ei

r
em

be
dd

in
g

la
ye

rs
in

to
W

or
d2

ve
c/

G
lo

V
e

fo
rm

at
to

in
te

gr
at

e
to

ou
r

ev
al

ua
tio

n
pi

pe
lin

e.
A

lth
ou

gh
th

ey
al

lh
av

e
ac

hi
ev

ed
co

m
pa

ra
bl

e
pe

rf
or

m
an

ce
in

th
e

do
w

ns
tr

ea
m

ta
sk

s,
C

od
eB

E
R

T
an

d
C

uB
E

R
T

ar
e

co
nt

ex
tu

al
em

be
dd

in
gs

,w
hi

ch
m

ea
ns

th
e

w
ay

w
e

us
e

th
em

m
ay

no
tu

nl
ea

sh
th

ei
r

fu
ll

po
w

er

 63 Page 24 of 38 Empir Software Eng (2022) 27:63

differently at the beginning and then fused together by using an attention layer, which is
better at transmitting the information between the paths and tokens than our method. As a
result, even if we use more information in our method, due to the limited ability to embed
such information into the code embeddings, our method performs worse on some datasets.
(3) The difference between the vocabulary sizes. We find that there are 507,271 tokens for
code2vec and 192,362 tokens in our generated embeddings, which means more tokens are
filtered out for our method during the pre-processing step, and this poses a non-negligible
effect on the quality of the generated embeddings.

Besides, for the performance of non-contextual embeddings on the downstream tasks,
we find that the vocabulary size of the embeddings has a more significant impact on the
traditional machine learning models than on deep learning-based models. For example,
Word2vec and fastText have a relatively smaller vocabulary size and perform worse on the
task of software defect prediction that uses a traditional machine learning model. On the
contrary, code2vec has the largest vocabulary size and performs better on the same task.
This can be explained by the fact that a smaller vocabulary size causes more OOV tokens,
and thus weaken the representation ability of the code embeddings, especially considering
the fact that the code embeddings are directly used as features for the traditional machine
learning models. However, for deep learning-based models, the embeddings are only used
to initialize the weights of the first embedding layer, and the weights are later adjusted to
better fit the training data. As a result, the impact of OOV tokens may be diminished or even
erased during the model training and weights updating.

For a specific downstream task, different embedding methods can result in diverse
performance, and there does not exist an embedding technique that outperforms oth-
ers in all nor even majority of the tasks. Table 3 compares the results for applying
different embeddings to six downstream tasks. The tasks of code comment generation and
code authorship identification illustrate a diverse performance that may be caused by dif-
ferent embeddings. For example, on the code comment generation task, using embeddings
trained on fastText can only have a 14.6 of BLEU, compared to 15.9 when using embed-
dings trained on GloVe. In addition, different evaluation tasks result in different orderings
of embedding techniques, raising the question that there may not exist a single optimal
vector representation for all SE tasks. For instance, code embeddings suitable for source
code classification (e.g., code2vec) even perform no better than random embeddings on
code authorship identification. This may come from the fact that different SE tasks might
highly differ in their nature and thus require different external information to boost the per-
formance. The findings suggest that one should be very careful with the selection of code
embedding techniques before starting the model training in terms of different tasks. In par-
ticular, for the non-contextual embeddings that leverage structural information of the code,
including StrucTexVec and code2vec, perform better than other non-contextual embeddings
techniques and have the best results in five out of six downstream tasks.

Using pre-trained embeddings may not always improve the performance of down-
stream tasks significantly. We find that by using pre-trained embeddings, although we can
obtain an increase in performance on different tasks, the improvement may be limited. For
example, in the task of logging statement prediction, we only obtain a maximum increase
of 0.5% by utilizing the pre-trained embeddings (the model without pre-trained embeddings
compared to that using pre-trained embeddings produced by CodeBERT). In addition, using
pre-trained embeddings causes a decrease in accuracy for the task of code authorship iden-
tification. This observation is similar to that of prior studies (Li et al. 2018a; Vashishth et al.
2019; Kang et al. 2019). One possible reason is that the neural network-based models them-
selves are powerful enough and already have good results, thus it is difficult to have a large

Empir Software Eng (2022) 27:63 Page 25 of 38 63

improvement (e.g., the great performance in code clone detection task shown in Table 3).
The result indicates the limited effect of pre-trained embeddings, as they only work on ini-
tializing the embedding layer for neural network-based models. This confirms the findings
of Kang et al. (2019). Namely, code embeddings may not be a key role in boosting the
performance of deep learning models. Software engineering researchers and practitioners
should not only rely on using embeddings to improve their automated techniques.

RQ2: How do the Structural and the Local Textual Information Affect
the Performance of the Pre-trained Embeddings?

To verify the effectiveness of incorporating different information extracted from source code
(i.e., structural and local textual information), we design ablation experiments on these six
downstream tasks.

First, to analyze the effect of the structural information, we treat the source code as plain
text and only learn from the local textual information. More specifically, we remove the
pre-training stage from StrucTexVec, which results in the original Word2vec model. Then,
to analyze the performance gain achieved due to the utilization of the local textual context,
we train the embeddings only based on the structural information extracted from the source
code. In other words, we remove the re-training stage from StrucTexVec, resulting in the
path-based skip-gram with negative sampling (i.e., StrucTexVec−text in Table 4). The results
of our ablation experiments are shown in Table 4.

The structural information extracted from the source code can improve the per-
formance of the code embeddings. By comparing the results of Word2vec with that of
StrucTexVec, in total, we find that StrucTexVec can outperform Word2vec in all downstream
tasks. The comparison results demonstrate that incorporating the structural context can help
improve the performance of the embeddings. For example, on the code authorship identi-
fication task, by pre-training the embeddings using the structural context, StrucTexVec has
an accuracy of 86.5% compared to 80.2% without the pre-training phase. This is consistent
with the observation of Zhang et al. (2019). We consider that the poor performance of GloVe
in the work by Kang et al. (2019) may be related to the exclusion of structural information
in the embeddings.

Code embeddings can benefit from the local textual context. According to the results
of StrucTexVec−text and StrucTexVec from Table 4, we find that StrucTexVec can achieve
better performance than StrucT exV ec−text in five out of six downstream tasks. The com-
parison results indicate that by re-training the embeddings on the textual context, we can
achieve an overall better performance. For example, on the code authorship identification
task, the embeddings trained only with the structural information have a lower accuracy
compared to those use both structural and textual information (i.e., 79.7% vs. 86.5%). This
is consistent with the intuition that developers put similar code statements together and thus
using a local context window is able to capture some semantic information from the source
code.

 63 Page 26 of 38 Empir Software Eng (2022) 27:63

Ta
bl
e
4

E
va

lu
at

io
n

re
su

lts
of

em
be

dd
in

gs
tr

ai
ne

d
w

ith
an

d
w

ith
ou

tt
he

st
ru

ct
ur

al
an

d
lo

ca
lt

ex
tu

al
co

nt
ex

ts
.W

or
d2

ve
c

is
eq

ui
va

le
nt

to
th

e
va

ri
an

to
fS

tr
uc

Te
xV

ec
w

hi
ch

re
m

ov
es

th
e

st
ru

ct
ur

al
in

fo
rm

at
io

n
fr

om
th

e
tr

ai
ni

ng
pr

oc
es

s;
St

ru
cT

ex
V

ec
−t

e
x
t

on
ly

ut
ili

ze
s

th
e

st
ru

ct
ur

al
in

fo
rm

at
io

n
fo

r
em

be
dd

in
gs

le
ar

ni
ng

D
ow

ns
tr

ea
m

C
od

e
co

m
m

en
t

C
od

e
au

th
or

sh
ip

C
od

e
cl

on
e

de
te

ct
io

n
So

ur
ce

co
de

L
og

gi
ng

st
at

em
en

tp
re

di
ct

io
n

ta
sk

s
ge

ne
ra

tio
n

id
en

tif
ic

at
io

n
cl

as
si

fi
ca

tio
n

D
at

as
et

s
G

itH
ub

G
oo

gl
e

C
od

e
B

C
B

O
JC

lo
ne

A
vg
.

O
J

da
ta

se
t

A
ir

av
at

a
C

am
el

C
lo

ud
St

ac
k

D
ir

ec
to

ry
-

H
ad

oo
p

A
vg
.

Ja
m

Se
rv

er

St
ru

cT
ex

V
ec

16
.0

86
.5

93
.6

88
.1

90
.9

89
.1

94
.5

79
.2

87
.3

86
.6

71
.0

83
.7

W
or

d2
ve

c
15

.4
80

.2
93
.8

86
.8

90
.3

87
.0

94
.3

77
.8

86
.0

84
.1

73
.6

83
.2

St
ru

cT
ex

V
ec

−t
e
x
t

15
.7

79
.7

93
.6

86
.9

90
.3

89
.7

95
.3

76
.0

85
.2

90
.0

71
.2

83
.5

D
ow

ns
tr

ea
m

So
ft

w
ar

e
de

fe
ct

pr
ed

ic
tio

n

ta
sk

s

D
at

as
et

s
A

nt
A

nt
C

am
el

C
am

el
jE

di
t

jE
di

t
L

og
4j

L
uc

en
e

L
uc

en
e

PO
I

PO
I

X
al

an
A
vg
.

1.
5

1.
6

1.
2

1.
4

3.
2

4.
0

1.
0

2.
0

2.
2

1.
5

2.
5

2.
4

->
1.

6
->

1.
7

->
1.

4
->

1.
6

->
4.

0
->

4.
1

->
1.

1
->

2.
2

->
2.

4
->

2.
5

->
3.

0
->

2.
5

St
ru

cT
ex

V
ec

34
.2

43
.4

46
.8

50
.2

59
.5

64
.7

62
.7

63
.9

65
.2

77
.8

71
.4

47
.5

57
.3

W
or

d2
ve

c
35

.5
44

.9
43

.3
47

.0
52

.0
60

.5
65
.7

62
.6

66
.3

64
.8

72
.4

41
.7

54
.7

St
ru

cT
ex

V
ec

−t
e
x
t

38
.1

50
.2

46
.4

45
.2

57
.4

58
.9

62
.9

66
.9

63
.1

81
.2

71
.8

43
.6

57
.1

Empir Software Eng (2022) 27:63 Page 27 of 38 63

However, the benefit from the local textual context is limited for some downstream
tasks We also find that the improvement is not always significant. For example, for the tasks
of code comment generation, logging statement prediction, and software defect prediction,
there is only a 0.2% to 0.3% absolute increase. Moreover, for some tasks and datasets, re-
training the code embeddings using local textual context even causes a degradation of the
performance. For example, the accuracy of source code classification task decreases from
89.7% to 89.1% when utilizing the local textual information. One possible reason is that
the structural information extracted from the source code is rich enough for the downstream
tasks and incorporating the local textual context cannot provide much more benefit.

The structural information has a stronger impact on the quality of the code
embeddings than that of local textual information By comparing StrucTexVec−text with
Word2vec, we can see that StrucTexVec−text outperforms Word2vec in four out six down-
stream tasks. For example, on software defect prediction task, removing the local textual
information from StrucTexVec (i.e., StrucTexVec−text) causes a degradation of 0.2%, while
Word2vec only has an accuracy of 54.7%, which is a 2.6% absolute decrease. Our results
suggest the promising research direction of utilizing the structural information for SE tasks.

6 Discussion

In this section, we discuss our lessons learned and compare them with the findings of Kang
et al. (2019). The summary of the comparison is presented in Table 5.

Models using pre-trained embeddings can perform better than models without pre-
trained embeddings. The choice of embedding techniques has a non-negligible impact
on the model performance. We evaluate the effect of utilizing pre-trained code embed-
dings on six downstream tasks. We observe that utilizing the pre-trained code embeddings
can improve the performance of existing models which do not use the pre-trained embed-
dings in all downstream tasks. For example, in the task of code comment generation, using
pre-trained code embeddings produced by StrucTexVec results in a BLEU score of 16.0,
which is 7.4% relative higher than the model without the pre-trained embeddings. Our find-
ings are different from that of Kang et al. (2019). The different results may be caused by
(1) the selection of training corpus: we use the Java-Small dataset while Kang et al. (2019)
chose the Java-Large dataset which may contain noise data that can affect the quality of
the generated code embeddings; 2) we evaluated more code embeddings produced by dif-
ferent techniques, among which some embedding techniques cannot benefit the models
without pre-trained embeddings. For example, using code embeddings produced by fastText
negatively impacts the performance of existing models.

Simpler baselines may not always outperform complex techniques. The model
parameters have a non-negligible impact on the performance of the deep learning-
based models. In our evaluation, we see that on the task of code authorship identification,
all of our reported results outperform the simpler approach that uses simple TF-IDF features
reported by Kang et al. (2019) (i.e., an accuracy of 77%). The only difference is that we set

 63 Page 28 of 38 Empir Software Eng (2022) 27:63

Ta
bl
e
5

C
om

pa
ri

so
n

w
ith

th
e

fi
nd

in
gs

fr
om

pr
ev

io
us

w
or

k
(K

an
g

et
al

.2
01

9)

O
ur

fi
nd

in
gs

Fi
nd

in
gs

fr
om

K
an

g
et

al
.(

20
19

)
D

is
cu

ss
io

n

M
od

el
s

us
in

g
pr

e-
tr

ai
ne

d
em

be
dd

in
gs

ca
n

pe
rf

or
m

be
tte

r
th

an
m

od
el

s
w

ith
ou

t
pr

e-
tr

ai
ne

d
em

be
dd

in
gs

.
T

he
ch

oi
ce

of
em

be
dd

in
g

te
ch

ni
qu

es
ha

s
a

no
n-

ne
gl

ig
ib

le
im

pa
ct

on
th

e
m

od
el

pe
rf

or
m

an
ce

.

C
od

e
em

be
dd

in
gs

ca
nn

ot
be

us
ed

re
ad

ily
to

im
pr

ov
e

th
e

pe
rf

or
m

an
ce

of
si

m
pl

er
m

od
el

s.
In

ou
r

ev
al

ua
tio

n,
w

e
fi

nd
th

at
in

al
l

si
x

do
w

ns
tr

ea
m

ta
sk

s,
th

e
us

e
of

co
de

em
be

dd
in

gs
ca

n
im

pr
ov

e
th

e
pe

rf
or

m
an

ce
of

th
e

m
od

el
s.

T
he

di
f-

fe
re

nc
e

of
th

e
fi

nd
in

gs
m

ay
be

ca
us

ed
by

(1
)

th
e

tr
ai

ni
ng

co
rp

us
,i

n
th

is
w

or
k,

w
e

se
le

ct
th

e
Ja

va
-S

m
al

ld
at

as
et

2)
w

e
ev

al
ua

te
m

or
e

em
be

dd
in

gs
te

ch
ni

qu
es

on
m

or
e

do
w

ns
tr

ea
m

ta
sk

s.

Si
m

pl
er

ba
se

lin
es

m
ay

no
t

al
w

ay
s

ou
tp

er
fo

rm
co

m
-

pl
ex

te
ch

ni
qu

es
.

T
he

m
od

el
pa

ra
m

et
er

s
ha

ve
a

no
n-

ne
gl

ig
ib

le
im

pa
ct

on
th

e
pe

rf
or

m
an

ce
of

th
e

de
ep

le
ar

ni
ng

-b
as

ed
m

od
el

s.

Si
m

pl
er

ba
se

lin
es

ru
n

fa
st

er
an

d
m

ay
ou

tp
er

-
fo

rm
co

m
pl

ex
te

ch
ni

qu
es

.
In

ou
r

ev
al

ua
tio

n,
w

e
se

e
th

at
on

th
e

ta
sk

of
co

de
au

th
or

sh
ip

id
en

tif
i-

ca
tio

n,
th

e
us

e
of

co
de

em
be

dd
in

gs
ou

tp
er

fo
rm

s
th

e
si

m
pl

er
ap

pr
oa

ch
th

at
us

es
si

m
pl

e
T

F-
ID

F
fe

at
ur

es
re

po
rt

ed
by

K
an

g
et

al
.

(2
01

9)
.

T
he

on
ly

di
ff

er
en

ce
is

th
at

w
e

se
tt

he
ba

tc
h

si
ze

to
64

in
st

ea
d

of
th

e
de

fa
ul

t
12

8.
B

es
id

es
,t

o
ve

ri
fy

ou
r

fi
nd

in
gs

,w
e

im
pl

em
en

ta
no

th
er

tw
o

si
m

pl
er

ba
se

lin
es

w
hi

ch
us

e
tr

ad
iti

on
al

fe
at

ur
es

fo
r

th
e

so
ft

w
ar

e
de

fe
at

s
pr

ed
ic

-
tio

n.
A

s
th

e
re

su
lts

sh
ow

,s
om

e
of

th
e

em
be

dd
in

gs
st

ill
pe

rf
or

m
be

tte
r.

M
ea

nw
hi

le
,o

ur
re

su
lts

co
nc

ur
w

ith
th

e
fi

nd
in

gs
of

K
an

g
et

al
.(

20
19

)
th

at
ot

he
r

co
ns

id
er

at
io

ns
(e

.g
.,

pr
e-

pr
oc

es
si

ng
)

m
ay

ha
ve

an
im

pa
ct

on
th

e
pe

rf
or

m
an

ce
of

de
ep

le
ar

ni
ng

m
od

el
s.

U
si

ng
pr

e-
tr

ai
ne

d
em

be
dd

in
gs

m
ay

no
t

al
w

ay
s

im
pr

ov
e

th
e

pe
rf

or
m

an
ce

of
do

w
ns

tr
ea

m
ta

sk
s

si
gn

if
-

ic
an

tly
.

C
od

e
em

be
dd

in
gs

m
ay

no
t

be
ab

le
to

bo
os

t
th

e
pe

rf
or

m
an

ce
of

ne
ur

al
ne

tw
or

k-
ba

se
d

m
od

el
s.

O
ur

fi
nd

in
gs

ar
e

si
m

ila
r

to
th

at
of

K
an

g
et

al
.(

20
19

).
A

lth
ou

gh
w

e
ca

n
ob

ta
in

an
in

cr
ea

se
in

pe
rf

or
m

an
ce

of
di

ff
er

en
t

ta
sk

s,
th

e
im

pr
ov

em
en

t
m

ay
be

lim
ite

d.
O

ne
po

ss
ib

le
re

as
on

is
th

at
th

e
ne

ur
al

ne
tw

or
k-

ba
se

d
m

od
el

s
th

em
se

lv
es

ar
e

po
w

er
fu

le
no

ug
h

an
d

al
re

ad
y

ha
ve

go
od

re
su

lts
,

th
us

it
is

di
ff

ic
ul

t
to

ha
ve

a
la

rg
e

im
pr

ov
em

en
t

fo
r

so
m

e
do

w
ns

tr
ea

m
ta

sk
s.

Empir Software Eng (2022) 27:63 Page 29 of 38 63

Ta
bl
e
5

(c
on

tin
ue

d)

O
ur

fi
nd

in
gs

Fi
nd

in
gs

fr
om

K
an

g
et

al
.(

20
19

)
D

is
cu

ss
io

n

U
si

ng
pr

e-
tr

ai
ne

d
em

be
dd

in
gs

m
ay

no
t

al
w

ay
s

im
pr

ov
e

th
e

pe
rf

or
m

an
ce

of
do

w
ns

tr
ea

m
ta

sk
s

si
gn

if
-

ic
an

tly
.

C
od

e
em

be
dd

in
gs

m
ay

no
t

be
ab

le
to

bo
os

t
th

e
pe

rf
or

m
an

ce
of

ne
ur

al
ne

tw
or

k-
ba

se
d

m
od

el
s.

O
ur

fi
nd

in
gs

ar
e

si
m

ila
r

to
th

at
of

K
an

g
et

al
.(

20
19

).
A

lth
ou

gh
w

e
ca

n
ob

ta
in

an
in

cr
ea

se
in

pe
rf

or
m

an
ce

of
di

ff
er

en
t

ta
sk

s,
th

e
im

pr
ov

em
en

t
m

ay
be

lim
ite

d.
O

ne
po

ss
ib

le
re

as
on

is
th

at
th

e
ne

ur
al

ne
tw

or
k-

ba
se

d
m

od
el

s
th

em
se

lv
es

ar
e

po
w

er
fu

le
no

ug
h

an
d

al
re

ad
y

ha
ve

go
od

re
su

lts
,

th
us

it
is

di
ff

ic
ul

t
to

ha
ve

a
la

rg
e

im
pr

ov
em

en
t

fo
r

so
m

e
do

w
ns

tr
ea

m
ta

sk
s.

C
om

po
si

ng
a

m
ea

ni
ng

fu
l

re
pr

es
en

ta
tio

n
fr

om
a

se
t

of
co

de
to

ke
ns

us
in

g
pr

e-
tr

ai
ne

d
co

de
em

be
dd

in
gs

is
a

ch
al

le
ng

in
g

ta
sk

an
d

fu
rt

he
r

in
ve

st
ig

at
io

n
of

th
e

co
m

po
si

tio
n

of
co

de
em

be
dd

in
gs

ar
e

ne
ed

ed
.

T
he

co
m

po
si

tio
n

of
so

ur
ce

co
de

to
ke

n
em

be
dd

in
gs

re
qu

ir
es

fu
rt

he
r

in
ve

st
ig

at
io

n.
To

fu
rt

he
r

in
ve

st
ig

at
e

th
e

co
m

po
si

tio
n

of
co

de
em

be
dd

in
gs

,
w

e
do

an
ot

he
r

fo
ur

ex
pe

ri
m

en
ts

fo
r

th
e

ta
sk

of
so

ft
w

ar
e

de
fe

ct
pr

ed
ic

tio
n,

us
in

g
di

ff
er

en
tc

om
po

si
tio

n
st

ra
te

gi
es

.i
.e

.,
su

m
m

at
io

n,
av

er
ag

in
g,

T
F-

ID
F

w
ei

gh
te

d
av

er
ag

in
g

an
d

T
F-

ID
F

w
ei

gh
te

d
su

m
m

at
io

n.
W

e
fi

nd
th

at
si

m
pl

e
av

er
ag

in
g

st
ill

is
th

e
be

st
w

ay
to

re
pr

es
en

tt
he

so
ur

ce
co

de
.

C
od

e
em

be
dd

in
gs

ca
n

be
ne

fi
t

fr
om

co
ns

id
er

in
g

bo
th

th
e

st
ru

ct
ur

al
an

d
te

xt
ua

l
in

fo
rm

at
io

n.
A

nd
th

e
em

be
dd

in
gs

pr
od

uc
ed

by
St

ru
cT

ex
V

ec
an

d
co

de
2v

ec
w

hi
ch

le
ve

ra
ge

st
ru

ct
ur

al
in

fo
rm

at
io

n
of

th
e

so
ur

ce
co

de
pe

rf
or

m
be

tte
r

th
an

ot
he

r
no

n-
co

nt
ex

tu
al

em
be

dd
in

gs
th

at
do

no
t.

T
he

po
or

pe
rf

or
m

an
ce

of
ut

ili
za

tio
n

of
co

de
em

be
dd

in
gs

m
ay

in
di

ca
te

th
at

to
ke

n
em

be
d-

di
ng

s
le

ar
ne

d
ov

er
so

ur
ce

co
de

m
ay

no
t

en
co

de
en

ou
gh

in
fo

rm
at

io
n

us
ab

le
fo

rd
if

fe
r-

en
td

ow
ns

tr
ea

m
ta

sk
s

In
ou

re
xp

er
im

en
t,

to
ch

ec
k

th
e

ef
fe

ct
of

di
ff

er
en

ti
nf

or
m

at
io

n
on

ge
ne

r-
at

in
g

th
e

co
de

em
be

dd
in

gs
,w

e
us

e
di

ff
er

en
tt

ra
in

in
g

co
nt

ex
ta

nd
de

si
gn

ab
la

tio
n

ex
pe

ri
m

en
ts

.T
he

re
su

lts
in

di
ca

te
th

e
em

be
dd

in
gs

ca
n

en
co

de
di

ff
er

en
ti

nf
or

m
at

io
n

fo
r

do
w

ns
tr

ea
m

ta
sk

s.

 63 Page 30 of 38 Empir Software Eng (2022) 27:63

the batch size to 64 instead of the default 128. This finding shows that by tuning the param-
eters of the complex models, we can outperform the simpler baselines. Also, to verify our
findings, we implement another two simpler baselines which use traditional features (i.e.,
PROMISE and TF-IDF) for the software defect prediction task, and we also observe that the
use of pre-trained code embeddings can outperform the simpler baselines. Our results con-
cur with the findings of Kang et al. (2019) that other considerations (e.g., pre-processing)
may have an impact on the performance of deep learning models.

Using pre-trained embeddings may not always improve the performance of down-
stream tasks significantly. Our findings are similar to that of Kang et al. (2019), although
we can obtain an increase in the performance of different tasks, the improvement may be
limited. For example, in the task of logging statement prediction, the best-performing code
embeddings only has a 0.5% absolute improvement compared to the model without the
pre-trained code embeddings. One possible reason is that the neural network-based models
themselves are powerful enough and already have good results and the code embeddings
are only used for initializing the embedding layer of these models, thus it is difficult to have
a large improvement for some downstream tasks. The results suggest researchers and devel-
opers should be careful when deciding whether or not to use pre-trained embeddings for
their specific downstream tasks.

Further investigation of the composition of code embeddings is needed. Pre-trained
code embeddings are numerical vectors for individual tokens in the source code and a key
challenge is how to represent the whole code snippet with a sequence of code tokens. In
practice, multiple methods for code embedding composition (i.e., combining the embed-
dings of each token in the source code to an embedding of the entire code snippet) are
adopted, such as simply adding or averaging the embeddings of all the tokens. Similar to that
of Kang et al. (2019), we find that the way of composition of code embeddings can impact
the performance of the models. We implement four experiments for the task of software
defect prediction with different composition strategies, i.e., summation, averaging, TF-IDF
weighted averaging and TF-IDF weighted summation. For example, when the four compo-
sition strategies are performed on code2vec for the task of software defect prediction, we
get the F1 scores, 52.1, 58.7, 53.3, and 53.7, respectively. The results show that different
composition strategies can result in diverse results and simple averaging still is the best way
to represent the source code.

Code embeddings can benefit from considering both the structural and textual
information. And the embeddings produced by StrucTexVec and code2vec which lever-
age structural information of the source code perform better than embeddings that do
not. In our experiment, to check the effect of different information on generating the code
embeddings, we use different training context and design ablation experiments. The results
indicate that except for the training techniques, the training context also impacts the quality
of the code embeddings. Especially, the embeddings (i.e., StrucTexVec and code2vec) that
incorporate the structural context yields better results than other non-contextual models. The
results show that the embeddings can encode different information for downstream tasks.

7 RelatedWork

In this section, we discuss the prior research that proposes and applies code embeddings in
software engineering tasks.

Empir Software Eng (2022) 27:63 Page 31 of 38 63

Source code embeddings play an important role in many SE tasks (Chen et al. 2016;
Chen and Monperrus 2018; Wang et al. 2018; White et al. 2019; Harer et al. 2018; Pradel
and Sen 2018; Alon et al. 2019; Allamanis et al. 2015; Büch and Andrzejak 2019), and
researchers propose various approaches for learning code embeddings to assist in SE tasks.

Considering Source Code as Plain Text Among the proposed code embeddings techniques,
some consider the source code as plain text and directly apply the word embedding tech-
niques to source code. For example, Harer et al. (2018) propose a source-based model
for automated software vulnerability detection. In their model, they first tokenize the col-
lected open-source C/C++ programs into sequences of tokens and then apply Word2vec to
convert code tokens into vector representations. The learned Word2vec representation of
code tokens is finally fed into a TextCNN model (Kim 2014) for classification. Similarly,
White et al. (2019) train source code embeddings using Word2vec from the normalized file-
level corpora. The trained embeddings are then used for the initialization of the embedding
layer of the recursive autoencoder which is a type of neural network that recursively learn
the representations of the code snippet. In addition, Efstathiou and Spinellis (2019) adopt
fastText (Bojanowski et al. 2017), which utilizes the subword information, to train code
embeddings for different programming languages, including Java, Python, PHP, C, C++,
and C#. However, they only propose potential applications of the models without evalua-
tion. Theeten et al. (2019) propose to use the skip-gram model of Word2vec (Mikolov et al.
2013a, b) to generate embeddings for library packages of different programming languages,
which are later used for retrieving the similar libraries of a given library.

Considering the Structural Information of Source Code Apart from the above mentioned
direct use of word embedding techniques to source code, researchers have proposed to
learn embeddings for specific software engineering tasks while considering the structure of
source code. Zhang et al. (2019) propose to learn source code representations based on the
abstract syntax trees. They train the program embeddings for two downstream tasks, i.e.,
code clone detection and source code classification. Similarly, Büch and Andrzejak (2019)
implement an AST-based Recursive Neural Network (RNN) for code clone detection. Alon
et al. (2019) propose code2vec, which also relies on the AST representation of the source
code. The ASTs are converted into a set of triples which are later fed into an attention-based
neural network for the task of method name prediction.

Except for the direct use of ASTs, recently, researchers propose to adopt more sophis-
ticated structural information from source code. For example, Tufano et al. (2018) try to
combine different code representations on detecting code clones. In their work, they con-
sider four different training contexts i.e., identifiers, AST, bytecode, and control flow graph
(CFG) extracted from the source code fragments. Allamanis et al. (2018) extract the data
flows from the source code and then use a Gated Graph Neural Networks to learn the
program representation. However, the data flows they extracted are based on the AST rep-
resentation of the source code. In other words, they explicitly expose part of the AST of
a program (i.e., the subtree that contains syntax tokens corresponding to declarations and
updates of variables) as the structured input to the embedding learning model. This might be
useful for downstream tasks that are sensitive to the data operations of a program, for exam-
ple, the task used in their work, variable misuse detection. Although by doing this, they can
focus on the utilization of the data flows, there is still a chance of missing some important
information of the program, at least, one cannot build a program only based on the data flow
graph. Instead, in our work, we attempt to produce generalizable code embeddings that can

 63 Page 32 of 38 Empir Software Eng (2022) 27:63

be used for different downstream tasks, thus, we utilize more types of information, includ-
ing the AST information within each method, method calls and variable references, which
may introduce some noise for code embedding learning as, in our work, the use of method
calls and variable references are all based on the simple string match.

To further explore the structural information of the source code for producing generaliz-
able code embeddings, Sui et al. (2020) utilize control-flows and data flows of a program.
They extend the structural information by (1) mining long-range data flows across differ-
ent methods, (2) precisely extracting the data flow information based on the pointer alias
information. Compared to our approach, they avoid the noise and mistakes of the simple use
of string match for method calls and variable references. Besides, the long-range and pre-
cise data flows make the generated code embeddings be able to capture the method or data
dependence of the program, which is really useful for the tasks that involves the interaction
between different methods, for example, in the task of code summarization: if the target
method calls another method in the method body, it would be useful to utilize the long-
range data flows to analyze what really happens between these two methods. However, this
kind of global information may not bring many benefits for other tasks, such as the task of
code authorship identification, as the programs (i.e., input of the task) are isolated from each
other and written by different authors, where the method level approach (e.g., code2vec)
may perform better.

Our work builds upon the recent advances of code embeddings learning approaches and
is closely related to the work of Kang et al. (2019) which trains and evaluates two code
embedding techniques, i.e., GloVe and code2vec on three downstream SE tasks. Kang et al.
(2019) evaluate GloVe and code2vec on the tasks of code comment generation, code author-
ship identification and code clone detection. Our work extends theirs and revisits the use
of pre-trained code embeddings in downstream tasks. More specifically, we evaluate five
more embeddings, i.e., Word2vec, fastText, StrucTexVec, CodeBERT and CuBERT on six
downstream SE tasks.

8 Threats to Validity

This section discusses the threats to the validity of our work. We consider three types of
threats.

External Validity One major threat of using pre-trained code embeddings in downstream
tasks is the computational costs of training the embeddings. In our work, the embeddings of
StrucTexVec, GloVe, fastText and Word2vec are all trained in CPUs and code2vec is trained
in an NVIDIA GTX 1080 Ti GPU, and it takes less than 30 min to finish the training process
of each of the embedding techniques, which is acceptable compared to the computational
cost of the running the downstream tasks (e.g., it takes more than 10 h to finish the task
of code comment generation). However, for the training of CodeBERT and CuBERT, it not
only requires more GPUs but also several days to finish the training. For example, Code-
BERT spends more than ten days to finish the training using 16 interconnected NVIDIA
Tesla V100 GPUs, which might be challenging for us to train the embeddings in our own
machine. The findings in this work are concluded based on the evaluation results of seven
code embedding techniques on six downstream tasks, and the code embeddings are trained
on Java projects. Thus, we cannot confirm that our findings may generalize to all the SE
tasks, programming languages and code embedding techniques. Besides, in this work, we
adopt external SE tasks to reflect the impact of different code embedding techniques, and

Empir Software Eng (2022) 27:63 Page 33 of 38 63

each task has its specific model to train, and thus the parameters involved during the embed-
dings evaluation may have an impact on the conclusions. To minimize the influence of these
parameters, in our work, we intentionally do not do any other parameter tuning on the model
structures (e.g., layers, hidden dimensions) and try to use the same experimental settings
that are reported in the literature, hence only examining the impact of different embed-
ding techniques on the downstream tasks. Another factor that can influence the results and
conclusions is the evaluation metrics used in the downstream tasks, as code embedding tech-
niques that perform better under one evaluation metric may perform worse when evaluated
using other metrics. In this work, to reduce the selection bias, we try to follow previous
works and select the evaluation metrics that are used in the existing papers related to the
downstream tasks. In addition, we provide our data and source code for future work to repli-
cate and further improve the evaluation. For the only change of batch size in the task of
code authorship identification, we want to explain that we initially set the batch size to 128
and observed that the precision remains at around 50% even on the training dataset, which
was far behind the expected performance of deep learning models on the simple classifica-
tion tasks. Thus, we reduce the batch size, and after that, the training precision improves to
more than 90%. Also, this improvement confirms the finding from previous work that using
small batch sizes achieves better training stability (Masters and Luschi 2018). Moreover, the
datasets used for different downstream tasks are unbalanced which would have an impact
on the conclusions if we compare the results on the dataset level. As described in Section 4,
all the datasets are provided by previous work and are commonly used benchmark datasets.
To avoid such influence, we only focus on the task level comparison. Besides, there is a
lack of ways for direct evaluation of the quality of code embeddings. Future studies can
develop some datasets or tasks, such as token similarity, that can be directly used for code
embeddings evaluation.

Internal Validity One of the threats to the internal validity is related to the conclusion of
results in response to RQ2. In order to answer RQ2, we conducted ablation experiments to
analyze the impact of structural and textual context. However, the analysis in RQ2 may not
indicate the actual impact of structural and textual information, as they may have overlap-
pings. For example, in the AST representation of the source code, the code tokens are also
considered during the embedding training. Besides, in our experiments, we only evaluate
the embeddings that are trained based on the AST or plain text of the source code. However,
there exists other information from the source code that may be more valuable for represent-
ing the properties of the source code. For example, Allamanis et al. (2018) exploit the use
of data flows in a program and Sui et al. (2020) further extend the use of structured informa-
tion extracted from the source code and they adopt the interprocedural program dependence
for representing the source code into vectors. Another threat comes from the fact that there
is a lack of interpretability of the code embeddings. The embeddings are real-valued num-
bers and hard to be analyzed directly, and thus, our findings cannot explain when and why
the embeddings are effective.

Construct Validity The embedding training dataset selection may be biased, as we only
select the top-ranked Java projects based on the number of stars they have, and we may still
miss some Java projects that are from unpopular fields. Future studies can collect projects
across different fields to complement the findings of our study. Another threat is the param-
eters of the code embedding techniques during embedding learning, such as the embedding
dimensions and negative samples. Although, by fine-tuning the parameters, we can make
the model better conform to the downstream tasks. However, in our work, we try our best

 63 Page 34 of 38 Empir Software Eng (2022) 27:63

to follow the literature and intentionally do not fine-tune the parameters to avoid bias from
the unfairness among the tasks. We leave it as future work to analyze the impact of different
combinations of parameter settings on the quality of the code embeddings.

9 Conclusion

In this paper, we revisit and extend a recent study by Kang et al. (2019) on the assessment
of pre-trained code embeddings in SE tasks. Complementing the two evaluated pre-trained
embedding techniques in prior work, we propose an unsupervised framework, StrucTexVec,
for enhancing the learned code embeddings by incorporating both the textual and struc-
tural knowledge into the embedding training process. In total, we evaluate the effectiveness
of seven techniques for pre-trained code embeddings on six downstream SE tasks. On one
hand, we find that, in general, models using pre-trained embeddings can perform better
than the models without pre-trained embeddings, and both the structural information and
the textual information have a non-negligible impact on the performance of the downstream
SE tasks. On the other hand, our work concurs with prior research that pre-trained embed-
dings may not always improve the performance of downstream SE tasks significantly, and
different embedding techniques can lead to diverse results. Our results suggest the need
for researchers and practitioners to carefully consider the choices of embedding techniques
when conducting SE tasks. Our findings also shed light on future research for improving
embedding techniques to assist in SE tasks.

Declarations

Conflict of Interest The authors declare no competing interests.

References

Abuhamad M, AbuHmed T, Mohaisen A, Nyang D (2018) Large-scale and language-oblivious code author-
ship identification. In: Lie D, Mannan M, Backes M, Wang X (eds) Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, CCS 2018, Toronto, ON, Canada,
October 15–19, 2018. ACM, pp 101–114. https://doi.org/10.1145/3243734.3243738

Allamanis M, Barr ET, Bird C, Sutton CA (2014) Learning natural coding conventions. In: Cheung S, Orso
A, Storey MD (eds) Proceedings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering, (FSE-22), Hong Kong, China, November 16–22, 2014. ACM, pp 281–293.
https://doi.org/10.1145/2635868.2635883

Allamanis M, Barr ET, Bird C, Sutton CA (2015) Suggesting accurate method and class names. In: Nitto
ED, Harman M, Heymans P (eds) Proceedings of the 2015 10th joint meeting on foundations of soft-
ware engineering, ESEC/FSE 2015, Bergamo, Italy, August 30–September 4, 2015. ACM, pp 38–49.
https://doi.org/10.1145/2786805.2786849

Allamanis M, Peng H, Sutton CA (2016) A convolutional attention network for extreme summarization of
source code. In: Balcan M, Weinberger KQ (eds) Proceedings of the 33nd international conference on
machine learning, ICML 2016, New York City, NY, USA, June 19–24, 2016, JMLR.org, JMLR Work-
shop and Conference Proceedings, vol 48, pp 2091–2100. http://proceedings.mlr.press/v48/allamanis16.
html

Allamanis M, Brockschmidt M, Khademi M (2018) Learning to represent programs with graphs. In: 6th
International conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30–May
3, 2018. Conference Track Proceedings, OpenReview.net. https://openreview.net/forum?id=BJOFETxR-

Alon U, Zilberstein M, Levy O, Yahav E (2018) A general path-based representation for predicting program
properties. In: Foster JS, Grossman D (eds) Proceedings of the 39th ACM SIGPLAN conference on

https://doi.org/10.1145/3243734.3243738
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2786805.2786849
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/forum?id=BJOFETxR-

Empir Software Eng (2022) 27:63 Page 35 of 38 63

programming language design and implementation, PLDI 2018, Philadelphia, PA, USA, June 18–22,
2018. ACM, pp 404–419. https://doi.org/10.1145/3192366.3192412

Alon U, Zilberstein M, Levy O, Yahav E (2019) code2vec: learning distributed representations of code.
PACMPL 3(POPL):40:1–40:29. https://doi.org/10.1145/3290353

Barbour L, Khomh F, Zou Y (2011) Late propagation in software clones. In: IEEE 27th international con-
ference on software maintenance, ICSM 2011, Williamsburg, VA, USA, September 25–30, 2011. IEEE
Computer Society, pp 273–282. https://doi.org/10.1109/ICSM.2011.6080794

Bielik P, Raychev V, Vechev MT (2016) PHOG: probabilistic model for code. In: Balcan M, Weinberger
KQ (eds) Proceedings of the 33nd international conference on machine learning, ICML 2016, New York
City, NY, USA, June 19–24, 2016, JMLR.org, JMLR Workshop and conference proceedings, vol 48,
pp 2933–2942. http://proceedings.mlr.press/v48/bielik16.html

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Trans Assoc Comput Linguis 5:135–146. https://transacl.org/ojs/index.php/tacl/article/view/999

Büch L, Andrzejak A (2019) Learning-based recursive aggregation of abstract syntax trees for code clone
detection. In: Wang X, Lo D, Shihab E (eds) 26th IEEE international conference on software analysis,
evolution and reengineering, SANER 2019, Hangzhou, China, February 24–27, 2019. IEEE, pp 95–104.
https://doi.org/10.1109/SANER.2019.8668039

Chen Z, Monperrus M (2018) The remarkable role of similarity in redundancy-based program repair.
arXiv:1811.05703

Chen T, Thomas SW, Hassan AE (2016) A survey on the use of topic models when mining software
repositories. Empir Softw Eng 21(5):1843–1919. https://doi.org/10.1007/s10664-015-9402-8

Collard ML, Decker MJ, Maletic JI (2011) Lightweight transformation and fact extraction with the
srcml toolkit. In: 11th IEEE working conference on source code analysis and manipulation, SCAM
2011, Williamsburg, VA, USA, September 25–26, 2011. IEEE Computer Society, pp 173–184.
https://doi.org/10.1109/SCAM.2011.19

Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for
language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, vol 1 (Long and Short Papers).
Association for Computational Linguistics, pp 4171–4186. https://doi.org/10.18653/v1/n19-1423

Ding Z, Li H, Shang W (2022) Logentext: automatically generating logging texts using neural machine
translation. In: SANER. IEEE

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory study of cloning
in industrial software product lines. In: Cleve A, Ricca F, Cerioli M (eds) 17th European conference on
software maintenance and reengineering, CSMR 2013, Genova, Italy, March 5–8, 2013. IEEE Computer
Society, pp 25–34. https://doi.org/10.1109/CSMR.2013.13

Efstathiou V, Spinellis D (2019) Semantic source code models using identifier embeddings. In:
Storey MD, Adams B, Haiduc S (eds) Proceedings of the 16th international conference on
mining software repositories, MSR 2019, 26–27 May 2019. IEEE/ACM, Montreal, pp 29–33.
https://doi.org/10.1109/MSR.2019.00015

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D, Zhou M (2020)
Codebert: a pre-trained model for programming and natural languages. In: Cohn T, He Y, Liu Y (eds)
Findings of the association for computational linguistics: EMNLP 2020, online event, 16–20 november
2020. Association for Computational Linguistics, findings of ACL, vol EMNLP 2020, pp 1536–1547.
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Gilda S (2017) Source code classification using neural networks. IEEE, pp 1–6. https://doi.org/10.1109/
JCSSE.2017.8025917

Harer JA, Kim LY, Russell RL, Ozdemir O, Kosta LR, Rangamani A, Hamilton LH, Centeno GI, Key
JR, Ellingwood PM, McConley MW, Opper JM, Chin SP, Lazovich T (2018) Automated software
vulnerability detection with machine learning. arXiv:1803.04497

Hindle A, Barr ET, Su Z, Gabel M, Devanbu PT (2012) On the naturalness of software. In: Glinz M, Murphy
GC, Pezzè M (eds) 34th International conference on software engineering, ICSE 2012, June 2–9, 2012.
IEEE Computer Society, Zurich, pp 837–847. https://doi.org/10.1109/ICSE.2012.6227135

Hu X, Li G, Xia X, Lo D, Jin Z (2018) Deep code comment generation. In: Khomh F, Roy CK, Sieg-
mund J (eds) Proceedings of the 26th conference on program comprehension, ICPC 2018, Gothenburg,
Sweden, May 27–28, 2018. ACM, pp 200–210. https://doi.org/10.1145/3196321.3196334

Islam AC, Harang RE, Liu A, Narayanan A, Voss CR, Yamaguchi F, Greenstadt R (2015) De-anonymizing
programmers via code stylometry. In: Jung J, Holz T (eds) 24th USENIX security symposium, USENIX
security 15, Washington, D.C., USA, August 12–14, 2015. USENIX Association, pp 255–270. https://
www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam

https://doi.org/10.1145/3192366.3192412
https://doi.org/10.1145/3290353
https://doi.org/10.1109/ICSM.2011.6080794
http://proceedings.mlr.press/v48/bielik16.html
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.1109/SANER.2019.8668039
http://arxiv.org/abs/1811.05703
https://doi.org/10.1007/s10664-015-9402-8
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/MSR.2019.00015
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/JCSSE.2017.8025917
https://doi.org/10.1109/JCSSE.2017.8025917
http://arxiv.org/abs/1803.04497
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/3196321.3196334
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/caliskan-islam

 63 Page 36 of 38 Empir Software Eng (2022) 27:63

Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans Softw Eng 28(7):654–670. https://doi.org/10.1109/
TSE.2002.1019480

Kanade A, Maniatis P, Balakrishnan G, Shi K (2020) Learning and evaluating contextual embedding of
source code. In: Proceedings of the 37th international conference on machine learning, ICML 2020, 13–
18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, pp 5110–5121.
http://proceedings.mlr.press/v119/kanade20a.html

Kang HJ, Bissyandé TF, Lo D (2019) Assessing the generalizability of code2vec token embeddings. In: 34th
IEEE/ACM international conference on automated software engineering, ASE 2019, san diego, CA,
USA, November 11–15, 2019. IEEE, pp 1–12. https://doi.org/10.1109/ASE.2019.00011

Kawaguchi S, Garg PK, Matsushita M, Inoue K (2006) Mudablue: an automatic categorization system for
open source repositories. J Syst Softw 79(7):939–953. https://doi.org/10.1016/j.jss.2005.06.044

Kim Y (2014) Convolutional neural networks for sentence classification. arXiv:14085882
Komninos A, Manandhar S (2016) Dependency based embeddings for sentence classification tasks. In: Pro-

ceedings of the 2016 conference of the North American chapter of the association for computational
linguistics: human language technologies, pp 1490–1500

Li C, Li J, Song Y, Lin Z (2018a) Training and evaluating improved dependency-based word embeddings.
In: McIlraith SA, Weinberger KQ (eds) Proceedings of the thirty-second AAAI conference on artifi-
cial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and
the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2–7, 2018. AAAI Press, pp 5836–5843. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16429

Li H, Chen TP, Shang W, Hassan AE (2018b) Studying software logging using topic models. Empir Softw
Eng 23(5):2655–2694. https://doi.org/10.1007/s10664-018-9595-8

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019)
Roberta: a robustly optimized BERT pretraining approach. arXiv:1907.11692

Masters D, Luschi C (2018) Revisiting small batch training for deep neural networks. arXiv:1804.07612
Mayrand J, Leblanc C, Merlo E (1996) Experiment on the automatic detection of function clones in a soft-

ware system using metrics. In: 1996 International conference on software maintenance (ICSM ’96),
4–8 November 1996, Monterey, CA, USA, Proceedings. IEEE Computer Society, p 244. https://doi.org/
10.1109/ICSM.1996.565012

McBurney PW, McMillan C (2014) Automatic documentation generation via source code summarization of
method context. In: Roy CK, Begel A, Moonen L (eds) 22nd International conference on program com-
prehension, ICPC 2014, Hyderabad, India, June 2–3, 2014. ACM, pp 279–290. https://doi.org/10.1145/
2597008.2597149

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector
space. In: Bengio Y, Lecun Y (eds) 1st International conference on learning representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2–4, 2013. Workshop Track Proceedings. arXiv:1301.3781

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013b) Distributed representations of words and phrases
and their compositionality. In: Proceedings of the 26th international conference on neural information
processing systems. NIPS’13, vol 2. Curran Associates Inc., pp 3111–3119. http://dl.acm.org/citation.
cfm?id=2999792.2999959

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock LL, Vijay-shanker K (2013) Automatic generation of
natural language summaries for java classes. In: IEEE 21st international conference on program compre-
hension, ICPC 2013, San Francisco, CA, USA, 20–21 May, 2013. IEEE Computer Society, pp 23–32.
https://doi.org/10.1109/ICPC.2013.6613830

Mou L, Li G, Zhang L, Wang T, Jin Z (2016) Convolutional neural networks over tree structures for program-
ming language processing. In: Schuurmans D, Wellman MP (eds) Proceedings of the thirtieth AAAI
conference on artificial intelligence, February 12–17, 2016. AAAI Press, Phoenix, pp 1287–1293. http://
www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775

Papineni K, Roukos S, Ward T, Zhu W (2002) Bleu: a method for automatic evaluation of machine trans-
lation. In: Proceedings of the 40th annual meeting of the association for computational linguistics, July
6–12, 2002. ACL, Philadelphia, pp 311–318. https://www.aclweb.org/anthology/P02-1040/

Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Moschitti
A, Pang B, Daelemans W (eds) Proceedings of the 2014 conference on empirical methods in natural
language processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar. A meeting of SIGDAT, a Special
Interest Group of the ACL. ACL, pp 1532–1543. https://www.aclweb.org/anthology/D14-1162/

Pradel M, Sen K (2018) Deepbugs: a learning approach to name-based bug detection. PACMPL 2(OOP-
SLA):147:1–147:25. https://doi.org/10.1145/3276517

https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
http://proceedings.mlr.press/v119/kanade20a.html
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1016/j.jss.2005.06.044
http://arxiv.org/abs/14085882
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16429
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16429
https://doi.org/10.1007/s10664-018-9595-8
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1804.07612
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1145/2597008.2597149
http://arxiv.org/abs/1301.3781
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.1109/ICPC.2013.6613830
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
https://www.aclweb.org/anthology/P02-1040/
https://www.aclweb.org/anthology/D14-1162/
https://doi.org/10.1145/3276517

Empir Software Eng (2022) 27:63 Page 37 of 38 63

Raychev V, Vechev MT, Krause A (2015) Predicting program properties from “big code”. In: Rajamani
SK, Walker D (eds) Proceedings of the 42nd annual ACM SIGPLAN-SIGACT symposium on princi-
ples of programming languages, POPL 2015, Mumbai, India, January 15–17, 2015. ACM, pp 111–124.
https://doi.org/10.1145/2676726.2677009

Řehåřek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of
the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50.
http://is.muni.cz/publication/884893/en

Roy CK, Cordy JR (2007) A survey on software clone detection research. Queen’s School of Computing TR
541(115):64–68. https://doi.org/10.1.1.62.7869

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) Sourcerercc: scaling code clone detection to
big-code. In: Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th international conference on
software engineering, ICSE 2016, Austin, TX, USA, May 14–22, 2016. ACM, pp 1157–1168. https://doi.
org/10.1145/2884781.2884877

Sridhara G, Hill E, Muppaneni D, Pollock LL, Vijay-Shanker K (2010) Towards automatically generat-
ing summary comments for java methods. In: Pecheur C, Andrews J, Nitto ED (eds) ASE 2010, 25th
IEEE/ACM international conference on automated software engineering, Antwerp, Belgium, September
20–24, 2010. ACM, pp 43–52. https://doi.org/10.1145/1858996.1859006

Sui Y, Cheng X, Zhang G, Wang H (2020) Flow2vec: value-flow-based precise code embedding. CoRR
4(OOPSLA):233:1–233:27. https://doi.org/10.1145/3428301

Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM (2014) Towards a big data curated benchmark of inter-
project code clones. In: 30th IEEE international conference on software maintenance and evolution, Vic-
toria, BC, Canada, September 29–October 3, 2014. IEEE Computer Society, pp 476–480. https://doi.org/
10.1109/ICSME.2014.77

Theeten B, Vandeputte F, Cutsem TV (2019) Import2vec learning embeddings for software libraries. In:
Storey MD, Adams B, Haiduc S (eds) Proceedings of the 16th international conference on mining
software repositories, MSR 2019, 26–27 May 2019. IEEE/ACM, Montreal, pp 18–28. https://doi.org/
10.1109/MSR.2019.00014

Thummalapenta S, Cerulo L, Aversano L, Penta MD (2010) An empirical study on the maintenance of source
code clones. Empir Softw Eng 15(1):1–34. https://doi.org/10.1007/s10664-009-9108-x

Tufano M, Watson C, Bavota G, Penta MD, White M, Poshyvanyk D (2018) Deep learning similarities from
different representations of source code. In: Zaidman A, Kamei Y, Hill E (eds) Proceedings of the 15th
international conference on mining software repositories, MSR 2018, Gothenburg, Sweden, May 28–29,
2018. ACM, pp 542–553. https://doi.org/10.1145/3196398.3196431

Vashishth S, Bhandari M, Yadav P, Rai P, Bhattacharyya C, Talukdar PP (2019) Incorporating syntactic and
semantic information in word embeddings using graph convolutional networks. In: Korhonen A, Traum
DR, Màrquez L (eds) Proceedings of the 57th conference of the association for computational linguistics,
ACL 2019, Florence, Italy, July 28–August 2, 2019, vol 1: Long Papers, Association for Computational
Linguistics, pp 3308–3318. https://doi.org/10.18653/v1/p19-1320

Vásquez ML, McMillan C, Poshyvanyk D, Grechanik M (2014) On using machine learning to auto-
matically classify software applications into domain categories. Empir Softw Eng 19(3):582–618.
https://doi.org/10.1007/s10664-012-9230-z

Wang S, Liu T, Tan L (2016) Automatically learning semantic features for defect prediction. In: Dillon LK,
Visser W, Williams L (eds) Proceedings of the 38th international conference on software engineering,
ICSE 2016, Austin, TX, USA, May 14–22, 2016. ACM, pp 297–308. https://doi.org/10.1145/2884781.
2884804

Wang K, Singh R, Su Z (2018) Dynamic neural program embeddings for program repair. In: 6th International
conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018.
Conference Track Proceedings, OpenReview.net. https://openreview.net/forum?id=BJuWrGW0Z

Wei H, Li M (2017) Supervised deep features for software functional clone detection by exploiting lexical
and syntactical information in source code. In: Sierra C (ed) Proceedings of the twenty-sixth interna-
tional joint conference on artificial intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017,
ijcai.org, pp 3034–3040. https://doi.org/10.24963/ijcai.2017/423

White M, Tufano M, Vendome C, Poshyvanyk D (2016) Deep learning code fragments for code clone detec-
tion. In: Lo D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference
on automated software engineering, ASE 2016, Singapore, September 3–7, 2016. ACM, pp 87–98.
https://doi.org/10.1145/2970276.2970326

White M, Tufano M, Martinez M, Monperrus M, Poshyvanyk D (2019) Sorting and transforming program
repair ingredients via deep learning code similarities. In: Wang X, Lo D, Shihab E (eds) 26th IEEE
international conference on software analysis, evolution and reengineering, SANER 2019, Hangzhou,
China, February 24–27, 2019. IEEE, pp 479–490. https://doi.org/10.1109/SANER.2019.8668043

https://doi.org/10.1145/2676726.2677009
http://is.muni.cz/publication/884893/en
https://doi.org/10.1.1.62.7869
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/3428301
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/MSR.2019.00014
https://doi.org/10.1109/MSR.2019.00014
https://doi.org/10.1007/s10664-009-9108-x
https://doi.org/10.1145/3196398.3196431
https://doi.org/10.18653/v1/p19-1320
https://doi.org/10.1007/s10664-012-9230-z
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://openreview.net/forum?id=BJuWrGW0Z
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1109/SANER.2019.8668043

 63 Page 38 of 38 Empir Software Eng (2022) 27:63

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019) A novel neural source code representation based
on abstract syntax tree. In: Atlee JM, Bultan T, Whittle J (eds) Proceedings of the 41st international
conference on software engineering, ICSE 2019, Montreal, QC, Canada, May 25–31, 2019. IEEE/ACM,
pp 783–794. https://doi.org/10.1109/ICSE.2019.00086

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Zishuo Ding1 ·Heng Li2 ·Weiyi Shang1 ·Tse-Hsun (Peter) Chen1

Heng Li
heng.li@polymtl.ca

Weiyi Shang
shang@encs.concordia.ca

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca

1 Department of Computer Science and Software Engineering, Concordia University, Montreal,
QC, Canada

2 Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal,
QC, Canada

https://doi.org/10.1109/ICSE.2019.00086
http://orcid.org/0000-0002-0803-5609
mailto: heng.li@polymtl.ca
mailto: shang@encs.concordia.ca
mailto: peterc@encs.concordia.ca

	Can pre-trained code embeddings improve model performance? Revisiting the use of code embeddings in software engineering tasks
	Abstract
	Introduction
	Paper Organization

	Background
	Training Context
	Textual Context
	Structural Context

	Embedding Learning Techniques
	Non-contextual Embeddings
	Word2vec
	GloVe
	fastText
	Code2vec

	Contextual Embeddings
	BERT
	CodeBERT and CuBERT

	StrucTexVec: Embedding with Structural and Textual Information
	Context Generation
	Textual Context Generation
	Structural Context Generation
	AST Path Context
	Method Call Context
	Variable Reference Context

	Embedding Learning
	Path-Based Model for Embedding Pre-training
	Path-Based Skip-Gram

	Word2vec for Embedding Re-training

	Experimental Setup
	Dataset for Learning Pre-trained Embeddings
	Settings for Embedding Learning
	Evaluation Tasks

	Experimental Results
	RQ1: How Effective Are Pre-trained Embeddings in Improving the Performance of Downstream SE Tasks?
	RQ2: How do the Structural and the Local Textual Information Affect the Performance of the Pre-trained Embeddings?
	Discussion
	Related Work
	Considering Source Code as Plain Text
	Considering the Structural Information of Source Code

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusion
	References
	Affiliations

