A First Look at the Inheritance-Induced Redundant Test Execution

Dong Jae Kim
Software PEformance, Analysis and
Reliability (SPEAR) Lab
Concordia University
Montreal, Quebec, Canada
k_dongja@encs.concordia.ca

Abstract

Inheritance, a fundamental aspect of object-oriented design, has
been leveraged to enhance code reuse and facilitate efficient soft-
ware development. However, alongside its benefits, inheritance can
introduce tight coupling and complex relationships between classes,
posing challenges for software maintenance. Although there are
many studies on inheritance in source code, there is limited study
on using inheritance in test code. In this paper, we take the first
step by studying inheritance in test code, with a focus on redundant
test executions caused by inherited test cases. We empirically study
the prevalence of test inheritance and its characteristics. We also
propose a hybrid approach that combines static and dynamic analy-
sis to identify and locate inheritance-induced redundant test cases.
Our findings reveal that (1) inheritance is widely utilized in the test
code, (2) inheritance-induced redundant test executions are preva-
lent, accounting for 13% of all execution test cases, (3) bypassing
these redundancies can help reduce 14% of the test execution time,
and finally, (4) our study highlights the need for careful refactoring
decisions to minimize redundant test cases and identifies the need
for further research on test code quality.

Keywords

Software Testing, Software Evolution, Software Maintenance

ACM Reference Format:

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jingiu Yang. 2024. A First Look
at the Inheritance-Induced Redundant Test Execution. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE *24), April 14-20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3639150

1 Introduction

In a highly evolving software market, customers expect new fea-
tures delivered on time alongside reliable and high-quality prod-
ucts [1]. To reduce maintenance cost and improve productivity,
code reuse plays a pivotal role. Through code reuse, developers
can take the advantage of existing functionality and achieve faster
development while maintaining code quality. Particularly, one of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3639150

Tse-Hsun (Peter) Chen
Software PEformance, Analysis and
Reliability (SPEAR) Lab
Concordia University
Montreal, Quebec, Canada
peterc@encs.concordia.ca

Jinqgiu Yang
Department of Computer Science and
Software Engineering
Concordia University
Montreal, Quebec, Canada
jinqiu.yang@concordia.ca

the main advantage of inheritance, a fundamental aspect of object-
oriented design, is to facilitate code reuse [34, 35]. Inheritance offers
a simple way for a Class A to reuse a feature defined in Class B by
utilize the extends keyword, such as Class A extends Class B.

While inheritance provides many benefits in reducing implemen-
tation and maintenance overhead, using inheritance ineffectively
can also create tight coupling between classes [44], causing non-
flexibility and overly redundant code [45]. Many researchers found
that ineffective use of inheritance is correlated to software quality
issues and maintenance difficulties [29, 32, 41, 47]. Prior studies
even used inheritance as a proxy to measure software complexity
and to predict software defects in industry systems [6, 7, 46, 54].

Existing studies on inheritance primarily focused on the source
code [6, 7, 29, 32, 41, 46, 47, 54]. However, there has been limited
investigation into the impact of inheritance in the test code; espe-
cially inherited test cases. Our preliminary analysis reveals that
40% of 503 sampled open-source software systems use inheritance
in test classes, indicating a significant adoption of inheritance in
software testing. One potential benefit of test inheritance, as found
by Wang et al. [49], is that developers often turn to inheritance to
mock the source code under test. Another benefit of inheritance
is test code reusability, which can improve coverage and help test
maintenance [5].

Despite the potential benefits of test case inheritance, using in-
heritance in test code can also lead to overly complicated code as
software systems become more complex. A study by Peng et al.
[40] showed that test case inheritance causes most code dependen-
cies, which can over-complicate test case design and maintenance.
Moreover, some practitioners view inheritance as poor practice and
should be refactored [43], i.e., “Prefer composition over inheritance
and interfaces” [45] or “It is a bad idea to use inheritance in test” [17].
In addition to test case design, one issue with test inheritance is that
it can result in multiple subclasses inheriting identical test cases
from the same superclass. Such inherited and identical test cases are
redundant and can cause test execution overhead, which further
extends the already time-consuming testing process.

In this paper, we aim to study the impact of inheritance in the
test code by focusing on the redundant test executions caused by
inherited test cases. We develop a hybrid approach that combines
static and dynamic analysis to study and detect inheritance-induced
redundant test executions. First, we apply static analysis to analyze
the source code and extract the inheritance hierarchy in test classes.
Then, we extract test cases candidates that potentially cause re-
dundancies. Finally, we apply dynamic analysis, which involves
source code coverage and test oracle analysis, to detect whether
these candidates are truly redundant. We conduct our study on 15

https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150

ICSE °24, April 14-20, 2024, Lisbon, Portugal

open-source Java systems and found that (1) 13% of the total exe-

cutable test cases are in fact redundant, and (2) such redundant tests

take 14% of total test execution time. Finally, we shed light on (3)

the challenges of addressing redundancy, precisely the difficulty in

preserving code coverage while removing redundancy. This paper
makes the following contributions below:

e We are among the first to show high inheritance usage in test
code (over 40% of analyzed systems).

e We observe that 13% of executed test cases are introduced through
inheritance, accounting for 14% of the total test execution time.

e Our hybrid approach combines static and dynamic analysis to
identify inheritance-induced redundant test executions, provid-
ing developers with tools to detect and simply bypass the bottle-
necks in test executions.

e We find that eliminating redundancy poses challenges in preserv-
ing code coverage, as inherited test cases can be redundant in
certain subclass but non-redundant in the rest.

o We release the source code of our tool and the dataset! of our
experiments to help other researchers replicate and extend our
study.

Paper organization. Section 2 discusses motivations. Section 3 dis-

cusses our methodology. Section 4 presents ours research questions.

Section 5 summarizes the implication of our findings. Section 6 dis-

cusses related work. Section 7 discusses threats to validity. Section 8

concludes the paper.

2 Motivation

Existing studies on inheritance have primarily focused on the
source code [6, 7, 29, 32, 41, 46, 47, 54]. However, there has been
limited investigation into the impact of inheritance in the test code.
We conjecture that developers regularly use test code inheritance in
practice. To verify whether developers use inheritance in test code,
we analyze the number of test code inheritance that is attributed
to various software systems, by mining hundreds of open-source
Java Repositories, similar to technique the employed by [22]. We
start with the Java-med dataset from Alon et al. [4], which consists
of 1,000 top-starred Java systems from GitHub. We utilize Spoon,
a static analysis tool, to create the source/test code model for the
entire repository [38]. From the list of Java files in the repository,
we check (i) whether a file is a test file and (ii) whether the test
file is part of the inheritance tree. To measure the prevalence of
inheritance, we choose to use the inheritance tree rather than simply
counting inheritance usage (e.g., extends). The inheritance tree
offers a more comprehensive view, representing the hierarchical
structures of test classes and the holistic relationships among classes
in the repository.

Table 1: Analyzed repository characteristics.

Repository Inheritance Characteristics H #Repositories
Has at least one inheritance tree in the test code 202
No inheritance tree in the test code 301

!https://github.com/djackim/ICSE2024.git

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

To check if a file is a test, we examine if the name’s Prefix or
Suffix contains the “Tjtest” keyword. To determine whether a test
file is a component of the inheritance tree, we search for extends
keywords and iteratively traverse upward through its superclass
until we reach the root node of the inheritance tree. During traver-
sal, a test class itself may be a superclass for other test classes.
Hence, we also traverse through all the subclasses until reaching
a leaf class. We omit systems that do not have test classes. Accord-
ingly, from the 1000 repositories, we are left with 503 repositories
as shown in Table 1. We find that the ratio of the repositories that
have at least one inheritance hierarchy tree in the test code is 40%
among 503 studied repositories. The finding suggests that a signifi-
cant number of repositories in fact adopt inheritance in software
testing. This percentage is a staggering proportion considering that
many practitioners view inheritance as poor practice and should
be refactored, i.e., “Prefer composition over inheritance and inter-
faces” [43] or ‘It is a bad idea to use inheritance in test” [17, 45]. More
interestingly, there is a moderate to strong correlation (i.e., 0.61)
between the number of test files in the repository and the number
of test inheritance hierarchy [2]. The finding indicates that as the
software becomes complex, developers may be more inclined to use
test inheritance. Based on this analysis, we believe that inheritance
plays a significant role in the design of test code.

AbstractBidiMapTest

+ TestCase1() AbstractOrdered
+ TestCase2() <J-extends BidiMapTest
ZFExtends
DualTree AbstractSorted
BidiMap2Test Extends—{} BidiMapTest

UnmodifiableSorted
BidiMapTest

Extendsj

Figure 1: Developers re-use test through inheritance to ease
maintenance.

Figure 1 shows a real-life scenario of test inheritance in Commons-
collections, where the developer uses inheritance for test code reuse
and easing maintenance. For example, test cases 1 and 2 from Ab-
stractBidiMapTest cover the coverage of different source code func-
tionality, DualTreeBidiMap and UnmodifiableSortedBidiMap. Despite
the aforementioned advantages, the prevalence of inheritance in
test code shows a potential challenge: the proliferation of redundan-
cies within test cases. For example, as shown in Figure 1, not only is
the inheritance deep, but the two test cases declared in the root class
can also be inherited throughout the hierarchy. The impacted sub-
classes with the abstract modifier, i.e., AbstractSortedBidiMapTest,
AbstractOrderedBidiMapTest, do not execute the test cases. However,
the concrete subclasses, i.e., DualTreeBidiMap2Test and Unmodifi-
ableSortedBidiMapTest, in the leaf position will eventually execute
the test cases, as the testing frameworks (e.g., JUnit) will instantiate
them during testing, which leads to potential redundant test case
execution, i.e., proliferation. While such redundancies may have
no consequences (e.g., performance overhead) in the source code,
their presence in test code represents a considerably detrimental
practice.

https://github.com/djaekim/ICSE2024.git

A First Look at the Inheritance-Induced Redundant Test Execution

Unlike source code, where redundant code may remain dormant
and unexecuted, test cases annotated with the @Test annotations
are automatically executed within the inheriting child classes. As
shown in Figure 1, while such a test case aims to help maintenance
and code reuse, it may also lead to redundancies if the coverage and
test oracle remain the same. This fundamental distinction forms
the basis of our research focus, which aims to identify redundant
test cases lacking fault-locating capabilities while contributing to
an increase in test execution time. Our investigation seeks to shed
light on these intricacies of inheritance-induced redundancies in
test code.

Based on the aforementioned discussion about redundant test
cases, we focus on two important definitions: (1) Redundancy-
Inducing Inheritance: Inheritance is considered redundancy in-
ducing if it declares test cases and has impacting subclasses, and (2)
Inheritance-Induced Redundant Test Candidates: Test cases
are classified as potentially redundant if they are executed more
than once due to inheritance, although they may or may not be truly
redundant. In Figure 1, the example represents (1). The root class,
AbstractBidiMapTest, contains test cases and has many impacting
subclasses. Its test cases are hence (2), as they are executed multiple
times in the subclasses. In the subsequent section, we present our
technique for detecting Inheritance-Induced Redundant Test
Executions, given (1) and (2).

3 Our Technique for Identifying Inheritance-
Induced Redundant Test Executions

Due to the complexity of inheritance trees and the scale of modern
software, developers may not always be aware of redundant test
executions caused by inheritance. In this section, we present our
technique to detect redundant test executions. Figure 2 summa-
rizes the overview of our technique, which consists of three main
parts: static analysis to detect (1) Redundancy-Inducing Inheri-
tance and (2) Inheritance-Induced Redundant Test Candidates,
and (3) dynamic analysis to identify Inheritance-Induced Redun-
dant Test Executions. Performing static analysis before dynamic
analysis reduces the cost of the latter since not all test cases are
Inheritance-Induced Redundant Test Executions. Therefore, we per-
form dynamic analysis on a subset of the total test cases, specifically
on the Inheritance-Induced Redundant Test Candidates.

3.1 Statically Detecting Redundancy-Inducing
Inheritance

In this section, we describe how we extract redundancy-inducing
test inheritance. We use Spoon, a static analysis tool [39].

3.1.1 Identifying Test Cases. In our detection of redundant test
cases, our first step is to identify the relevant test classes from the
Java files. Our studied systems use JUnit4+ testing frameworks to
design test cases and Maven to execute the test cases. Hence, we
first search for all potential test cases that exist within the studied
systems. We look for methods that are annotated using the @Test
annotation. However, not all test cases written in the test code are
executed during regression testing. A test case can either be disabled
to prevent flaky test or excluded in the Maven build, specified in the
pom.xml, according to development needs [25]. Hence, we execute
our test cases using Maven and filter out skipped test cases.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

3.1.2 Extracting Inheritance Hierarchy. We then determine whether

the identified test classes form an inheritance tree, i.e., extends
superclass. For every test class, we use the Vistor Pattern to re-
cursively visit its superclass until the terminating condition is
met, such as Java’s root Object() class or a class from external
libraries. When traversing upstream, a test class itself may be a
superclass for other test classes. Hence, we also traverse through
all the subclass until reaching a leaf class. Once we have tra-
versed all reachable test classes, we generate a comprehensive tree
hierarchy denoted as Tree, containing crucial information. We rep-
resent nodes 1) N_cl as test classes, and nodes 2) N_mt as test
cases. We represent edges 1) E_cl as a directed edge between two
N_cl (e.g., nodel and node2), where the nodel is the subclass of
node2, and 2) E_mt is the non-directed edge between N_cl and
N_mt, where N_mt is a test case of test class, N_cl. As shown in
the Figure 2, this step is described by transformation from source
code to tree-preprocessed.

3.1.3 Identifying Inherited Test Cases. In Section 3.1.2, we assigned
test case nodes, N_mt, to its corresponding test class, N_cl. Based
on this Tree, we now extract the following test case types: unique
methods, overridden methods, and inherited methods, which are an-
notated as U_mt, O_mt, and I_mt. To elaborate, U_mt are methods
that are unique to the class, O_mt are methods that override the par-
ent method, and I_mt are methods inherited from its superclass.
More formally, we consider a method to be O_mt, if and only if
(1) they have the same signature, i.e., the same method name, the
same number of parameters, and are not static, (2) the method
is a subtype of a supertype method and (3) type erasure of the
parameter is equal for generic types [38]. Once O_mt is detected,
identifying U_mt and I_mt becomes straightforward. Any method
signature statically present in N_cl is classified as U_mt for that
particular class, while any method inherited from the superclass is
categorized as I_mt. Following the definitions (1-3), we generate a
post-processed inheritance hierarchy, termed Tree_post, where test
cases are accurately annotated. This transformed Tree is now ready
for further analysis of redundant test cases. Refer to Figure 2 for a
visual representation of this transformation from tree-preprocessed
to tree-postprocessed.

3.2 Statically Detecting Inheritance-Induced
Redundant Test Candidates

As discussed in Section 2, our focus is to detect redundant test
case execution caused by inheritance. For this, we first perform
static analysis to identify potential redundant candidates. In par-
ticular, we analyze the Tree_post generated in prior Section 3.1.3
in the following ways: 1) We first determine the test classes, T_cI,
that are non-1leaf class in the Tree_post and have executable test
cases, T_mt. Such T_cl indicate potential sources of inherited test
cases, 2) We then determine whether T_cl contain more than one
subclasses, and if the resulting subclasses is a non-abstract
class that can execute the inherited test case. Then, such test cases
are executed more than once and are potentially redundant. More
formally, if a test case T_mt1 is inherited by both non-abstract
subclassA and sublassB, then such T_mt1 has the potential of being
a redundant candidate.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

1. Static Detection of Redundancy Inducing Test Inheritance

Inheriting Test Cases

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

2. Inheritance Induced Redundant Test Candidates

(fescase?) e
TestCase 1 E2_mn
TR /l X f} Y

Extends Extends

E_Cl ECI E_Cl E_CI
—
Child1] [Chila2 4’
1 4 Elmt E2_mtt Added E1_mt1 E2_mt1Added

@D @ D €D e @D

S Cod
ource Code Tree Pre-processed

Code
Repository

Tree Post-processed

Step 1: Parse Inhe\jitance

Step 2: Find Candidates ‘ BaseTest#TestCase1 I
’—> mExecu(e

BaseTest#TestCase2
[

CriTeemlExecute | BaseTest#TestCasef |
BaseTest#TestCase2

BaseTest#TestCase1/2 are potentially redundant, hence candidates

l
Step 3: Instrument Tests
3. Inheritance Induced Redundant Test Executions

Coverage
o
TestCase1 { Test Analysis

e
Execution TestCase1
Observation.logger(x,y) est Ora_cle
} Analysis | Redundant Test Cases

Figure 2: Overview of the End-to-End Process for Finding Redundant Test Cases.

3.3 Detecting Inheritance-Induced Redundant
Test Executions through Dynamic Analysis

Whether T_mt1 is a truly redundant test case cannot be fully
determined by static analysis discussed in Section 3.2. For example,
a subclassA and subclassB may both inherit T_mt1, but through a
program dependency, subclasses can alter the state of the T_mt1
(e.g., by setting environment variables). In this case, T_mt1 can
no longer be considered redundant as its behavior may be inten-
tionally written by the developer to achieve partial code reuse by
subclassing. However, it is challenging to statically determine the
ground truth of program dependency to guarantee that T_mt1 is
redundant. Hence, we resort to dynamic analysis by executing the
test cases to collect execution trace information. Specifically, we
instrument the test cases prior to execution to collect (i) source
code coverage and (ii) test oracle information. Our intuition is that
if the T_mt1 that is executed in both subclassA and subclassB has
the same code coverage and test oracle, then T_mt1 is truly redun-
dant. This technique draws inspiration from prior works in test case
amplification [8, 15] and test case reduction [9, 27, 30, 31, 48, 53],
where code coverage and oracles are considered to validate test
case quality. Below, we discuss the detail of our dynamic analysis.
3.3.1 Extracting Code Coverage. To detect redundant tests, we
conduct code coverage analysis on Inheritance-Induced Redundant
Test Candidates. We use JaCoCo to collect coverage data during test
execution. Below, we outline the process for executing 1) inherited
test cases and 2) instrumenting JaCoCo.

Executing Inherited Tests. In our analysis, we run test cases one-by-

one to avoid accumulation of dirty states that may affect the test
result, i.e., coverage and oracle. Hence, we re-initialize the JVM and
reset the environment for every test execution. However, executing
test cases in Maven is non-trivial for inherited test cases. Such in-
herited test cases are not directly present in the test code, yet may
be executed many times through inheritance (e.g., a test case in the
superclass is inherited by multiple subclass). To execute the inher-
ited test case, we use Maven-Surefire’s command-line options called
-DTest with specified test cases such as =subclass#inherited_method.
Here, #inherited_method refers to the test case inherited from
its superclass, while subclass represents the class that inherits

the test case. In addition, we observed that running a single test

case in a multi-module project may only rely on a compilation of a

specific subset of modules rather than on the entire project. Hence,
we improve test execution time to speed up the experiment by

leveraging the -pl option with a comma-separated list of modules

to remove the compilation of unnecessary modules. However, we

may miss some dependent modules when using the -pl option.
Hence, we use the options —am to build all the dependent modules

of the specified modules. For example, if module_A depends on

module_B, using -am will build both modules. Finally, Maven may

run numerous static analyses in the default build, such as License

check and CheckStyle, which are not required to execute test cases.
We also remove these to improve test execution time. Finally, we

run these options in the root directory to successfully execute a

single inherited test case in a multi-module project.

Collecting Code Coverage. We use JaCoCo to generate the code cov-
erage report at three levels, i.e., instruction coverage, branch cover-
age, and line coverage. JaCoCo is one of the most popular code cov-
erage tools that instruments bytecode to trace test execution [20].
We integrate JaCoCo as a Maven plugin by configuring the pom.xml
of the studied projects. While integration is simple for most Maven

projects, for the multi-module Maven project, the coverage report is

only limited to classes within the module, and will not be shown for

test cases covering classes outside of the modules (e.g., integration

test). Therefore, as some test cases cover multiple modules, we add

an extra report-aggregate goal to the parent Maven build script (i.e.,
the main pom file).

3.3.2 Acquiring Test Oracle. In software testing, Test Assertion plays

a critical role in assessing whether the actual behavior of the pro-
gram aligns with the expected behavior specified by the developers
(i.e., the test oracle) [8, 14, 15, 53]. If the observed values of the
program state differ from the oracle, the test assertion fails, indi-
cating that the program is incorrect. Test failures indicate software
regression caused by buggy code introduced through developer
modification. Hence, in addition to coverage, the quality of asser-
tions becomes crucial in assessing the effectiveness of test cases
in capturing faults within the source code [16, 21, 37]. Hence, to
detect redundancies in test cases, we use both code coverage and
test assertion, ensuring effective identification of redundant test
executions. We instrument the test assertions to collect the state

A First Look at the Inheritance-Induced Redundant Test Execution

Table 2: Systems Studied and Their Inheritance Statistics.

#Inheritance #Test classes constituted #Test classes within

Project tree by inheritance tree entire codebase
Commons-collections 10 206 (85%) 243
Zookeeper 6 301 (80%) 378
Avro 46 233 (49%) 478
Maven 13 83 (37%) 227
Shiro 10 45 (36%) 126
Commons-math 27 124 (31%) 400
Feign 6 30 (28%) 108
Totdb 21 110 (25%) 437
Shenyu 7 133 (16%) 838
Dubbo 32 122 (14%) 856
Graphhopper 11 36 (14%) 252
Rocketmq 5 23 (11%) 214
Commons-lang 6 16 (10%) 161
Pdfbox 3 17 (8%) 213
Biojava 3 11 (4%) 259
Total 202 1,691 (31%) 5,322

of the program for both expected and actual behavior during test
execution. Our test instrumentation is lightweight. We examine
the static import of the studied systems to uncover all potential
testing frameworks (e.g., JUnit/Hemcrest) that developers may use
to write test cases. From these frameworks, we extract all the APIs
used for assertion. During the test instrumentation, we identify
such APIs and replace these APIs with print statements, which
collect the program states during test execution. However, during
our instrumentation, we uncovered that assertions are written in a
variety of contexts in the test code. In particular, (1) The test cases
may rely on reusable method which performs the oracle analysis.
In this case, the test case itself may not have assertions. Hence, we
leverage Spoon to instrument the entire codebase to collect more
accurate test oracles.

3.3.3 Execution Time of our Technique. As discussed previously, our

technique consists of three important steps: detecting 1) Redundancy-
Inducing Inheritance, 2) Inheritance-Induced Redundant Test Candi-

dates, and 3) Inheritance-Induced Redundant Test Executions. The

execution time for steps 1) and 2) takes a few seconds to less than

3 minutes, which is relatively trivial. We do not consider the execu-
tion time for dynamic analysis since JaCoCo is third-party software.

However, based on JaCoCo developers, the performance overhead is

approximately a 10% increase from normal test execution time [18].

However, our static analysis help us locate inheritance-related is-
sues and saves time for our dynamic analysis.

4 Studying Inheritance-Induced Test Case
Redundancy

In this section, we first introduce the studied systems. Then, we
study inheritance-induced test redundancy by answering four RQs.
Studied Systems. We conduct our analysis on 15 open-sourced
systems. The selection of 15 systems was influenced by time con-
straints, as analyzing all 503 systems from Section 2 would have
been time-consuming. To identify the 15 systems, we applied addi-
tional criteria to identify highly maintained systems: the presence
of inheritance, usage of jUnit in the Maven configuration files, suffi-
cient test files, containing commit activity between 2022-2023, high
popularity (stargazer count > 600), and non-forked repositories. The
criteria for systems to have inheritance is to ensure that redundan-
cies are common issues for systems that involve inheritance. From

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

the pool of systems, we randomly selected the following 15 sys-
tems: Commons-math, Commons-lang, Iotdb, Maven, Pdfbox, Shiro,
Shenyu, Biojava, Rocketmq, dubbo, Avro, Zookeeper, Commons-
collections, Feign, and Graphhopper. As shown in Table 2, these
studied systems cover different domains, from distributed databases
to stream processing frameworks, message brokers, and group
chat servers. Table 2 also displays the number of test inheritance
extracted from the studied systems using the technique from Sec-
tion 3.1.2. The results reveal that despite the relatively small number
of test inheritances tree in some systems, like commons-collections
(i.e., 10 inheritances), their impact on the codebase was substantial,
constituting 85% of the total number of test classes. In contrast,
in systems like Avro, which had a higher number of test inheri-
tances tree (i.e., 46), the percentage of impacted test classes was
lower, at 49%. This finding suggests that even a few instances of
test inheritance can substantially influence overall testing structure.
It underscores the need to analyze the intricacies inheritance in
each system to grasp the true impacts of test inheritance. In con-
clusion, the results highlight the diverse nature of test inheritance
in different systems.

RQ1: How Prevalent are Inheritance-Induced
Redundant Test Candidates?

Motivation. As discussed in Section 2, inheritance is widely adopted
in practice, which raises an intriguing question about the num-
ber of test cases inherited from superclasses and whether test
cases may become redundant. Particularly, when extensive test
inheritance occurs, test cases may be inherited by numerous test
subclasses, leading to challenges in understanding the test logic
inherited from the superclass and the possibility of redundant
test execution. This research question aims to investigate the oc-
currence of Inheritance-Induced Redundant Test Candidates to shed
light on the implications of test inheritance in real-world projects.
By exploring these test case relationships, we aim to gain valuable
insights into the impact of inheritance in software testing.
Approach. In Section 3.1, we presented our static analysis approach
to identify Inheritance-Induced Redundant Test Candidates. These
candidates arise when two or more subclasses inherit the same
test cases from the superclass, leading to the execution of inher-
ited test cases multiple times (may or may not be redundant). To
assess the prevalence of these candidates, we compare them with all
executable test cases in the studied systems, using the mvn-surefire
test execution strategy by following the approach that is described
in Section 3.3.

Result. On average, inheritance-induced redundant test candi-
dates account for approximately 13% of the total executable
test cases. This finding is based on a comparison of the number
of Inheritance-Induced Redundant Test Candidates against the total
number of executable test cases, which is reported in the last col-
umn, i.e., # Discovered Candidates, as shown in Table 3. Specifically,
out of the 40,420 executable test cases in the examined systems,
5,080 (13%) are attributed to potential redundancies, specifically
through test inheritance. This indicates a potentially significant
impact of test inheritance on the overall testing efforts. For instance,
Table 3 highlights that 50% of the test cases in Commons-C. are con-
tributed through inheritance, followed by 21% in both Commons-M.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

Table 3: Revealing the landscape of redundant test candidates: A summary of the static analysis result.

Inheritance-Induced Redundant Test Candidates
#Unique Test Cases #Occurrence in various subclasses #Discovered #Total Executable

Project Defined in Superclass Mean Max Min Multiplier Candidates Test Cases
commons-collections 230 14 93 2 14x 3167 (50%) 6367
commons-math 251 3 17 2 3x 866 (21%) 4036
feign 69 4 7 2 3x 299 (21%) 1441
shiro 14 5 11 2 5% 65 (8%) 822
dubbo 66 4 6 2 4x 236 (7%) 3626
biojava 30 3 3 2 3x 86 (6%) 1436
avro 31 4 5 2 4x 122 (3%) 3984
graphhopper 44 2 3 2 2x 98 (3%) 3347
maven 18 2 2 2 2x 36 (3%) 1058
shenyu 1 26 26 26 26x 26 (3%) 874
zookeeper 23 2 2 2 2x 46 (1%) 3156
pdfbox 4 3 4 2 3x 12 (1%) 1905
iotdb 5 2 2 2 2x 10 (1%) 1618
commons-lang 3 3 3 3 3x 9 (<1%) 6137
rocketmq 1 2 2 2 2x 2 (<1%) 613
Total 790 N/A N/A N/A 6x 5080 (13%) 40420

and Feign. The results highlight the high prevalence of Inheritance-
Induced Redundant Test Candidates among the test cases. While the
average percentage of Inheritance-Induced Redundant Test Candi-
dates may seem modest at 13%, the presence of such test cases is
not negligible, given the large number of test cases in the examined
systems. Furthermore, certain systems, such as Commons-C., show
a remarkably high percentage of inherited test cases, highlighting
the importance of examining inheritance relationships and their
impact on testing.

Initially, redundant test candidates come from 790 unique test
cases. However, through inheritance the number of redundant
candidates can increase sixfold. We also analyze the number of
different subclasses from which the redundant candidates can
be inherited. For instance, if a Inheritance-Induced Redundant Test
Candidates test case is inherited from two subclasses, then we
consider this test case to be multiplied two times through inher-
itance. We depict this multiplier in column 8 (e.g., Multiplier) in
Table 3. Furthermore, we provide three summary statistics (mean,
max, min) to show the diversity of inheritance. Hence, Table 3
shows that Commons-C. has 230 unique test cases that are defined
in superclasses. These test cases undergo inheritance through an
average of 14 subclasses, with a maximum of 93 subclasses and
a minimum of 2 subclasses. Through various inheritance prac-
tices, the number of redundant candidates then multiplies by 14x,
increasing to 3167 test cases. Notably, all systems initially have a
smaller subset of test cases (790). However, through inheritance,
the total number of potential redundant candidates can increase
sixfold (to 5,080). These initial findings underscore the potential of
identifying and addressing redundant test candidates to optimize
testing resources.

Answers to RQ1. We discovered that 13% of the total exe-
cutable test cases are Inheritance-Induced Redundant Test Can-
didates. These instances of redundancies are primarily caused
by a small subset of test cases, but their occurrence increases
six-fold through the inheritance process.

RQ2: Are the Inheritance-Induced Redundant
Test Candidates Truly Redundant?

Motivation. InRQ1, based on our static analysis results, we observed
that systems that utilize inheritance consistently exhibit potential
redundant candidates. However, assessing the redundancy of a test
case solely through static analysis presents challenges. For example,
consider a scenario where two subclasses inherit the same test case.
Due to program dependencies, each subclass may have different
execution contexts (e.g., through test fixtures [24]) of the test case
differently; thus, these test cases cannot be considered redundant.
Hence, in this RQ, our objective is to delve deeper into the true re-
dundancy of these uncovered redundant candidates by conducting
a comparative analysis of their code coverage and test oracles. By
examining these quality attributes, we aim to gain comprehensive
insights into the true redundancy of these test cases. We believe that
this investigation will contribute significantly to enhancing the un-
derstanding of the effectiveness of these redundant test candidates
and their overall impact on testing quality.

Approach. We define test case redundancy as the condition where
the coverage and test oracles are identical. We collect coverage
and oracle following the approach from Section 3.3.1. For complete
coverage comparison, we compare branch, line and instruction.
We use Algorithm 1, to identify truly redundant tests from the
initial Inheritance-Induced Redundant Test Candidates. Note
that, employing dynamic analysis to compare all test executions
can be resource-intensive, as not all redundant test cases are in-
duced by inheritance, which makes our static analysis an important
intermediate step to focus on Inheritance-Induced Redundant Test
Executions. The algorithm proceeds through three key steps. In
step (D), a set of redundant test candidates, along with their cor-
responding coverage and oracle information, is provided as input.
In step (2), as shown in line 4, the algorithm generates all possi-
ble pairwise combinations of the redundant candidates. For each
pair, it compares both their coverage and oracle information. A
pair is deemed redundant only when both coverage and oracle are
found to be equivalent. This comparison is represented by a triplet,
denoted as < Test1, Test2, Boolean >, where the boolean value is
True if and only if both coverage and oracle are equal, and False

A First Look at the Inheritance-Induced Redundant Test Execution

otherwise. Given that pairwise comparisons are employed among
the redundant candidates, the number of comparisons performed
follows the formula M In step), as shown in line 5, we use
union-find [51] algorithfn to establish the connected component
relationships within the pairwise comparisons. The output of the
relationship is denoted as Group. In step @, as shown in line 7-12,
we examine the Group and flag component that has at least two
candidates to be redundant, i.e., have the same code coverage and
oracle. For example, given < A, B, False >, < A,C, False >, and
< B,C,True >, the algorithm will flag that the presence of A al-
ways leads to False, indicating that B and C are redundant, while A
is non-redundant.

Algorithm 1 Redundancy Analysis

Input: Array Coverage, Array Oracle
Output:
1: Global Var1: RedundantTest
2: Global Var2: noRedundantTest
3: procedure FINDREDUNDANTTEST(Coverage,Oracle)
4 Pairs « poPAIRWISECOMBINATION(Coverage, Oracle)

5 Group < UNIONFIND(Pair)

6 for group in Groups do

7: if len(group) > 1 then

8 RedundantTest « group

9 else

10: noRedundantTest « group
1 end if

12: end for

13: end procedure

Result. 45% of identified redundant test candidates are truly
redundant. Table 4 provides an overview of the identified redun-
dant test executions among the studied redundant test candidates.
We uncover that the majority of systems exhibit redundant tests,
with around 50% or more of the candidates falling into redundant
tests in most systems. Notably, Commons-C. initially contained the
highest number of redundant test candidates. However, through
redundancy analysis, a significant portion of these candidates (86%)
were identified as non-redundant, leaving only 14% as truly re-
dundant. This may be related to developers’ design and usage of
inheritance in test cases. For example, in Commons-C. developers
commonly use test inheritance to help test diverse implementations
of different algorithms, e.g., sorting algorithms. Namely, these sort-
ing algorithms share the same test setup, i.e., create new lists, prior
to testing the sorting algorithm. Developers use test inheritance to
reuse code and avoid duplication.

We uncover that on average 45% of the redundant test candidates
are truly redundant when considering both code coverage and test
oracles, while the remaining 55% demonstrate differences in either
code coverage, test oracles, or both, making them non-redundant.
These results yield two important insights: Firstly, the significant
presence of redundancy (45%) among the identified candidates of
redundant test cases suggests opportunities for eliminating tests
that may not contribute to fault localization. Secondly, from another
perspective, the presence of a significant number (55%) of non-
redundant test cases highlights the potential benefits of test case

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 4: The prevalence of redundant tests and their im-
pact on test execution time. Candidates refers to Inheritance-
Induced Redundant Test Candidates and Redundant refers to
true redundant test cases.

H # Test Execution

‘ Test Execution Time (seconds)

Project Candidates Redundant || Total Tests Redundant
Feign 291 291 (100%) 183.996 146.428 (79.6%)
Commons-C. 2677 385 (14%) 16.076 4.373 (27.2%)
Avro 106 87 (82%) 215.396 36.988 (17.2%)
Shiro 65 30 (46%) 86.845 13.696 (15.8%)
Commons-M. 817 415 (51%) 75.371 5.377 (7.1%)
Rocketmq 2 2 (100%) 267.950 1.974 (0.7%)
Pdfbox 12 8 (67%) 66.070 0.257 (0.4%)
Biojava 86 63 (73%) 774.207 2.615 (0.3%)
Totdb 10 4 (40%) 1362.134 3.540 (0.3%)
Maven 36 18 (50%) 48.927 0.103 (0.2%)
Dubbo 201 99 (49%) 1322.386 0.493 (0.1%)
Commons-L. 9 0 N/A N/A
Graphhopper 92 0 N/A N/A
Shenyu 26 0 N/A N/A
Zookeeper 42 0 N/A N/A
Average % Redundancy in Candidates || % Contribution to Execution Time
45% 14%

inheritance in not only facilitating code reuse but also diversifying
code coverage and assertions, enhancing testing practice.

Answers to RQ2. We uncover that 45% of the redundant test
candidates are truly redundant tests, whereas the remaining
test cases facilitate diversification of coverage and assertion
oracle.

RQ3: How Much Time does Inheritance Induced
Redundant Test Contribute to the Overall Test
Execution Time?

Motivation. As seenin RQ2, there is a large occurrence of redundant
test cases exhibiting identical coverage and oracle results. Consid-
ering the prevalence of these redundant tests, it is important to
investigate their impact on the overall test execution time and to
what extent to which these redundant test cases prolong the testing
process.

Approach. Following Section 3.3, we employed Maven-Surefire to
execute the redundant test cases and collect the test execution
time. Specifically, we use mvn clean test to run all the test cases
and mvn clean test -DTest=RedundantCandidates to sequen-
tially run redundant test cases for each studied project within a
single JVM. Note that the test execution time excludes the time
for code compilation. To enhance the reliability of our findings,
we conducted data collection five times and calculated the average
results.

Result. On average, the detected inheritance induced redun-
dant tests contributes to 14% of the total test execution time.
Table 4 provides detailed insights into the execution time of re-
dundant tests and the total number of tests for different studied
systems. Among the studied systems, 11 out of 15 systems con-
tained redundant test cases. The presence of these redundant tests
had a large impact on the overall test execution time, constituting
approximately 14% of the total time. As anticipated, the extent to
which redundant test cases contributed to the execution time was

ICSE °24, April 14-20, 2024, Lisbon, Portugal

closely related to their proportion within the total number of test
cases. For example, systems such as Feign and Commons-C. exhib-
ited a higher overall execution time due to a substantial number of
redundant test cases. Interestingly, for Commons-C., although it has
many redundant candidates (e.g., 2677), it has fewer truly redundant
tests (e.g., 385), which is the opposite for other systems like Feign,
where 100% of candidates are truly redundant. More importantly,
we find that while Commons-C. has a lower percentage of truly
redundant tests (e.g., 17.2%) compared to Commons-M. and Avro,
its redundant test execution contributes much more to the overall
execution time. Therefore, the impact of redundant tests depends
on the test design, and some systems may be more affected by test
execution time. This finding also underscores the potential benefits
of removing redundancy, as it has the potential to significantly
improve testing resources.

Answers to RQ3. We uncover that 14% of total test execution
time is spent on redundant test cases that do not provide any
additional benefits.

Discusson. Expanding upon the findings of our RQ3, it becomes
evident that using inheritance in the test code leads to an increased
occurrence of redundant test execution. Such redundancies are not
immediately noticeable in the test code, as they can be inherited
from its superclass. Our methodology allows for the detection of
such redundancies caused by inheritance, providing developers
with awareness of potential bottlenecks in test code. Developers
can bypass these redundancies by using the build system (Maven)
to exclude test cases from execution. Another bypassing strategy
is to override the inherited test cases with another test case in the
subclass annotated with @Ignore (Apache Ignite - 63b9e1653d), as
often shown in prior work [25]. However, these strategies do not
completely remove redundancies in the test code; they only skip
their execution, overlooking the complexity of redundancy removal.
In RQ4, we elaborate on the complexity of removing redundancies
related to inheritance test cases.

RQ4: Assessing the Feasibility of Reducing
Inheritance-Induced Redundant Test Execution

Motivation. In prior RQs, we uncovered many test redundancies.
Consequently, the next natural step is to eliminate these redundan-
cies that do not contribute effectively to fault localization capabili-
ties in order to improve test execution time. While developers could
temporarily bypass such tests, the removal of redundant test cases
within an inheritance context presents a more significant challenge.
As observed in RQ1, in extreme cases, a test case can be inherited
and executed as many as 96 times, demonstrating complex coupling
and making the task of redundancy removal challenging. Hence,
in this RQ, we conduct an empirical analysis to understand the
feasibility of removing redundant test cases in inheritance. Our aim
is to provide insights to aid future research in the development of
test case minimization tools.

Approach. We conduct a feasibility analysis because, unlike previ-
ous works on test case minimization that typically involve straight-
forward removal of redundant test cases [10, 28, 36], the scenario
of test case redundancies related to inheritance contains complex

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

428 588 + 1192 1658 386 220
Redundant NT%r;—tRedundant
Redundant Test
Test Non-Redundant
Test

Figure 3: Overlap between Redundant and Non-redundant
Tests in Test Execution. The overlapping region (orange) indi-
cates that an inherited test case is redundant in one subclass
but non-redundant in another subclass. The one figures on
the left correspond to five systems, while the two figures on
the right correspond to the rest.

coupling and necessitates careful refactoring decisions. Hence, we
conduct two analysis to study the challenges of removing inheri-
tance induced redundant test cases. We list them below:

A. Can inherited test cases become both redundant and non-redundant
test executions?

B. How far are the redundant test cases from their definition of the
superclasses in the inheritance trees?

RQ4(A): Can inherited test cases contain both redundant and
non-redundant groups of tests?

Motivation. In RQ3, We uncovered that 45% of identified redun-
dant candidates are truly redundant, whereas the remaining is
non-redundant, i.e., through code coverage or test oracle. In this
RQ, we hypothesize that it is possible for inherited test cases to be
redundant in one context, i.e., redundant in one subclass but not
redundant in another subclass. The existence of such a complex
scenario will give us an initial glimpse of the challenges for efficient
test case minimization.

Approach. We modify Algorithm 1 to check if the equivalent group
contains both redundant test cases and non-redundant test cases
resulting from the same Inheritance-Induced Redundant Test Candi-
dates, and denote this as Co-existence group.

Result. Out of 1,402 detected redundant tests, 588 (41%) test
cases co-occurs with non-redundant tests. As illustrated in Fig-
ure 3, inherited tests can result in both redundant and non-redundant
test executions. In other words, inheriting a test case results in re-
dundancies in one subclass, but not in another subclass, due
to the different execution contexts specified by developers, e.g.,
through test fixtures. Specifically, our analysis reveals that among
the 1,402 detected truly redundant test cases, 588 test cases actually
co-exist with their non-redundant test case counterparts. Notably,
5 out of 15 studied systems (i.e., Avro, Commons-C., Commons-M.,
Dubbo, and Shiro) encompass this co-existence of redundancy and
non-redundancy in the inherited test cases. This suggests that even
for the same test case defined in a superclass, inheritance of this test
case does always cause redundancy, and some may be utilized in
different subclass contexts (e.g., to ease maintenance and improve
coverage). However, whether test inheritance is beneficial to test
design remains a future research problem. While it may improve
code coverage, it can also increase code complexity, which may
become difficult to maintain in the long run. Nonetheless, the vari-
ability in the nature of redundancy may be related to the design of

A First Look at the Inheritance-Induced Redundant Test Execution

1223 .
Distance

1200
|
1000
735 728
40
50
297
156
86 I39 84
0 i -5

Co-existence Not Redundant Redundant
Distance between Inherited Test Cases
from Superclass to Subclass

) ©
1= S
S =3

[RF NIRRT

IS
1<}
15}

Frequency of Executable Test Cases
S

Figure 4: Analysis of distance in the inheritance tree between
the parent test case and the child test.

test cases in different systems. These findings highlight a complex
scenario for effective test case minimization.

RQ4(B): How far are the redundant test cases from their
definition of the superclasses in the inheritance trees?
Motivation. As seen in RQ4(A), Inheritance-Induced Redundant Test
Candidates can be found in many different subclass contexts, co-
existing with non-redundant test cases. In this RQ, we delve into
the distance of these executable test cases in the subclass, i.e.,
where the test case is executed, from their superclass, i.e., where
the test case is declared. Analyzing class distance will reveal the
potential existence of complex hierarchical relationships, i.e., how
many subclasses do these inherited test cases impact through
inheritance? Analyzing such distance is beneficial to understand
the challenges of removing redundant tests that impact multiple
classes.

Approach. We investigate class distance in all of the Redundancy-
Inducing Inheritance (e.g., 4,472 test candidates), including redun-
dant test, non-redundant test, and co-existence of both. To analyze
class distance, we leverage our inheritance tree from Section 3.1.2.
We use the shortest-path algorithm [50] to find the path it takes to
reach the impacted subclass from a superclass.

Result. Inherited test cases that lead to both redundant and
non-redundant test executions in subclasses exhibit a highly
variable number of inheritance distance from superclass. As
shown in Figure 4, majority of redundant tests (728/812 - 90%) are
executed by the direct subclass, whereas remaining 10% have
executions that executed by two subclasses downstream. The
finding shows that these redundant test cases may be easier to
resolve. Interestingly, we find that for tests that co-exist with non-
redundant tests, there are more diverse sets of class distances. In
particular, some non-redundant tests may be executed up to five
class distances in the downstream subclass. Namely, for systems
Avro, Commons-C., Commons-M., Dubbo, and Shiro, which contains
co-existence of redundant and non-redundant tests, there is a more
complex inheritance distance. This reveals that inheritance relation-
ships within Inheritance-Induced Redundant Test Executions may
have significant variability in hierarchical structures. Specifically,
it is possible that test cases designed with such complexity in class
distance are less likely to be redundant, as they impact a higher

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

number of subclasses, whereas much simpler class hierarchies
have a higher tendency to be redundant. Nonetheless, the pres-
ence of a complex hierarchy constitutes additional complexity that
makes test case minimization challenging, as it may impact many
downstream subclasses.

Answers to RQ4. Removing redundant tests need careful
preservation of code coverage. This is particularly important
when dealing complex inheritance relationships, where co-
existence of both redundant and non-redundant can contribute
to code coverage and may impact multiple classes.

Discusson. Expanding upon the findings of our study, which demon-
strate a significant overlap between redundant and non-redundant
test cases, it becomes evident that the removal of redundant test
cases, as often seen in traditional test case reduction strategies,
may not represent a valid strategy for inherited test cases. Our re-
sults underscore the complexity of the issue. In other words, while
redundancies must be addressed, it is also apparent that certain
test cases leverage inheritance to enhance coverage and assertions,
indicating their value in the testing process. Consequently, this
raises an interesting question: How can we reorganize the test in-
terfaces to reduce redundancies and improve test maintainability?
Namely, our results show the possibility of exploring higher-level
architectural refactoring to enhance test quality. Nevertheless, our
approach provides initial insights to eliminate the impact on test
execution overhead.

5 Implications & Future Works

Based on our empirical findings, we present actionable implications
and future research directions for researchers and practitioners.

5.1 Implication for Researchers.

Future research should explore test removal while preserving
code coverage, as inheritance-induced redundant test cases
may overlap with non-redundant tests. While our analysis re-
vealed many Inheritance-Induced Redundant Test Executions, in
RQ4 we also found a 41% overlap with tests that contribute to
increased/different code coverage. This presents a challenge in
determining how to remove redundant test executions while pre-
serving non-redundant test cases that aim to increase code coverage.
The co-existence of redundant and non-redundant tests complicates
test case reduction, as both types of tests serve different purposes.
Redundant test cases may increase execution time and hinder fault
localization capability, while non-redundant test cases play a role
in increasing code coverage. Hence, future research is necessary
to comprehend the trade-offs associated with using inheritance to
achieve code coverage and its potential increase in redundancy.

Further research may investigate trade-offs between using
inheritance to make tests reduce maintenance cost and not
using inheritance to reduce test case redundancies. While in-
heritance in test [17, 43, 45] is a controversial practice, we find
that 40% amongst 503 sampled systems utilize inheritance in test
code, which is widely adopted in practice. In particular, projects
like Commons-collections and Commons-math, despite their heavy
reliance on inheritance, exhibit fewer redundancies, hinting at the
compactness and superior quality of their tests. This opens the

ICSE °24, April 14-20, 2024, Lisbon, Portugal

door to future research avenues, exploring the trade-offs between
employing inheritance and abstaining from it. Future research may
also delve into quality attributes, such as the time required for
activities like bug fixing, coverage enhancement, and feature addi-
tion, comparing tests that employ inheritance to those that do not.
Moreover, for test cases that result in redundancies, future studies
may also investigate how they manifest in the code and provide
preventative measures.

In general, future research is needed to understand how to
remove complex inheritance relationships in the test code. In
RQ4, we revealed that redundant tests may exhibit complex inheri-
tance hierarchy relationships. Removing redundant tests in such
scenarios poses a challenge, as redundancy impacts multiple class
relationships. Further research is needed to explore effective strate-
gies and tools to refactor these complex inheritance relationships
in general, which may also help remove inheritance-induced redun-
dant test cases. Namely, our paper show the possibility of exploring
higher-level architectural refactoring to enhance test quality.

We uncovered the widespread existence of inheritance-induced
redundant test cases. How these test cases impact fault local-
ization can be further explored in future research. As redun-
dant test cases are inherited from other test classes, test failures
may be difficult to localize using fault localization. For instance,
in Apache-Avro, the TestProtocolSpecific class contains 15 test cases
that are inherited and executed by five different subclasses. Inter-
estingly, all 15 test cases fail in one subclass while passing in the
remaining four, which might be due to specific bugs associated
with the test setup in that particular subclass. As these failures are
not indicative of source code defects, they could potentially mis-
lead developers and fault localization algorithms, which attempt
to localize source code defects [52], causing them to identify faults
incorrectly. We encountered a similar scenario in AbstractOrdered-
BidiMapDecoratorTest from Commons-collections. Considering that
Commons-collections is part of the defects4j benchmark and contains
many inheritance-induced dependencies, future studies could also
investigate how eliminating such redundancies can improve fault
localization techniques focus on distinct failure.

5.2 Implication for Practitioners.

Practitioners need better support for detecting repetitive test
candidates. Inheritance is a double-edged sword, while it may
improve test compactness and maintainability, it can also introduce
test case redundancies. For example, as seen in RQ2, while many
redundant test cases are caused by inheritance, they are related to a
small subset of parent test cases. Furthermore, some test cases may
repeat up to 93 times due to inheritance. Therefore, it would be
beneficial to raise awareness among developers about these issues.
Future work should provide tools to assists developers to be aware
of the redundant test cases.

6 Related Work

Inheritance Evolution and Maintenance. Many works investigated
the evolution of inheritance in source code. For example, Shaheen
and du Bousquet [42] studied the relationship between inheritance
and the number of methods to test. They claim that testing should
be more expensive if the inheritance depth is high, as the inherited
method should be re-tested. Nasseri et al. [32] studied whether

10

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

inheritance evolves breadth-wise or depth-wise, and developers
consider depth-wise as hard to maintain and prefer breadth-wise
inheritance. Nasseri et al. [33] studied the evolution of inheritance
from the perspective of class re-location to understand what moti-
vates their move and try to give insights on potential maintenance
challenges. Giordano et al. [12] studied the evolution and impact
of delegation and inheritance on code quality. They find that their
evolution often leads to code smell severity being reduced and
improved maintainability.

Inheritance Maintenance in Test Code. Limited works investigated
the evolution and maintenance of inheritance in the test code. The
work by Wang et al. [49] conjectured that despite the existence of
powerful mocking frameworks, developers often turn to inheritance
to mock source code under test. Hence, they proposed a tool to
refactor mocking via inheritance with a mocking framework. In
contrast, our analysis shows the existence of inheritance in the
test case design and its implication on test execution overhead.
There is another body of work relevant to our work. Peng et al. [40]
studied the impact of code dependencies on continuous integration.
They found that inheritance causes the majority of dependency
in test cases and proposed test dependency-related smells. While
their work is the most relevant to our work, they emphasize test
dependencies and little on the impact of test code redundancies.
Test Case Minimization/Reduction. Our work is related to research
in test case reduction/minimization, which focuses on eliminat-
ing redundant test cases while preserving fault detection capa-
bility. Nadeem et al. [31] developed TestFilter that uses the
statement-coverage criterion for the reduction of test cases. Fang
and Lam [11] used assertion fingerprints to detect similar test cases
that can be refactored into one single test case. Alipour et al. [3]
presented an approach that reduces a test suite by compromising
a certain amount of coverage while preserving the overall fault-
finding ability. Our work, on the contrary, is more related to the
design of the test code, which makes test case removal non-trivial.
Complementary to test case reduction, other works focus entirely
on reducing time execution of test executions [13, 23, 26]. Our work,
on the contrary, focuses on identifying redundant test cases, which
also help reduce test execution time. Moreover, the issues of redun-
dancy still exist in these works. Vahabzadeh et al. [48] performed
fine-grained test case minimization by merging all test cases that
have the same code coverage. However, due to the complexity of
inheritance relationships, they do not fully explore inheritance in
their study. Our work, on the contrary, not only detect redundancy
but can also point out the underlying causes (i.e., inheritance).

7 Threats to Validity

Internal Validity. Firstly, our findings depend on the accuracy
of the third-party tool (e.g., spoon) to mine Redundancy-Inducing
Inheritance and Inheritance-Induced Redundant Test Candidates in
the source code and also the accuracy of the dynamic analysis
tool (e.g., Jacoco) to execute Inheritance-Induced Redundant Test
Executions. It is important to note that validating the precision of
these third-party tools is not within the scope of our responsibility,
However, both spoon and Jacoco are widely used in prior research
and in practice and we did not find any false positives during our
manual examination of the results.

A First Look at the Inheritance-Induced Redundant Test Execution

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

External Validity. Our studied systems are all open source sys- References

tems implemented in Java, so the result may not be generalized to 8
all systems. However, to minimize the threat, we follow a set of
criteria to popular systems from various domains, large in scale,
and actively maintained. Within this criteria we randomly sample
15 studied systems to obtain diverse studied systems. However, we B3]
acknowledge that the three projects containing over 85% of the
redundancy candidates might indicate a concentration of the issue

in certain projects. Nevertheless, the representatives of the entire (4]
open-source Java project ecosystem is a complex matter. Our intent

was not to claim that this issue is uniformly distributed across all [5]
projects but to highlight that our findings are dependent on how

different systems use inheritance in their test code design. Hence, [6)
our work may not be applicable to all systems, and the impact
may be more significant in larger projects. Although our tool is
designed for analyzing Java systems, we have made our source code
available, where our implementations may inspire writing similar (]
analyses for other programming languages. We encourage future

studies to replicate our experiments on other systems and projects [0
implemented in different programming languages.

Construct Validity. Our dynamic analysis encountered some test

failures and environmental errors, resulting in un-executed test (10
cases and potentially under-representing our analysis for Inheritance-
Induced Redundant Test Executions. However, the number of un-
executed tests is small. There may be bugs in the tools that we
use. For example, prior to JaCoCo version 0.8.10 (i.e., most updated
version), the report-aggregate plugin contained a bug where it only (12]
collects coverage of dependent module except for its current mod-
ule [19]. We noticed the issue and migrated to the fixed version of
Jacoco. However, there may still be undiscovered bugs in the tools
that can affect the results. Our technique leverage functionality
from third-party software, such as Spoon and Jacoco. We leverage
Spoon to extract Redundancy-Inducing Inheritance and Inheritance-
Induced Redundant Test Candidates, whereas we leverage Jacoco to
identify Inheritance-Induced Redundant Test Executions. Moreover, [15]
for extracting assertion of the test cases we also rely on the Spoon

API. It is important to note that validating the precision of these
third-party tools is not within the scope of our work. However, (16]
our manual investigation of the results from Redundancy-Inducing
Inheritance achieved 100% precision.

[2

(1]

8 Conclusion

This paper presents the first empirical study on test case redundancy
caused by inheritance. We propose a hybrid approach that combines
static and dynamic analysis to detect and verify inheritance-induced
redundant test cases. We apply our approach to 15 open-source
Java systems. We find that (1) Despite controversies surrounding [20]
test inheritance, non-negligible tests (14%) of test case executions
are redundant. (2) The redundant test cases take, on average, 13% of

the total execution, which adds additional test execution overhead. [22]
(3) Many inherited test cases (40%) are redundant in some subclass
but non-redundant in others, making it difficult to eliminate re- [23]

dundancy while preserving code coverage. This complexity calls
for careful refactoring decisions to address the issue effectively.
Finally, we also discuss challenges and future research directions
on resolving inheritance-related issues.

11

Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. 2017.
Agile software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439 (2017).

Haldun Akoglu. 2018. User’s guide to correlation coefficients. Turkish journal of
emergency medicine 18, 3 (2018), 91-93.

Mohammad Amin Alipour, August Shi, Rahul Gopinath, Darko Marinov, and
Alex Groce. 2016. Evaluating non-adequate test-case reduction. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
16-26.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

Robert Biddle and Ewan Tempero. 1996. Explaining inheritance: A code reusabil-
ity perspective. In Proceedings of the twenty-seventh SIGCSE technical symposium
on Computer science education. 217-221.

Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476-493.
Istehad Chowdhury and Mohammad Zulkernine. 2011. Using complexity, cou-
pling, and cohesion metrics as early indicators of vulnerabilities. Journal of
Systems Architecture 57, 3 (2011), 294-313.

Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, and Benoit Baudry. 2019. A snowballing literature study on test
amplification. Journal of Systems and Software 157 (2019), 110398.

Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2013.
Coverage-based test case prioritisation: An industrial case study. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation.
IEEE, 302-311.

Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015.
Coverage-based regression test case selection, minimization and prioritization: A
case study on an industrial system. Software Testing, Verification and Reliability
25, 4 (2015), 371-396.

Zheng Felix Fang and Patrick Lam. 2015. Identifying test refactoring candidates
with assertion fingerprints. In Proceedings of the Principles and Practices of
Programming on The Java Platform. 125-137.

Giammaria Giordano, Antonio Fasulo, Gemma Catolino, Fabio Palomba, Filom-
ena Ferrucci, and Carmine Gravino. 2022. On the evolution of inheritance and
delegation mechanisms and their impact on code quality. In 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 947-958.

Alex Groce, Mohammed Amin Alipour, Chaogiang Zhang, Yang Chen, and John
Regehr. 2014. Cause reduction for quick testing. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation. IEEE, 243-252.

Neha Gupta, Arun Sharma, and Manoj Kumar Pachariya. 2019. An insight into
test case optimization: ideas and trends with future perspectives. IEEE Access 7
(2019), 22310-22327.

Soneya Binta Hossain, Matthew B Dwyer, Sebastian Elbaum, and Anh Nguyen-
Tuong. 2023. Measuring and Mitigating Gaps in Structural Testing. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1712-1723.

Soneya Binta Hossain, Matthew B Dwyer, Sebastian Elbaum, and Anh Nguyen-
Tuong. 2023. Measuring and Mitigating Gaps in Structural Testing. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1712-1723.

https://lists.apache.org/list.html?dev@maven.apache.org. 2023.
https://lists.apache.org/list.html?dev@maven.apache.org. https://lists.apache.org/
thread/cpm046p745j7nj0dvwImtxfmthkgobp6

Jacoco. 2003. [java code coverage] Reasons for huge performance impact.
Retrieved March 2, 2005 from https://jacoco.narkive.com/adoFZzfD/java-code-
coverage-reasons-for-huge-performance-impact#:~:text=Usually %20the%
20performance%20impact%20of,s0%20a%20factor%200f%2010.

Jacoco. 2013. Add parameter to include the current project in the aggregated report.
https://github.com/jacoco/jacoco/pull/1007

Jacoco. 2023. JaCoCo Java Code Coverage Library. Retrieved March 26, 2023
from https://www.jacoco.org/jacoco/

Yue Jia and Mark Harman. 2009. Higher order mutation testing. Information and
Software Technology 51, 10 (2009), 1379-1393.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312-2323.
Shadi Abdul Khalek and Sarfraz Khurshid. 2011. Efficiently running test suites
using abstract undo operations. In 2011 IEEE 22nd International Symposium on
Software Reliability Engineering. IEEE, 110-119.

Dong Jae Kim, Nikolaos Tsantalis, Tse-Hsun Peter Chen, and Jingiu Yang. 2021.
Studying Test Annotation Maintenance in the Wild. In Proceedings of the 43rd
International Conference on Software Engineering (ICSE ’21). 62—73.

https://lists.apache.org/thread/cpm046p745j7nj0dvw9mtxfmthkgobp6
https://lists.apache.org/thread/cpm046p745j7nj0dvw9mtxfmthkgobp6
https://jacoco.narkive.com/adoFZzfD/java-code-coverage-reasons-for-huge-performance-impact#:~:text=Usually%20the%20performance%20impact%20of,so%20a%20factor%20of%2010.
https://jacoco.narkive.com/adoFZzfD/java-code-coverage-reasons-for-huge-performance-impact#:~:text=Usually%20the%20performance%20impact%20of,so%20a%20factor%20of%2010.
https://jacoco.narkive.com/adoFZzfD/java-code-coverage-reasons-for-huge-performance-impact#:~:text=Usually%20the%20performance%20impact%20of,so%20a%20factor%20of%2010.
https://github.com/jacoco/jacoco/pull/1007
https://www.jacoco.org/jacoco/

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[25]

[26]

[27

[28

[29]

[30

[31]

[32]

[33]

[34

[35

[36]

[37]

[38

[39

Dong Jae Kim, Bo Yang, Jinqiu Yang, and Tse-Hsun Chen. 2021. How disabled
tests manifest in test maintainability challenges?. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1045-1055.

Jinhan Kim, Junhwi Kim, and Shin Yoo. 2017. GPGPGPU: Evaluation of parallelisa-
tion of genetic programming using GPGPU. In Search Based Software Engineering:
9th International Symposium, SSBSE 2017, Paderborn, Germany, September 9-11,
2017, Proceedings 9. Springer, 137-142.

Patipat Konsaard and Lachana Ramingwong. 2015. Total coverage based regres-
sion test case prioritization using genetic algorithm. In 2015 12th International
Conference on Electrical Engineering/Electronics, Computer, Teleccommunications
and Information Technology (ECTI-CON). IEEE, 1-6.

Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.
2007. Efficient unit test case minimization. In Proceedings of the 22nd IEEE/ACM
international conference on Automated software engineering. 417-420.

Cristina Marinescu and Mihai Codoban. 2014. Should we beware the inheritance?
An empirical study on the evolution of seven open source systems. In 2014 9th
International Conference on Software Engineering and Applications (ICSOFT-EA).
IEEE, 246-253.

Scott McMaster and Atif Memon. 2007. Fault detection probability analysis for
coverage-based test suite reduction. In 2007 IEEE International Conference on
Saftware Maintenance. IEEE, 335-344.

Aamer Nadeem, Ali Awais, et al. 2006. TestFilter: a statement-coverage based
test case reduction technique. In 2006 IEEE International Multitopic Conference.
IEEE, 275-280.

Emal Nasseri, Steve Counsell, and M Shepperd. 2008. An empirical study of
evolution of inheritance in Java OSS. In 19th Australian Conference on Software
Engineering (aswec 2008). IEEE, 269-278.

Emal Nasseri, Steve Counsell, and M Shepperd. 2010. Class movement and re-
location: An empirical study of Java inheritance evolution. Journal of Systems
and Software 83, 2 (2010), 303-315.

Oracle. 2022. Inheritance. https://docs.oracle.com/javase/tutorial/java/Iandl/
subclasses.html

Oracle. 2022. Polymorphism. https://docs.oracle.com/javase/tutorial/java/Iandl/
polymorphism.html

Ronggqi Pan, Taher A Ghaleb, and Lionel Briand. 2023. ATM: Black-box Test Case
Minimization based on Test Code Similarity and Evolutionary Search. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1700-1711.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275-378.

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155-1179.
https://doi.org/10.1002/spe.2346

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2016. Spoon: A library for implementing analyses and transformations

12

[40

[41

[42]

[43

[44

[45

[46

[47]

S
&

[49]

[50

[51

(52]

[53

Dong Jae Kim, Tse-Hsun (Peter) Chen, and Jinqiu Yang

of java source code. Software: Practice and Experience 46, 9 (2016), 1155-1179.
Zi Peng, Tse-Hsun Chen, and Jingiu Yang. 2020. Revisiting Test Impact Anal-
ysis in Continuous Testing From the Perspective of Code Dependencies. IEEE
Transactions on Software Engineering (2020).

Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter Tichy. 2003. A
controlled experiment on inheritance depth as a cost factor for code maintenance.
Journal of Systems and Software 65, 2 (2003), 115-126.

Muhammad Rabee Shaheen and Lydie du Bousquet. 2008. Relation between
depth of inheritance tree and number of methods to test. In 2008 1st International
Conference on Software Testing, Verification, and Validation. IEEE, 161-170.
stackoverflow. 2013. Prefer composition over inheritance? https://stackoverflow.
com/questions/49002/prefer-composition-over-inheritance

stackoverflow. 2013. why inheritance is strongly coupled where as composition is
loosely coupled in Java? https://stackoverflow.com/questions/19146979/why-
inheritance-is-strongly-coupled-where-as-composition-is-loosely-coupled-
in-j

stackoverflow. 2020. How can I resolve this redundancy caused by inheritance and
nested class? https://stackoverflow.com/questions/56063575/how-can-i-resolve-
this-redundancy-caused-by-inheritance-and-nested- class

Ramanath Subramanyam and Mayuram S. Krishnan. 2003. Empirical analysis
of ck metrics for object-oriented design complexity: Implications for software
defects. IEEE Transactions on software engineering 29, 4 (2003), 297-310.

Amjed Tahir, Steve Counsell, and Stephen G MacDonell. 2016. An empirical
study into the relationship between class features and test smells. In 2016 23rd
Asia-Pacific Software Engineering Conference (APSEC).

Arash Vahabzadeh, Andrea Stocco, and Ali Mesbah. 2018. Fine-grained test mini-
mization. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 210-221.

Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, and Sunny Wong. 2021. An

automatic refactoring framework for replacing test-production inheritance by
mocking mechanism. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 540-552.

Wikipedia. 2023. Dijkstra’s algorithm. Retrieved 17 July 2023 from https://en.
wikipedia.org/wiki/Dijkstra%27s_algorithm

Wikipedia. 2023. Disjoint-set data structure. Retrieved 17 July 2023 from https:
//en.wikipedia.org/wiki/Disjoint-set_data_structure

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707-740.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability 22, 2
(2012), 67-120.

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. 2010. Search-
ing for a needle in a haystack: Predicting security vulnerabilities for windows
vista. In 2010 Third international conference on software testing, verification and
validation. IEEE, 421-428.

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://doi.org/10.1002/spe.2346
https://stackoverflow.com/questions/49002/prefer-composition-over-inheritance
https://stackoverflow.com/questions/49002/prefer-composition-over-inheritance
https://stackoverflow.com/questions/19146979/why-inheritance-is-strongly-coupled-where-as-composition-is-loosely-coupled-in-j
https://stackoverflow.com/questions/19146979/why-inheritance-is-strongly-coupled-where-as-composition-is-loosely-coupled-in-j
https://stackoverflow.com/questions/19146979/why-inheritance-is-strongly-coupled-where-as-composition-is-loosely-coupled-in-j
https://stackoverflow.com/questions/56063575/how-can-i-resolve-this-redundancy-caused-by-inheritance-and-nested-class
https://stackoverflow.com/questions/56063575/how-can-i-resolve-this-redundancy-caused-by-inheritance-and-nested-class
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

	Abstract
	1 Introduction
	2 Motivation
	3 Our Technique for Identifying Inheritance- Induced Redundant Test Executions
	3.1 Statically Detecting Redundancy-Inducing Inheritance
	3.2 Statically Detecting Inheritance-Induced Redundant Test Candidates
	3.3 Detecting Inheritance-Induced Redundant Test Executions through Dynamic Analysis

	4 Studying Inheritance-Induced Test Case Redundancy
	5 Implications & Future Works
	5.1 Implication for Researchers.
	5.2 Implication for Practitioners.

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	References

