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SLocator: Localizing the Origin of SQL Queries in
Database-Backed Web Applications
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Abstract—In database-backed web applications, developers often leverage Object-Relational Mapping (ORM) frameworks for database
accesses. ORM frameworks provide an abstraction of the underlying database access details so that developers can focus on
implementing the business logic of the application. However, due to the abstraction, developers may not know where and how a
problematic SQL query is generated in the application code, causing challenges in debugging database access problems. In this paper,
we propose an approach, called SLocator, which locates where a SQL query is generated in the application code. SLocator is a hybrid
approach that leverages both static analysis and information retrieval (IR) techniques. SLocator uses static analysis to infer the database
access for every possible path in the control flow graph. Then, given a SQL query, SLocator applies IR techniques to find the control flow
path (i.e., a sequence of methods called in an interprocedural control flow graph) whose inferred database access has the highest
similarity ranking. We implement SLocator for Java’s official ORM API specification (JPA) and evaluate SLocator on seven open source
Java applications. We find that SLocator is able to locate the control flow path that generates a SQL query with a Top@1 accuracy
ranging from 37.4% to 70% for SQL queries in sessions, and 30.7% to 69.2% for individual SQL queries; and Top@5 ranging from 78.3%
to 95.5% for SQL queries in sessions, and 59.1% to 100% for individual SQL queries. We also conduct a study to illustrate how SLocator
may be used for locating issues in the database access code.

Index Terms—Localization, Static Analysis, Information Retrieval, Object-Relational Mapping
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1 INTRODUCTION

MODERN database-backed web applications are be-
coming more complex due to the ever-increasing

functionality. To reduce development efforts and allow
developers to focus on the business logic of the applica-
tions, database-backed web applications often use Object-
Relational Mapping (ORM) frameworks to abstract database
accesses. ORM frameworks have become increasingly popu-
lar with implementations in most modern programming
languages such as Java, C#, Python, and Ruby [1], [2].
A report also shows that among the 2,164 surveyed Java
developers, ORMs are the leading means of database access
and 67.5% use Hibernate (one of the most popular Java ORM
frameworks) instead of other database abstraction frame-
works [3]. ORM provides a conceptual mapping between
objects in object-oriented programming languages, such as
Java, and tables in database management systems (DBMSs).
With ORM mapping, developers can access the DBMS
through a combination of object modifications and ORM API
calls. For example, by calling user.setName(“Alice”) followed
by entityManager.persist(user), the ORM framework would
automatically generate a SQL query, such as UPDATE User
SET userName = “Alice” WHERE ..., which updates the user
name in the DBMS.

Due to their intuitive abstraction of database access, ORM
frameworks are widely used in database-backed web appli-
cations [4], [5], [6]. Despite the popularity and convenience
of ORM frameworks, they may also cause maintenance
challenges [1]. ORM automatically generates SQL queries
based on various ORM configurations (e.g., the relationship
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among object types) and the called ORM APIs. As a result,
developers do not have direct control over how the SQL
queries are generated by ORM. When there are issues with
a generated SQL query, developers may have difficulties
knowing how the SQL query is generated and where in the
code [4], [7], [8].

Hibernate, which is one of the most popular Java ORM
frameworks, provides a mechanism that allows developers
to record the generated SQL queries [9], i.e., ORM logs. Such
ORM logs comprehensively record every generated SQL
query so that developers would know what the generated
queries look like. However, even with the recorded SQL
queries, it would be difficult to infer how and locate where a
given SQL query is generated [5], [10]. Hibernate generates
a SQL query by considering all of the ORM configurations
(e.g., how objects should be retrieved from the DBMS), how
the objects are accessed, and the executed ORM APIs, on
one code path. There may be hundreds or even thousands of
database accesses in the source code. Thus, simply searching
for the query text in the code would not work, and the
generated SQL query may change based on the ORM
configuration and the executed branch on an execution path.

Prior studies [11], [12], [13], [14], [15], [16], [17], [18]
propose information retrieval based bug localization (IRBL)
approaches that try to locate buggy files given some software
artifacts (e.g., bug reports). IRBL approaches compute and
rank the files based on their similarity with the given
software artifact, where the files with the highest similarity
are more likely to be defect-prone. IRBL approaches provide
good indications of where the bugs are given limited infor-
mation of the bugs [19]. Similarly, the ORM-generated SQL
queries may have quality issues that are caused by incorrect
or inefficient usage of ORM code/configuration [6], [20], [21].
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In this paper, we propose an approach, SLocator, that
combines static analysis and information retrieval techniques
to locate the origin (i.e., the control flow path, which contains
a sequence of method calls) that generates a given SQL
query in database-backed web applications. Different from
prior studies on database-backed applications [2], [5], [6],
[20], which focus on statically detecting issues based on
predefined/known anti-patterns in database-backed web
applications, SLocator can be used to locate the origin of
any given SQL queries. SLocator also complements existing
studies, which rely mostly on static analysis, by providing
an approach to help analyze the dynamically-generated SQL
queries.

SLocator is a hybrid approach that combines both static
code analysis and information retrieval techniques for lo-
calization. First, SLocator applies static analysis to analyze
the ORM configurations in the source code, which specify
the mapping between objects and database tables, and
how various objects should be retrieved from the DBMS.
Then, SLocator statically analyzes each web request handling
method and constructs interprocedural control flow graphs.
For each path in the control flow graph, SLocator analyzes
both the called ORM APIs and the ORM configurations
to statically infer the database access (i.e., templated SQL
query). Given a SQL query recorded by a DBMS, SLocator
pre-processes the query to remove dynamic elements (e.g.,
dynamically generated values). Finally, SLocator uses cosine
and Jaccard distance to find the control flow path for
which the inferred database access has the highest similarity
ranking with the given SQL query. Different from existing
IRBL approaches, SLocator locates the control flow path that
generates a given SQL query instead of the file/method
that contains the corresponding ORM code. We choose to
locate the control flow path because prior studies found
that control flow paths provide additional information for
locating the root causes of an issue [18], [22], [23], [24].
Moreover, database access issues may not only exist in
ORM API calls but may also be related to how the objects
are accessed during execution and the corresponding ORM
configuration [6], [8], [20].

We implement SLocator for the Java Persistent API (JPA),
which is the official ORM API specification for Java. We
evaluate SLocator on seven open source database-backed
web applications which use the Hibernate ORM framework.
SLocator uses DBMS logs (e.g., MySQL logs) as the input.
We use DBMS logs instead of ORM logs because DBMS logs
are lightweight and commonly used in production to record
problematic SQL queries. In contrast, ORM log introduces
significant performance overhead [25], [26], [27], as ORM
would record every executed SQL query. Since large-scale
web applications may execute hundreds of SQL queries per
second, such performance overhead makes enabling ORM
logs impractical in production. The dataset of SLocator is
publicly available [28].

The main contributions of this paper are:

• SLocator is one of the first techniques that combine
interprocedural control flow analysis and information
retrieval techniques for localization.

• SLocator is able to locate the control flow path that
generates a given set of SQL queries with high

accuracy (average Top@5 is 88.8%).
• We evaluate SLocator on existing problematic SQL

queries (i.e., slow SQL queries) and we find that SLo-
cator can locate where the SQL queries are generated
with similarly high accuracy.

• We conduct a study to illustrate how SLocator helps
locate slow SQL queries and database deadlocks in
studied applications.

In conclusion, our paper proposes a novel approach
that is able to locate the control flow path that generates
a given SQL query. Our research also illustrates the potential
direction of leveraging static code analysis to enhance
software artifact/bug localization techniques.
Paper Organization. The rest of the paper is structured as
follows. Section 2 introduces the background of using ORM
in database-backed web applications and surveys related
work. Section 3 presents our approach in detail. Section 4
evaluates our approach on seven open source applications
and conducts a study on locating the origin of problematic
SQL queries. Section 5 discusses threats to validity. Finally,
Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we first provide some background knowledge
of ORM frameworks. Then, we use an example to illustrate
the challenge of manually locating the origin of a SQL query
(i.e., the control flow path that generates the query). Finally,
we discuss related work in two areas: quality assurance
of database-backed web applications and IR-based bug
localization.
Background of ORM. Object-relational mapping (ORM)
frameworks provide a conceptual abstraction between ob-
jects in object-oriented languages and the data stored in
the underlying DBMS [29]. To leverage ORM frameworks,
developers need to first specify ORM configurations. ORM
frameworks have two main types of configurations. The first
type of the configuration is the mapping configuration, where
developers configure the mapping between entity classes and
database tables. As shown in Figure 1a, the two entity classes,
Pet and Owner (annotated with @Entity), are mapped to the
pets and owners tables in the DBMS, respectively, using
the annotation @Table. Both Pet and Owner entities have
primary keys (@Id) which are mapped to database columns
named id (@Column). Such mapping configuration allows
ORM frameworks to automatically convert an object to/from
the corresponding database record.

The second type of the configuration is related to entity
relationship and data retrieval strategy. ORM provides anno-
tations that allow developers to specify the entity relationship
to represent the business logic. For example, Pet has a
@ManyToOne relationship with Owner, meaning that multiple
pets may belong to the same owner. Similarly, there are
@OneToOne, @OneToMany, and @ManyToMany relationships.
The relationship between entity classes affects how ORM
frameworks retrieve the corresponding object from the
DBMS. By default, objects with @OneToOne and @ManyToOne
relationship are retrieved together (i.e., eager retrieval),
while objects with @OneToMany and @ManyToMany are not
retrieved at the same time (i.e., lazy retrieval) for performance
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@Entity

@Table(name = "pets")

public class Pet {

  @Id

  @Column(name = "id")

  private Integer id;

  @ManyToOne

  private Owner owner;

Pet.java

@Entity

@Table(name = "owners")

public class Owner {

  @Id

  @Column(name = "id")

  private Integer id;

  @OneToMany(fetch = FetchType.EAGER)

  @Fetch(value = FetchMode.JOIN)

  private Set<Pet> pets;

Owner.java

(a) Entity mapping.

select owner0_.id as id1_0_0_, ... pets1_.id as id1_1_1_, ... from owners owner0_ 

left outer join pets pets1_ on owner0_.id=pets1_.owner_id where owner0_.id=1

public Owner findById(Integer id) {

        return entityManager.find(Owner.class, id);

}

id = 1

(b) Translating objects to SQL queries by ORM.

Fig. 1: An example of accessing the DBMS using ORM.

optimization reasons [30], [31]. Developers can also explic-
itly specify the retrieval strategy. For example, by adding
FetchType.EAGER to the configuration of Owner, as shown
in Figure 1a, ORM will retrieve all the associated pets at the
same time regardless of the type of the relationship. Finally,
developers can configure how the associated objects are
retrieved. For example, a FetchMode.JOIN to the configuration
of Owner configures ORM to use an outer join to load the
associated pets when fetching.

Despite ORM’s advantages in abstracting database ac-
cess, various configuration options and the paths that the
application takes may affect how the SQL query is generated.
Therefore, it may cause challenges in locating the origin of
the SQL query. For example, as shown in Figure 1b, the ORM
API, entityManager.find, retrieves the Owner object from the
DBMS based on the owner ID. The corresponding SQL query
generated by ORM retrieves not only the owner data but
also the associated pets at the same time using an outer
join according to the configured ORM annotation. The ORM-
generated SQL query does not explicitly exist in the source
code and the dynamically generated aliases (e.g., owner0 and
pets1 for the owners and pets tables) introduce discrepancy
when locating the origin of a SQL query. Therefore, if there
are issues with a generated SQL query, it is challenging to
locate where the SQL query is generated when diagnosing
the database access code. Moreover, due to the complexity
of database-based web applications, different code paths
with the same root may generate slightly different SQL
queries based on different API calls, which further increases
localization difficulty. In short, manually locating where a
SQL is generated can be time-consuming and challenging,
especially given the size of modern database-backed web
applications.

Below, we further discuss related work of this paper.

Quality assurance of database-backed applications. Most
prior research aims to study and detect performance issues
in database-backed applications that are developed using
ORM. Yan et al. [20] studied database-related performance
inefficiencies in real-world web applications that are built

using the Ruby on Rails ORM framework. They concluded
several performance anti-patterns and proposed detection
algorithms based on static analysis [2]. Shao et al. [21]
presented a comprehensive empirical study that characterizes
performance anti-patterns related to database accesses in
web applications. Brass and Goldberg [32] summarized
common SQL anti-patterns and how to address them. Chen
et al. [5], [6] proposed an automated framework to detect
and prioritize both performance and functional ORM anti-
patterns. Grechanik et al. [33] proposed a run-time monitor-
ing technique to detect database deadlocks.

Most prior studies focus on detecting database access
issues at the code level (i.e., anti-patterns). Anti-patterns
in ORM code may lead to generating inefficient or incor-
rect SQL queries. However, one limitation of the prior
approaches is that they focus on detecting issues based
on predefined/known anti-patterns [21] in database-backed
web applications and cannot detect issues that do not belong
to any of the predefined anti-patterns. In contrast, given a
potentially problematic SQL query (e.g., slow SQL queries or
SQL queries that cause database deadlocks), our approach
locates the code path that generates the query. Hence, we
complement prior approaches by identifying the code that
may result in generating problematic SQL queries.

SQL query extracting. Table 1 summarizes the related studies
that perform SQL query extracting statically from the source
code in their work. The closest related work is by Nagy et al.
[10] which is the only study focusing on locating SQL queries.
The authors proposed a static concept location approach to
match HQL/JPQL query string in the code and the generated
SQL query by comparing their abstract syntax trees (AST).
However, they did not consider ORM APIs to access entity
objects or ORM configurations. In our work, we consider not
only static SQL queries (i.e., JPQL) but also ORM API calls to
access entity objects and ORM configurations. When using
ORM APIs to access entity objects, many SQL queries are
generated dynamically, so it is not possible to locate where
they are generated by doing string matching. In addition, we
locate the control flow path (CFP) that generates a given SQL
query instead of the method that contains a database access
call (e.g., where the SQL query is defined). Prior studies show
that such CFP provides important information when locating
a fault and diagnosing the issues [18], [22], [23]. We find that
our approach can locate the control flow path that generates
a given SQL query with high accuracy.

Other studies on database-backed applications address
different issues. Prior studies focus on detecting ORM
code smell [34], conducting empirical studies of how SQL
queries are constructed [35], extracting SQL queries from
source code [36], [37], [38], checking the correctness of
SQL queries [39], analyzing SQL queries [40], or detecting
SQL anti-patterns [41]. Many studies [35], [37], [39], [40]
do not support ORM frameworks and statically extract
embedded SQL queries that were manually constructed by
developers from the source code. Some studies [34], [36]
partially supported ORM frameworks by extracting SQL
queries from the source code. However, the extracted SQL
queries are different from the dynamically generated SQL
queries by the ORM during runtime, which still leaves the
task of locating SQL queries challenging.
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TABLE 1: Related studies that perform SQL query extracting statically from the source code. ORM, JPQL, and ORM APIs to
access entity objects indicate whether the SQL query extracting supports ORM frameworks, JPQL, or ORM APIs to access
entity objects, respectively.

Study Summary of study Goal of study ORM JPQL
ORM APIs
to access

entity objects

Nagy et al. [10] They proposed a static concept location approach to match HQL/JPQL query string in
the code and the generated SQL query by comparing their abstract syntax trees (AST).

Locating SQL Yes Yes No

Huang et al. [34] They proposed a static analysis tool, called HBSniff, for detecting 14 code smells. Detecting ORM code smell Yes Yes No
Anderson [35] They studied five patterns of SQL query construction in actual PHP systems. Empirical study of SQL No N/A N/A
Meurice et al. [36] They presented a static analysis approach to extract SQL queries in Java systems. Extracting SQL Yes Yes No
Manousis et al. [37] They presented a method that identifies the embedded queries within database

applications.
Extracting SQL No N/A N/A

Nagy and Cleve [38] They briefly described the tool that is able to extract SQL queries from Java code through
static string analysis.

Extracting SQL No N/A N/A

Gould et al. [39] They presented a static analysis technique for verifying the correctness of dynamically
generated SQL query strings for database applications in Java.

Checking SQL No N/A N/A

Annamaa et al. [40] They described a tool that statically analyzes SQL queries embedded in Java programs. Analyzing SQL No N/A N/A
Lyu et al. [41] They proposed a static analysis approach to detect SQL anti-patterns in mobile apps. Detecting SQL anti-patterns No N/A N/A
Our work We proposed an approach to locate the paths that lead to the generated SQL queries. Locating paths for SQL Yes Yes Yes

Information retrieval based bug localization. Information
retrieval based bug localization (IRBL) aims to identify
potentially buggy files by computing the similarity between
a given software artifact (e.g., bug report) and source code
files [13], [15], [42], [43], [44], [45]. The source code files are
then ranked based on their similarity with the software
artifact for investigation. Zhou et al. [11] proposed an
IR-based method named BugLocator for locating relevant
source code files based on initial bug reports by utilizing
a revised Vector Space Model (rVSM) as well as similar
bug information. Wong et al. [12] proposed an approach,
BRTracer, which leverages two techniques segmentation
and stack-trace analysis to improve the performance of
bug localization. Wang and Lo [14] proposed an approach
called AmaLgam+ that integrates various information (e.g.,
version history, similar bug reports, and stack traces) to
better locate buggy files given a bug report. Lee et al. [16]
presented a comprehensive study that compares six state-
of-the-art IR-based bug localization techniques. Pradel et al.
[17] presented a technique Scaffle which uses crash reports
to identify the possible file paths and the associated files
that may have caused the crash. Chen et al. [18] proposed
an IRBL approach, Pathidea, which leverages logs in bug
reports to re-construct execution paths and they found that
the execution path provides a significant improvement in
bug localization accuracy. Other works on IRBL focus on
optimizing and reformulating queries extracted from the
bug report text [46], [47], [48], [49]. Similarly, our approach
first applies static analysis to infer the database access (i.e.,
templated SQL query) for each control flow path. Then, we
apply information retrieval (IR) techniques to find the control
flow paths for which the inferred database accesses have
the highest similarity with the given SQL query. Different
from prior IRBL approaches that aim to locate bugs using
bug reports, our approach is one of the first to apply IR
techniques to locate the origin of SQL queries. Our approach
also provides additional information (i.e., the code path)
instead of only locating the method that generates the SQL
query. Given a problematic SQL query, SLocator can locate
the code path that generates the query.

3 APPROACH

As discussed in Section 2, there are various factors that affect
how a SQL query is generated when using ORM. Hence, a

simple text search based on the generated SQL query may
not be sufficient to locate the origin (i.e., the control flow
path, which contains a sequence of method calls) of the
SQL query. Figure 2 provides an overview of our approach,
SLocator, which automatically locates the origin of the SQL
query. SLocator uses a combination of static analysis and
information retrieval to locate the path. We first use static
analysis to infer the database access of each control flow
path in the source code. Then, given SQL queries, we use
information retrieval techniques to rank the control flow
paths that have the highest database access similarity (i.e.,
the similarity score between the database access inferred
from the control flow path and the given SQL query). We
implement SLocator in Java based on the Java Persistent
API (JPA), which is Java’s official specification for ORM
frameworks. Below, we discuss the design of SLocator in
detail.

3.1 Statically Inferring Database Access
3.1.1 Generating and Pruning Control Flow Graphs
To locate the possible control flow paths that generate a given
SQL query, we use static analysis to construct the interpro-
cedural control flow graph (CFG) of the application [50].
Specifically, the CFG is a directed graph, where the nodes
represent the basic blocks and the edges connecting the nodes
represent the transfer of control flow between basic blocks.
We use Crystal1, a Java static analysis framework that is
built on top of Eclipse JDT, to analyze the source code and
construct the CFG.

In database-backed web applications, users often interact
with the applications by sending HTTP requests (e.g., using
RESTFul APIs or through browsers) [51]. Therefore, SLocator
statically analyzes the Java API for RESTful web services
(JAX-RS) [52] specifications in the source code to identify a
list of web request handling methods. An example of JAX-RS
code is shown below:
@RequestMapping(value = "/owners/{ownerId}", method =

RequestMethod.GET)
public Owner showOwner(int ownerId) {

Owner owner = this.clinicService.findOwnerById(ownerId);
return owner;

}

In this example, based on the JAX-RS annotations, when
users send an HTTP GET request that ends with the URL

1. https://code.google.com/archive/p/crystalsaf/

https://code.google.com/archive/p/crystalsaf/
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Fig. 2: An overview of SLocator. CFP refers to control flow path and IR refers to information retrieval.

“/owners/{ownerId}”, method showOwner is called to han-
dle the request.

The request handling methods are used as the entry
points to the uncovered control flow graphs. For each request
handling method, SLocator uncovers all of the associated
control flow paths by traversing the interprocedural CFG. As
the goal of SLocator is to statically locate the control flow path
that results in generating a given SQL query, we omit cycles
in the CFG. We perform a depth-first search (DFS) to traverse
the CFG and omit the vertex that has been visited before
(i.e., a cycle is detected). There may be multiple control flow
paths that are associated with one request handling method,
and not every path is related to database access. Hence, we
further conduct pruning to remove the paths that do not
have database access calls. In particular, we analyze if a path
contains any API call to the EntityManager class (i.e., the
main class in JPA for database accesses). We prune the path
if it does not contain any call to EntityManager.

3.1.2 Statically Inferring the Database Access of Each
Control Flow Path
When using ORM frameworks, many database accesses are
abstracted as ORM API calls. As shown in Section 2, in
most cases, developers only need to specify the association
among classes (e.g., OneToMany or OneToOne relationships)
and different database access configurations (e.g., EAGER
or LAZY). Then, developers can access the DBMS by calling
APIs such as EntityManager.find(User.class, userID). There-
fore, to statically infer the database access (i.e., templated
SQL queries), we analyze both the database access methods
that are called on the control flow path and the corresponding
ORM configuration. To infer the database access, we imple-
ment a database access translator that takes as input the
tuple {database access method, entity mapping, association,
retrieval strategy}, which are defined as:

• Database access methods: API calls to EntityManager.
• Entity Mapping: Annotations, such as @Table and

@Column, which map an entity class to its correspond-
ing database table.

• Associations: ManyToOne, OneToMany, OneToOne, and
ManyToMany.

• Retrieval Strategy: EAGER or LAZY.

Table 2 shows the inferred database accesses given the
database access APIs, entity mapping, association, and
retrieval strategy. In addition to using method calls such
as EntityManager.find(), JPA also provides native SQL to

query database tables and JPA query language (JPQL) [31]
to create queries against entities. Native SQL queries can be
used in the method createNativeQuery(String queryString)
while JPQL queries can be used in createQuery(String
queryString), where queryString is the SQL query statement
and JPQL query statement, respectively, to be executed.
During our analysis, we analyze the abstract syntax tree
(AST) of the program to extract the potential value of the
string variable (i.e., queryString) as the inferred database
access (i.e., inferred queries). During the static analysis
of the source code, we first use Eclipse JDT to create
the AST for the method which contains database access
API calls. Then, we handle the argument of the database
access API call such as createQuery(String queryString). If
the argument is a literal text, we extract it directly. If the
argument is a variable, we try to extract its value in the
AST based on the prior variable assignment. For the method
createNamedQuery(String name) which supports both native
SQL and JPQL, the inferred database access queryString is
the corresponding named query (i.e., native SQL query or
JPQL query) based on the name.

For direct calls to EntityManager APIs, the translator
translates the Create, Read, Update, and Delete (CRUD)
operations to the corresponding SQL queries using the SQL
query templates shown in the table. For each operation, the
translator inputs the parameters in the template, such as
table name, column name, and primary key name, based on
the entity mapping to generate the inferred SQL queries.
When the association is ManyToOne, OneToOne, or when the
retrieval strategy is EAGER, the inferred SQL queries for
the EntityManager API calls would contain a join clause that
select data from two or more database tables [6], [31]. For
JPQL, the inferred queries would contain multiple select
statements to select the data records from the associated
tables [53].

3.2 Locating the Paths that Generate a Given SQL Query

SLocator uses information retrieval techniques to locate the
origin of a given SQL query. The SQL queries are used as the
search term, and the corpus (i.e., collections of documents)
are the inferred database accesses. Each document repre-
sents the inferred database access, with a mapping to the
corresponding control flow path (as discussed in Section 3.1).
SLocator compares both the syntactic and semantic similarity
between the inferred database access and the given SQL
query. SLocator returns a ranked list of the control flow paths
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TABLE 2: Translations from ORM API calls to inferred database accesses (templated SQL queries). For native SQL and JPQL,
SQL statements or JPQL statements in queryString are extracted as inferred database accesses (inferred queries). Values in {
} are statically inferred based on the entity mapping.

Operation Database Access API Inferred Database Access Inferred Database Access with EAGER retrieval

JPA Entity Manager

Create persist(Object entity) insert into {table name} ({column name}, ...)
values(?, ...)

Read find(Class entityClass,
Object primaryKey)

select {column name} ... from {table name}
where {primary key name}=?

select column name ... from table name
[join on {table name.column name} =
{target table name.join column name}] ∗

where {primary key name}=?

Update merge(T entity) update {table name} set {column name}=? ...
where {primary key name}=?

Delete remove(Object entity) delete from {table name} where {primary key name}=?

Native SQL CRUD createNativeQuery(String queryString)
createNamedQuery(String name) queryString

JPA Query Language CRUD createQuery(String queryString)
createNamedQuery(String name) queryString

queryString
[select {column name} ... from
{target table name} where
{primary key name}=?] ∗

whose inferred database accesses have the highest similarity
with the SQL query. Below, we discuss the approach in detail.

3.2.1 Pre-processing SQL Queries
The SQL queries generated by the ORM frameworks may
contain dynamic elements (e.g., aliases) that can affect
localization accuracy. For example, SQL queries may contain
dynamic values that cannot be found in the source code.
Consider a SQL query from PetCinic that is generated by
Hibernate:
select owner0_.id as id1_0_0_, ... pets1_.id as id1_1_1_,

... from owners owner0_ left outer join pets pets1_ on
owner0_.id=pets1_.owner_id where owner0_.id=1

where owner0 and pets1 are aliases for the owners and pets
tables, id1 0 0 and id1 1 1 are aliases for the ID columns in
the selected tables. Including such automatically-generated
IDs and dynamic values/aliases will reduce the localization
accuracy because they do not exist in the inferred database
accesses (i.e., templated SQL queries). We pre-process the
SQL queries by following pre-processing techniques that
are used for software artifacts [42], [43], [44], [45], [54], [55],
[56]. We first parse the SQL queries into abstract syntax
trees (ASTs) and traverse the ASTs to remove automatically-
generated variable and column names, and aliases. Then, we
remove the dynamic values (i.e., string literals and numeric
values). Finally, we transform all the words into lowercase.
After the pre-processing steps, the above-mentioned SQL
query becomes:
select from owners left outer join pets where owner.id=?

Once the SQL queries are pre-processed, we apply infor-
mation retrieval to find the corresponding inferred database
accesses that have the highest similarity.

3.2.2 Applying Information Retrieval for Syntactic and Se-
mantic Matching
Given a SQL query (or a set of SQL queries), we want to find
the inferred database accesses that have the highest similarity.
In particular, SLocator compares both the syntactic and
semantic similarity between the pre-processed SQL queries
and the inferred database accesses.
Computing Syntactic Similarity. To compute the syntactic
similarity, we represent both the pre-processed SQL query
and the inferred database access as strings and calculate the
similarity score [55], [57]. Given a SQL query q, SLocator

computes the syntactic similarity as the cosine similarity
between q and the inferred database access of a control flow
path p as follows:

simsyn(q, p) = cosine(q⃗, p⃗) =
q⃗ · p⃗

∥q⃗∥ · ∥p⃗∥
, (1)

where q⃗ and p⃗ are the weight vectors for the SQL query q
and the inferred database access of a control flow path p,
respectively. We compute the weight vectors based on the
term frequency and inverse document frequency (i.e., tf ·idf ),
where more weights are given to words that have higher
occurrences in a given document but have lower occurrences
in the corpus (i.e., words that are more relevant).
Computing Semantic Similarity. As found in prior stud-
ies [55], [58], semantic information in SQL queries such as
the accessed tables and operations on tables (e.g., select
and update) are useful in identifying similar SQL queries.
SLocator uses the Jaccard similarity index to compute the
semantic similarity between a SQL query q and the inferred
database access of a control flow path p as follows:

simsem(q, p) =
|features(q) ∩ features(p)|
|features(q) ∪ features(p)|

, (2)

where features(p) are the set of accessed tables and CRUD
operations on tables in p. Intuitively, if the accessed tables
and operations are different between p and q, it is less likely
that the two database accesses are similar.
Combining Similarity Scores and Deriving Path Ranking.
We combine the semantic and syntactic similarity to measure
the similarity score between a SQL query q and an inferred
database access of a path p as follows:

Score(q, p) = simsyn(q, p) + simsem(q, p) (3)

Score(q, p) ranges between 0 to 2, where the larger the
value the higher the similarity. Given q, we compute the
Score(q, pi) for every control flow path pi generated by
the previous steps in our approach. The pi with a higher
similarity score would be ranked higher in the result and are
more likely to be the path that generates q.

4 EVALUATION

In this section, we first introduce the studied applications
and experimental setup. Then, we evaluate SLocator by
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TABLE 3: An overview of the studied applications. DB access
refers to database access.

Application Version LOC No. of
commits

No. of
tables

No. of
Java files

No. of distinct
DB accesses

PetClinic 1.5 2.4K 707 7 38 12
CloudStore 2.0 11.2K 200 11 98 40
WallRide 1.0.0.M18 32.6K 744 35 363 93
JeeWeb 1.0 40.8K 64 31 419 112
PublicCMS 4.0 47.3K 1,103 43 496 132
bbs 5.6 129K 40 44 579 148
Broadleaf-
Commerce 6.0.11-GA 197K 17,599 60 1,284 58

Avg. across
applications – 65.8K 2,922 33 463 85

answering two research questions (RQs). For each RQ, we
discuss the motivation, approach, and results.

4.1 Evaluation Setup

Studied Applications. We conduct our study on seven open
source applications that are popular (i.e., with an average
of 1.4K stars on GitHub), have long development history, or
used in prior studies on database-backed applications [6],
[59], [60], [61], [62], [63], [64]. Table 3 shows an overview of
the studied applications, such as the number of commits,
database tables, Java files, and distinct database accesses. On
average, there are 33 database tables, 463 Java source code
files, and 85 distinct database accesses where the SQL queries
may be generated. The database-backed web applications
are implemented in Java using JPA to access the database.
Among all the 595 database accesses, 113 (19.0%) use JPA
API persist(), 59 (9.9%) use JPA API find(), 54 (9.1%) use
JPA API merge(), 67 (11.3%) use JPA API remove(), 291
(48.9%) use JPQL queries, and 11 (1.8%) use JPA criteria
(the statistics of JPA API usage can be found in the online
appendix [28]). No native SQL queries are used in the studied
applications. Hence, given a large number of database access
calls, manual analysis of the origin of a SQL query can be dif-
ficult. PetClinic [65] is developed and maintained by Pivotal
Software for showcasing standard practices on developing
database-backed web applications. CloudStore [66] is an e-
commerce web application that is developed according to
the TPC-W benchmark [67] while BroadleafCommerce [68]
is an enterprise e-commerce framework. Since Broadleaf
is a framework, we study the site module provided by
BroadleafCommerce, which uses Broadleaf’s APIs to build an
online shopping website. PublicCMS [69] and WallRide [70]
are content management systems (CMSs). JeeWeb [71] is a
development system that helps developers generate source
code. bbs [72] is a forum application and we study the admin
module that is used to manage the forum. In particular,
PublicCMS is developed/maintained by a company, has over
1.6K stars on GitHub, is used in many commercial settings,
and has many users around the world. BroadleafCommerce
has been developed since 2009 and has over 1.5K stars on
GitHub.
Experimental Setup. We deploy the studied applications on
Tomcat 7, using MySQL 5.6 as the database management
system. To simulate a real-world deployment setting, we
follow a prior study and populate the main database tables
to 20,000 records [2]. For the applications that already contain
initial data records, we duplicate these records while keeping
their association relationships. For the applications that do
not have initial data records, we exercise them by simulating

TABLE 4: Statistics of running SLocator against the studied
applications. Time to locate the paths refers to the average
time to rank and locate the control flow paths for a given
SQL query.

Application No. of
inferred CFPs

Static analysis
execution time (s)

Time to locate
the paths (ms)

PetClinic 18 13 7
CloudStore 64 48 12
WallRide 487 175 142
JeeWeb 333 102 20
PublicCMS 1,267 318 41
bbs 2,298 162 120
BroadleafCommerce 1,317 371 679

Avg. across applications 826 170 146

user actions to generate data records and populate the
databases. To evaluate SLocator, we exercise the applications
by running simulated workloads after the data is populated,
and record the application execution information. We first
analyze the application usage and then use JMeter [73] to
automatically send user requests to simulate hundreds of
concurrent users. For each user, we set JMeter to generate
random values for variables in the request. Hence, given
hundreds of concurrent users, each request would be called
hundreds of times with random input values.

The workload covers most of the application web pages
by navigating the menu. For PetClinic, the workload covers
user actions such as searching and adding/modifying own-
ers’ and pets’ information. For CloudStore and Broadleaf-
Commerce, the workload covers browsing, searching for
items, adding items to carts, and checking out. For WallRide
and PublicCMS, the workload covers common actions in
CMS such as editing user profiles, adding content (e.g.,
pictures), editing/adding posts, and editing web pages. For
JeeWeb, the workload covers editing/adding system content
(e.g., user, department, role), configuring the database, and
generating source code to query the database tables. For
bbs, the workload covers common actions in forums such as
writing posts and questions, editing/adding tags for posts
and questions, and viewing posts and questions. Overall, the
workload covers 71.2% of the related web requests, 70.7% of
the related database accesses, and 74% of the related database
tables. Both the workload and SQL queries generated by the
workload are publicly available (the statistics of the workload
and SQL queries can be found in the online appendix) [28].

Statistics of SLocator. Table 4 shows the statistics of running
SLocator against the studied applications. On average, there
are 826 control flow paths that contain database access calls
leading to generating SQL queries. Note that, each database
access may generate multiple SQL queries based on the ORM
configuration and each control flow path may contain several
database accesses. Hence, the number of generated SQL
queries would be even larger, which makes manual analysis
of the origin of a SQL query more difficult. We conduct all
of our experiments on a Windows 10 machine with Intel
Core i5 CPU@1.70GHz and 16GB of RAM. Regarding the
execution time, SLocator takes 170 seconds, on average, to
statically analyze the source code to infer control flow paths
with database access details. SLocator takes an average of
146 milliseconds to rank and locate the control flow paths
for given SQL queries. For each release of the application,
the static analysis only needs to be executed once. Thus, the
performance overhead of SLocator is relatively small.
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Approaches and Metrics for Evaluating SLocator. In regular
usage of SLocator, we would not need any instrumentation.
However, to evaluate the localization accuracy of SLocator,
we use AspectJ [74] to instrument the application to get
the ground truth (i.e., the web request handling methods
and the control flow paths that generate the given SQL
query). We only apply the instrumentation to get the ground
truth. First, we set the configuration of AspectJ to define the
pointcuts to match all the methods within the application
source code. During the execution of the workloads, for
each user request, AspectJ records all the methods that are
executed and the corresponding SQL queries that are sent
to the DBMS (i.e., MySQL), which represents the dynamic
execution path (i.e., the ground truth). Then, given a SQL
query, we apply SLocator to find its origin and compare
the origin with the ground truth in the evaluation step. For
replication purposes, we make our AspectJ configuration
publicly available [28].

We define that a dynamic execution path, d, matches with
the statically uncovered control flow path, p, if p ⊂ d. Namely,
if every method in p appears in d in the same order, we say
that p matches with d (i.e., an ordered set). We define the
matching using a subset due to two reasons. First, there may
be calls to external frameworks in the dynamic execution
paths, which may not be captured in the statically uncovered
control flow paths. Second, there may be repeated method
calls in the dynamic execution path.

Below, we define the information retrieval metrics that we
use to evaluate the effectiveness of SLocator when locating
the paths that generate the SQL queries.
Top@K. This metric calculates the percentage of the SQL
queries whose dynamic execution path matches with one of
the top K results, i.e., successfully located.
Precision@K. Given a SQL query, this metric calculates the
percentage of the paths that are correctly located within the
given top K results.

Precision(K) =
# correctly located paths in top K

K
(4)

Mean Average Precision (MAP). Given a SQL query, this
metric first calculates the average precision (AP ) for every
path in the ranked paths as follows:

AP =

N∑
i=1

Precision(i)× pos(i)

total # of correctly located paths
(5)

where N is the number of ranked paths and pos(i) is an in-
dicator function. pos(i) = 1 if the ith path correctly matches
with the dynamic execution path. Otherwise, pos(i) = 0. For
computing MAP, we take the average AP of all the given
SQL queries.
Mean Reciprocal Rank (MRR). The reciprocal rank for a SQL
query is the reciprocal of the position of the first correctly
matched path in the ranked results. This metric calculates
the mean of the reciprocal ranks across all SQL queries:

MRR =
1

M

M∑
j=1

1

rankj
(6)

where M is the number of given SQL queries and rankj
means the position of the first correctly matched path in the
ranked list for the jth SQL query.

4.2 RQ1: How effectively can SLocator locate the code
path that generates a given SQL query?

Motivation. Due to the discrepancy between the application
code and the generated SQL queries, locating where a given
SQL query is generated can be a challenging task. In this
RQ, we evaluate how well SLocator can locate the paths that
generated a given list of SQL queries.
Approach. In production settings, developers often only have
access to DBMS logs, where DBMS (e.g., MySQL) records the
SQL queries that it executes. DBMS logs often record possibly
problematic SQL queries for diagnosing database access
issues (e.g., slow SQL queries or SQL queries that caused
database deadlocks) [75], [76]. We retrieve DBMS logs from
MySQL and use such logs as the input to SLocator to evaluate
its effectiveness. Note that, as described in Section 4.1,
we obtain the dynamic execution paths that generate the
SQL queries (i.e., the ground truth) by instrumenting the
applications using AspectJ. For every SQL query recorded in
the DBMS log, we map it to the corresponding SQL query
and dynamic execution path captured by AspectJ.

We evaluate SLocator by using two types of DBMS logs:
individual query log and SQL session log. In the individual
query log, MySQL records the execution of individual
SQL queries. In the SQL session log, MySQL records all
the SQL queries that it executes and groups the queries
based on sessions (i.e., connections). Listing 1 shows an
example of SQL session log from General Query Log [77] in
MySQL which has three columns: session ID, command, and
argument.

Listing 1: An example of SQL session log.
1 8 Query set session transaction read only
2 8 Query SET autocommit=0
3 8 Query select owner0_.id as id1_0_0_, ... from owners owner0_ left outer join

pets pets1_ on owner0_.id=pets1_.owner_id where owner0_.id=1
4 8 Query select pettype0_.id as id1_3_0_, ... from types pettype0_ where

pettype0_.id=1
5 8 Query select visits0_.pet_id as pet_id4_1_0_, visits0_.id as id1_6_0_, ...

from visits visits0_ where visits0_.pet_id=1
6 8 Query commit

For instance, 8 is the session ID, “Query” is the command,
and the rest are arguments (i.e., actual SQL query). The
session starts with set session transaction read only, SET
autocommit=0 (Lines 1-2) and ends with commit (Line 6). We
identify the session based on ID and extract query statements
on Lines 3-5 as input for SLocator. Since the SQL queries are
executed in the same connection, they reflect that the queries
are generated by one sequential execution in the application
(i.e., from the same execution path).

We report two levels of granularity in the SQL query
localization results: web request and control flow path. In
database-backed web applications, most user actions are
handled by various web requests. Therefore, identifying the
correct web request and the corresponding request handling
methods (i.e., the root of the control flow path) that generate
a given SQL query provides an important starting point
for investigation. We also report the localization results at a
finer-grained level, namely, whether SLocator can locate the
execution path that generates a given SQL query.

We also compare SLocator with a baseline approach,
which applies text search to locate the origin of a given
SQL query at the level of web request handling method
(the baseline approach does not contain the static analysis
component so it cannot locate control flow paths). Given a
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SQL query, we build a corresponding query template and
search for matching database accesses in the source code. We
use query templates instead of directly using the given SQL
query because there may be major differences between the
generated SQL queries and the database accesses (JPQL or
calls to EntityManager) in the source code [31] (e.g., generated
SQL queries may have aliases as discussed in Section 2). The
query template consists of keywords such as the CRUD
operations (e.g., SELECT, UPDATE, INSERT, and DELETE)
and the database tables and conditions used in the given SQL
query. For calls to ORM APIs (i.e., EntityManager), the query
template consists of keywords such as the ORM API calls and
entity names inferred from the given SQL query. For example,
given a SQL query SELECT * from owners, we infer the ORM
API call EntityManager.find() and the entity name Owner. We
rank the matching database accesses by calculating the cosine
similarity between the query template and the database
accesses. Finally, for each matched database access call, we
analyze its call hierarchy to find the corresponding web
request handling method as the origin of the SQL query.

Results. Table 5 shows the localization results of using
SQL session logs. Overall, we find that SLocator has a high
Top@K when locating both the web request and the control
flow path that generates the SQL queries. When K = 1
and K = 5, SLocator achieves an average Top@K of 54.0%
and 88.8% when locating control flow paths, and 60.2% and
91.7% when locating web requests. The average MAP and
MRR are 0.60 and 0.72 when locating control flow paths, and
0.63 and 0.75 when locating web requests. Table 6 shows the
localization results of using individual query logs. Compared
to the localization results of using SQL session logs, the
localization performance is lower when using individual
query logs. The average Top@K is 48.3% for control flow
paths and 54.4% for web requests when K = 1. When K = 5,
Top@K is 74.7% and 79.6% for control flow paths and web
requests, respectively. Correspondingly, the average MAP
and MRR are 0.47 and 0.64 when locating control flow paths,
and 0.53 and 0.68 when locating web requests.

SLocator has a much better localization result compared
to the baseline. The baseline approach achieves an average
Top@5, MAP, and MRR of 28.2%, 0.21, and 0.22, respectively,
when using SQL session logs. When using individual query
logs, the baseline achieves an average Top@5, MAP, and
MRR of 18.4%, 0.15, and 0.15, respectively. Compared to the
baseline, SLocator improves the Top@5, MAP, and MRR by
225%, 200%, and 241%, respectively, when using SQL session
logs. When using individual query logs, the improvement
of Top@5, MAP, and MRR is by 333%, 253%, and 353%,
respectively.

We find that the decrease in Top@K when using indi-
vidual query logs is because there may be multiple control
flow paths or web requests that can generate the same SQL
query. For example, in PetClinic, the application generates
a SQL query to select pets’ visit information: select from
visit where pet id=1, which may come from six different
request handling methods: processFindform, initCreation-
Form, showOwner, initUpdateOwnerForm, processUpdate-
OwnerForm, and processUpdateForm. Even for one request
handling method showOwner, this SQL query may come
from three different paths. In total, the SQL query may come

TABLE 5: The localization results when using SQL session
logs. Request-Baseline refers to locating the web request
using the baseline approach. Request-SLocator and Path-
SLocator refer to using SLocator to locate the web request
and control flow path, respectively.

Application Matching Top@K MAP MRR
K=1 K=3 K=5

PetClinic
Request-Baseline
Request-SLocator
Path-SLocator

9.5%
52.4%
52.4%

14.3%
95.2%
95.2%

14.3%
95.2%
95.2%

0.12
0.67
0.67

0.12
0.76
0.76

CloudStore
Request-Baseline
Request-SLocator
Path-SLocator

28.6%
71.4%
57.1%

42.9%
85.7%
85.7%

42.9%
92.9%
92.9%

0.31
0.79
0.71

0.35
0.80
0.73

WallRide
Request-Baseline
Request-SLocator
Path-SLocator

11.4%
59.1%
54.5%

22.7%
79.5%
77.3%

27.3%
95.5%
95.5%

0.17
0.62
0.65

0.18
0.73
0.71

JeeWeb
Request-Baseline
Request-SLocator
Path-SLocator

4.0%
40.4%
37.4%

16.2%
85.9%
78.8%

16.2%
90.9%
82.8%

0.09
0.38
0.35

0.09
0.65
0.66

PublicCMS
Request-Baseline
Request-SLocator
Path-SLocator

10.0%
86.0%
70.0%

20.0%
96.0%
88.0%

26.0%
98.0%
94.0%

0.16
0.75
0.67

0.17
0.93
0.83

bbs
Request-Baseline
Request-SLocator
Path-SLocator

31.4%
64.3%
58.6%

34.3%
85.7%
78.6%

35.7%
91.4%
82.9%

0.32
0.62
0.57

0.33
0.77
0.73

Broadleaf-
Commerce

Request-Baseline
Request-SLocator
Path-SLocator

26.1%
47.8%
47.8%

34.8%
60.9%
60.9%

34.8%
78.3%
78.3%

0.30
0.59
0.56

0.30
0.60
0.60

Avg. across
applications

Request-Baseline
Request-SLocator
Path-SLocator

17.3%
60.2%
54.0%

26.5%
84.1%
80.6%

28.2%
91.7%
88.8%

0.21
0.63
0.60

0.22
0.75
0.72

from nine control flow paths. Therefore, the localization
accuracy decreases when using individual query logs.

In contrast, there may be fewer web requests and control
flow paths that generate a given SQL session log. SQL queries
in the SQL session log are more likely generated by the same
business logic (e.g., the same web request). Hence, it is less
likely that multiple web requests and control flow paths
generate the same set of SQL queries. For example, in Pet-
Clinic, the SQL session log shown in the previous example in
Listing 1 may come from only two request handling methods
(i.e., showOwner and initUpdateOwnerForm) and four control
flow paths. However, if we consider the individual SQL
query on Line 5, it may be generated by six request handling
methods and nine control flow paths. Nevertheless, our
findings show that SLocator can still achieve good accuracy
when localizing the path given one single SQL query.

We apply SLocator on the seven studied applications and
find that, on average, developers need to investigate two
control flow paths (the paths have an average of six methods)
when using SQL session logs, and five control flow paths
(the paths have an average of eight methods) when using
individual query logs, to find the origin of the SQL query.
Hence, developers do not need to investigate many returned
paths to find the correct SQL origin when using SLocator.
Discussion. As shown in Tables 5 and 6, SLocator has a
very high Top@K across the studied applications. However,
we find that even if we increase K (e.g., set K to 10 or
20), the numbers still may not reach 100%. The finding
shows that there may be some SQL queries for which we
cannot find the corresponding statically inferred control flow
path. After some manual investigation, we find that such
mismatches are caused by the limitation of static analysis
and the frameworks that these applications use. For example,
PetClinic uses the Spring framework [78] for web request
handling and adds the @ModelAttribute=“visit” annotation to
the method loadPetWithVisit(). The method loadPetWithVisit()
contains a database access call, but the method is not used in
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TABLE 6: The localization results when using individual
query logs. Request-Baseline refers to locating the web
request using the baseline approach. Request-SLocator and
Path-SLocator refer to using SLocator to locate the web
request and control flow path, respectively.

Application Matching Top@K MAP MRR
K=1 K=3 K=5

PetClinic
Request-Baseline
Request-SLocator
Path-SLocator

15.4%
69.2%
69.2%

23.1%
92.3%
92.3%

23.1%
100.0%
100.0%

0.19
0.65
0.65

0.19
0.82
0.82

CloudStore
Request-Baseline
Request-SLocator
Path-SLocator

16.1%
61.3%
45.2%

19.4%
77.4%
61.3%

19.4%
87.1%
80.6%

0.18
0.61
0.47

0.18
0.71
0.58

WallRide
Request-Baseline
Request-SLocator
Path-SLocator

8.0%
35.2%
30.7%

13.6%
54.5%
52.3%

15.9%
60.2%
59.1%

0.11
0.36
0.34

0.11
0.50
0.47

JeeWeb
Request-Baseline
Request-SLocator
Path-SLocator

3.3%
52.0%
48.8%

10.6%
87.0%
78.0%

10.6%
90.2%
80.5%

0.06
0.46
0.42

0.06
0.72
0.74

PublicCMS
Request-Baseline
Request-SLocator
Path-SLocator

10.8%
62.2%
52.7%

18.9%
71.6%
66.2%

18.9%
73.0%
68.9%

0.14
0.55
0.47

0.14
0.74
0.66

bbs
Request-Baseline
Request-SLocator
Path-SLocator

26.0%
53.0%
48.0%

30.0%
69.0%
63.0%

30.0%
77.0%
71.0%

0.28
0.52
0.48

0.28
0.68
0.68

Broadleaf-
Commerce

Request-Baseline
Request-SLocator
Path-SLocator

8.7%
47.8%
43.5%

10.9%
63.0%
54.3%

10.9%
69.6%
63.0%

0.10
0.54
0.44

0.10
0.59
0.53

Avg. across
applications

Request-Baseline
Request-SLocator
Path-SLocator

12.6%
54.4%
48.3%

18.1%
73.5%
66.8%

18.4%
79.6%
74.7%

0.15
0.53
0.47

0.15
0.68
0.64

all the Java files. We find that the model attribute (i.e., “visit”)
is referenced in one of the JSP (Java Server Page) files that
takes input from the user. In other words, loadPetWithVisit()
is called automatically when a user submits a web form to
the application server, which is the reason why SLocator
was not able to find the control flow path that generates the
given SQL query. The issue is common across the studied
applications. As another example, in WallRide, developers
override the method postHandle() from the Spring frame-
work. postHandle() is executed automatically after handling
each web request, and the overridden postHandle() contains
database access calls.

In short, even though our results show that SLocator is
able to locate the path where a given SQL query is generated
with good accuracy, there are still some limitations caused by
static analysis. Future studies may consider the frameworks
that the application uses to increase the accuracy of static
analysis.

We find that SLocator achieves good localization accuracy.
When using SQL session logs, the origin (i.e., the CFP)
of 54% of the SQL queries can be located in Top@1,
and almost 89% can be located in Top@5. When using
individual SQL queries, the origin of more than 48% of
the SQL queries can be located in Top@1, and almost 75%
can be located in Top@5. On average, developers need
to investigate two and five control flow paths to find the
origin when using SQL session logs and individual SQL
queries, respectively.

4.3 RQ2: What is the localization accuracy for SQL
queries with different lengths?

Motivation. In RQ1, we evaluate the overall localization
accuracy of SLocator. However, the recorded SQL queries
may have different complexities such as lengths which may
affect how SLocator performs. In this RQ, we evaluate the

accuracy of SLocator in localizing the paths for SQL queries
with different lengths (i.e., the number of words involved).

Approach. The goal of RQ2 is to assess the ability of SLocator
to locate SQL queries with different lengths. Since the range
of SQL query lengths varies in the studied applications,
instead of using a pre-defined threshold for all the appli-
cations, we classify the length of the SQL queries in each
studied application into three buckets based on the quantiles
(i.e., bottom 1/3, middle 1/3, and top 1/3). We use length
(number of words) as a proxy for the complexity of a SQL
query, whereas a longer SQL query has a higher complexity.
We evaluate the effectiveness of SLocator on localizing the
paths for SQL queries in each studied application across the
three length groups.

Results. Table 7 shows the localization results for SQL queries
at different length groups (i.e., bottom 1/3, middle 1/3, and
top 1/3) when using individual query logs. We observe that,
in most studied applications, bottom-length SQL queries get
better localization results than middle-length SQL queries,
which in turn get better localization results than top-length
SQL queries. When locating web requests for SQL queries
that belong to the three length groups, the average Top@1 are
65.2%, 51.4%, and 42.7% while the Top@5 are 88.5%, 75.1%,
and 73.2%, respectively. When locating control flow paths
for SQL queries that belong to the three length groups, the
average Top@1 are 59.6%, 45.2%, and 40.3% while the Top@5
are 86.1%, 69.6%, and 70.5%, respectively. We find that the
decrease in Top@K for SQL queries at different length groups
is because longer SQL queries have more words involved,
and therefore, are harder to be matched with corresponding
control flow paths’ inferred database accesses compared to
shorter SQL queries. Nevertheless, SLocator achieves good
localization results for SQL queries with different lengths.
For the SQL queries with length in the top 1/3, the average
Top@5 are 73.2% and 70.5% for web requests and control
flow paths, respectively. Compared to the result in RQ1,
the decreases are by 8% and 6%, respectively. These results
suggest that SLocator can be used to effectively locate the
code path for SQL queries at different length groups.

We find that SLocator achieves better localization results
for short SQL queries compared to long SQL queries.
For the SQL queries with length in the top 1/3, SLocator
achieves good localization results - the average Top@5
are 73.2% and 70.5% for web requests and control flow
paths, respectively.

4.4 RQ3: Can SLocator help localize issues in database-
backed web applications?

Motivation. Database access performance is critical in
database-backed applications since it directly affects the user-
perceived quality [2], [6], [20]. Most DBMSs record slow SQL
queries and database deadlocks for developers to conduct
further investigation [79], [80], [81]. Slow SQL log records
the SQL queries that take longer than a predefined threshold
(e.g., one second) to execute. Such slow SQL queries may
indicate performance issues or opportunities for performance
optimization. Deadlock log records the SQL queries that
were blocked when deadlocks happen. In database-backed
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TABLE 7: The localization results for SQL queries with different lengths (i.e., bottom, middle, and top) when using individual
query logs. The length of SQL queries is measured using the number of words and is classified into three buckets based on
the quantiles (i.e., bottom 1/3, middle 1/3, and top 1/3). Request and Path refer to using SLocator to locate the web request
and control flow path, respectively. SQL lengths refer to the range of SQL query lengths.

Application Matching

Bottom length Middle length Top length

SQL
lengths

Top@K
MAP MRR SQL

lengths

Top@K
MAP MRR SQL

lengths

Top@K
MAP MRR

K=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5

PetClinic Request 7–9 75.0% 100.0% 100.0% 0.58 0.88 10–31 75.0% 100.0% 100.0% 0.71 0.88 59–113 60.0% 80.0% 100.0% 0.66 0.74
Path 75.0% 100.0% 100.0% 0.58 0.88 75.0% 100.0% 100.0% 0.71 0.88 60.0% 80.0% 100.0% 0.66 0.74

CloudStore Request 5–20 80.0% 90.0% 90.0% 0.69 0.84 21–68 60.0% 80.0% 90.0% 0.60 0.73 79–266 45.5% 63.6% 81.8% 0.55 0.58
Path 60.0% 60.0% 90.0% 0.44 0.67 40.0% 70.0% 80.0% 0.50 0.57 36.4% 54.5% 72.7% 0.48 0.50

WallRide Request 5–12 51.7% 72.4% 86.2% 0.51 0.64 12–57 24.1% 44.8% 44.8% 0.25 0.34 57–990 30.0% 46.7% 50.0% 0.35 0.42
Path 44.8% 69.0% 82.8% 0.48 0.60 20.7% 44.8% 44.8% 0.24 0.32 26.7% 43.3% 50.0% 0.33 0.40

JeeWeb Request 5–10 65.9% 95.1% 95.1% 0.52 0.81 10–51 26.8% 85.4% 90.2% 0.36 0.57 51–141 63.4% 80.5% 85.4% 0.50 0.74
Path 63.4% 87.8% 87.8% 0.49 0.76 24.4% 75.6% 78.0% 0.31 0.50 58.5% 70.7% 75.6% 0.46 0.67

PublicCMS Request 5–6 75.0% 83.3% 87.5% 0.70 0.80 6–22 64.0% 72.0% 72.0% 0.54 0.69 23–106 48.0% 64.0% 64.0% 0.52 0.56
Path 70.8% 83.3% 87.5% 0.60 0.78 56.0% 68.0% 68.0% 0.53 0.63 48.0% 64.0% 64.0% 0.46 0.56

bbs Request 5–7 75.8% 84.8% 93.9% 0.71 0.82 7–21 69.7% 81.8% 81.8% 0.57 0.75 22–100 14.7% 41.2% 55.9% 0.28 0.33
Path 69.7% 78.8% 87.9% 0.65 0.76 60.6% 69.7% 69.7% 0.53 0.65 14.7% 41.2% 55.9% 0.27 0.33

Broadleaf-
Commerce

Request 5–11 33.3% 46.7% 66.7% 0.49 0.45 13–39 40.0% 46.7% 46.7% 0.46 0.47 39–447 37.5% 62.5% 75.0% 0.46 0.52
Path 33.3% 46.7% 66.7% 0.46 0.45 40.0% 40.0% 46.7% 0.36 0.45 37.5% 62.5% 75.0% 0.45 0.52

Avg. across
applications

Request – 65.2% 81.8% 88.5% 0.60 0.75 – 51.4% 73.0% 75.1% 0.50 0.63 – 42.7% 62.6% 73.2% 0.47 0.56
Path – 59.6% 75.1% 86.1% 0.53 0.70 – 45.2% 66.9% 69.6% 0.45 0.57 – 40.3% 59.5% 70.5% 0.44 0.53

applications, each database transaction may execute multiple
SQL queries. Deadlocks happen when two or more database
transactions are waiting for one another to give up locks.
Database deadlock is one of the main reasons for major
performance degradation [5], [33].

In the previous RQs, we evaluate the overall localization
accuracy of SLocator. In this RQ, we conduct two case studies,
i.e., slow SQL queries and SQL queries that cause database
deadlocks, to illustrate how SLocator helps localize database
access issues in database-backed web applications.

Approach. As described in Section 4.1, we populate the data
in the database since many performance issues only occur
under large loads [6], [20]. We evaluate SLocator using either
existing or injected slow SQL queries or database deadlocks.
Below, we discuss how we trigger/inject the performance
issues.
Triggering Slow Queries: To trigger slow queries, we exercise
the applications by running the same workload that we used
in RQ1 and configure MySQL to record the execution time
of each SQL query. Then, we calculate the average execution
time for each unique SQL query and take the top 10% most
time-consuming queries as slow SQL queries by following a
prior study [2].
Injecting and Triggering Database Deadlocks: Injecting dead-
locks requires much manual effort, and a deep understanding
of the database tables and the business logic of the system.
Therefore, we choose WallRide, a medium size application
with 35 database tables, to inject a deadlock. The size of
WallRide is not too small for a study on deadlocks and is
still feasible for us to manually study the application source
code to inject a deadlock. However, since SLocator achieves
similar localization results across the studied applications,
we believe SLocator can still help locate the origin of
deadlocking SQL queries in other applications. We inject
a deadlock in WallRide by changing the lock model type
from PESSIMISTIC WRITE (i.e., pessimistic write lock) to
NONE (i.e., no lock) [82] (Lines 3-4), as shown in Listing 2.

The method PostRepositoryImpl.lock is called before re-
trieving data from the DBMS and locks the corresponding
database records with a pessimistic write lock. A pessimistic

write lock is an exclusive lock in MySQL [83], which prevents
concurrent writing of the same records and reduces the
likelihood of deadlock in the database. By changing the
lock to NONE, there will be chances that a deadlock may
happen. After injecting the deadlock, we build and deploy
the modified application. We use JMeter to automatically
send user requests and simulate hundreds of concurrent
users to trigger the deadlock.

Listing 2: Database deadlock injected in WallRide.
1 public void PostRepositoryImpl.lock(long id) {
2 ...

3
- entityManager.createQuery(query).setLockMode(LockModeType.PESSIMISTIC_WRITE)

.getSingleResult();

4
+ entityManager.createQuery(query).setLockMode(LockModeType.NONE)

.getSingleResult();

Results.
Slow Queries: We give an example from PetClinic to demon-
strate how SLocator locates the origin of a slow SQL query.
The slow SQL log identifies the following SQL query as slow
in PetClinic:
select distinct owner0_.id as id1_0_0_, ... from owners

owner0_ left outer join pets pets1_ on
owner0_.id=pets1_.owner_id where owner0_.last_name
like ’%’

The SQL query searches for the owner whose last name
matches with any string (i.e., like ‘%’, where the wildcard
‘%’ means a string with zero or more characters). By using
this SQL query as the input to SLocator, SLocator returns the
control flow path as shown in Listing 3 as the first ranked
result. To gain more information about the inferred control
flow paths, SLocator also returns calls to third-party libraries
in the returned path. For instance, the request method pro-
cessFindForm calls the methods findOwnerByLastName and
java.util.Map.put, while the generic method java.util.Map.put
is from Java’s util library. The method findByLastName
accesses the DBMS and generates three SQL queries Q1,
Q2, and Q3, where the slow query is generated (i.e., Q1).

Listing 4 shows the corresponding source code containing
the origin of the slow SQL query. Based on the control flow
path returned by SLocator, the potential execution path of the
source code covers Line 3 and Lines 9-10 (as highlighted in
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String PageBulkDeleteController.delete(...)
     List<Page> PageService.bulkDeletePage(...)
          Page PageService.deletePage(...)
               void PostRepositoryImpl.lock(long)
                    [Q: select from post where post.id=?]
               void PageRepository.delete(Page)
                 
                 

String PageEditController.saveAsPublished(...)
     Page PageService.savePageAsPublished(...)
          Page PageService.savePage(...)
               void PostRepositoryImpl.lock(long)
                    [Q: select from post where post.id=?]
               Page PageRepository.save(Page)
                 
                 

*** (1) TRANSACTION: 1 

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS ... index `PRIMARY` of table `wallride`.`post` …

*** (2) TRANSACTION: 2 

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS ... index `PRIMARY` of table `wallride`. `post_category` ...

insert into `post_category` (`post_id`, `category_id`) values (5, 1)

delete from `post` where `id`=5

                    [Q1: delete from post_category where post_id=?]
                    [Q2: delete from post where id=?] 

                    [Q3: update post set updated_at=?, body=? where id=?] 
                    [Q4: insert into post_category (post_id, category_id) values (?, ?)] 

(a) Deadlock log obtained from MySQL. A deadlock happens when two 
transactions T1 and T2 access database tables post and post_category.

(b) The control flow paths and inferred database access for the 
deadlock SQL queries.

Locate

Locate

Fig. 3: Using SLocator to locate the paths in the control flow graphs that result in generating deadlock SQL queries.

blue). Line 10 indicates that all the owners retrieved from the
DBMS will be displayed on one web page ownersList.html.
The performance issue occurs when there are many owners
whose last name matches the given search string. For this
particular SQL query, it retrieves and displays all the users.
A solution is to add pagination so that only a limited number
of owners would be retrieved and displayed for every page.
Note that, in this example, the performance issue would not
occur if the code executes the first or the second branch (i.e.,
the number of matched owners is zero or one). Hence, the
control flow path that is returned by SLocator may provide
additional information to locate performance issues.

Listing 3: The control flow path and inferred database access
returned by SLocator for a slow SQL query in PetClinic.
1 String ownercontroller.processFindForm(Owner, BindingResult, Map)
2 Collection<Owner> ClinicServiceImpl.findOwnerByLastName(String)
3 Collection<Owner> JPAOwnerRepositoryImpl.findByLastName(String)
4 [Q1: select distinct owner from owner owner left join fetch

owner.pets where owner.lastname like :lastname]
5 [Q2: select id, name from types where id=?]
6 [Q3: select id, visit_date, description from visits where id=?]
7 V java.util.Map.put(K, V)

Listing 4: Source code containing the origin of the slow SQL
query.
1 String ownercontroller.processFindForm(Owner, BindingResult, Map){
2 // find owners by last name
3 Collection<Owner> results =

this.clinicService.findOwnerByLastName(owner.getLastName());
4 if (results.isEmpty()) { // branch 1: no owners found
5 ...
6 } else if (results.size() == 1) { // branch 2: 1 owner found
7 ...
8 } else { // branch 3: multiple owners found
9 model.put("selections", results);

10 return "owners/ownersList";
11 }
12 }

Database Deadlocks: We use the injected deadlock in WallRide
to illustrate the usage of SLocator to locate the origin of
deadlock SQL queries for further diagnosis. Figure 3a shows
the deadlock log obtained by using the MySQL command
SHOW ENGINE INNODB STATUS. Two SQL queries are
blocked (as highlighted in blue), waiting for a lock to be
granted in transactions T1 (TRANSACTION: 1) and T2
(TRANSACTION: 2), respectively. However, it is unknown
how this deadlock happens according to the log because
these two SQL queries should not block each other as they
access different tables (i.e., post and post category).

By using the first blocked SQL query in transaction T1
as the input to SLocator, SLocator returns the first control

flow path shown in Figure 3b. Note that the path returned
by SLocator is one specific path in the control flow graph, so
the methods are on the same call path (i.e., no branching in
between). The request handling method PageBulkDeleteCon-
troller.delete (i.e., the root of the returned control flow path)
calls the method PageService.bulkDeletePage, which then
calls the method PageService.deletePage. PostRepository-
Impl.lock accesses the DBMS and generates the SQL queries
Q. PageRepository.delete accesses the DBMS and generates
two SQL queries Q1 and Q2, where SLocator locates Q2 as
where the first blocked SQL query is generated. Note that Q
and Q1 must have been executed since Q, Q1, and Q2 are
on the same control flow path. Similarly, using the second
blocked SQL query in Figure 3a as the input, SLocator returns
the second control flow path shown in Figure 3b.

Based on the control flow paths that are returned by
SLocator, we can see that Q1 and Q4 access the post category
table, and Q2 and Q3 access the post table. Since Q1 and Q4,
and Q2 and Q3 are in different methods, a deadlock may
happen when the two methods are executed by two separate
transactions. For example, a transaction T1 may hold the lock
on the post category table (i.e., executing Q1) while another
transaction T2 holds the lock on the post table (i.e., executing
Q3). In this case, T1 cannot execute Q2 because T2 is holding
the lock; and T2 cannot execute Q4 because T1 is holding
the lock. Possible ways to solve this deadlock are to execute
the SQL queries that access the same set of tables in a fixed
order, or add a pessimistic lock (as shown in Listing 2). In
short, the origins of the SQL queries that are returned by
SLocator may provide developers additional information to
investigate the root cause of deadlocks.

We evaluate SLocator to illustrate its usage in locating
the application code that results in generating two
cases of problematic SQL queries, i.e., slow SQL queries
and SQL queries that cause database deadlocks. We
find that SLocator provides developers with additional
information to localize the database access issues.

5 THREATS TO VALIDITY

External Validity. We only evaluate SLocator on seven open
source applications implemented using the Hibernate ORM,
which may affect the generalizability of our results. To
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mitigate these threats, we choose the studied applications
with various sizes (the LOC ranges from 2.4K to 197K) across
different domains such as e-commerce, CMS, and forum to
improve the generalizability. Another threat may come from
the studied application PetClinic which only has 2.4K lines
of source code. However, we find that the average accuracy
does not change much after excluding PetClinic. For example,
when using SQL session logs, the average Top@5 for locating
the web request changes from 91.7% to 91.2% while the
average Top@5 for locating the control flow path changes
from 88.8% to 87.7%. Besides, the approach in SLocator may
be applicable to applications using non-Hibernate ORM.
Future studies may apply the needed changes to evaluate
how SLocator performs on applications implemented using
other ORM frameworks.

Construct Validity. One possible threat to construct validity
might come from the workload in our experimental setup. We
use simulated workload to exercise different workflows in the
studied applications. However, this simulated workload may
not cover all the workflows and may not be representative
of real application workflows. To mitigate these threats,
our workload achieves high coverage of the web page and
database table, although a high value in different metrics is
needed to fully address the construct threat.

Limitation of static analysis in our approach. One threat
is the limitation of static analysis in inferring control flow
paths (as discussed in RQ1). For example, due to different
used frameworks and the embedded code logic in the user
interface (UI), static analysis may not be able to infer the com-
plete code path that generates a SQL query. Future studies
need to consider the peculiarity of various web frameworks
of applications when analyzing the source code statically.
Another limitation may exist in inferring the database access
that occurs outside of the web requests. We choose the web
request handling methods as the entry points to the studied
applications because most functionalities in a web-based
application are accessible through web requests. To verify
our design decision, we conducted a backward control flow
analysis on the entry points of the database access calls in the
studied applications. We found that among all the database
accesses, only one database access call in JeeWeb is triggered
by a timer in the application instead of accessible through
web requests. The limitation of static analysis may also exist
in inferring database accesses. Our approach translates the
basic and commonly used CRUD operations of the JPA API
calls to infer database accesses (templated SQL queries), and
extracts the native SQL query and JPQL query as inferred
database accesses (inferred queries) (as discussed in Section
3.1.2). We did not include criteria APIs due to their dynamic
nature. However, we carefully checked the source code of the
seven studied applications and found that criteria queries are
less used compared to the basic CRUD operations of the JPA
EntityManager (there are only 11 usages of Criteria among
all the 595 usages of JPA APIs in the studied applications).
Future studies should consider examining the usage of
various JPA APIs and may expand SLocator’s translation
layer to cover APIs such as Criteria.

Populated database. We use the synthesized database
content to populate the main database tables (as discussed
in Section 4.1). However, the applications running on the

synthesized data may behave differently from the actual
deployments, which may affect the execution of the studied
applications. To mitigate these threats, we try to populate
realistic values into the database. For example, we populate
unique email addresses and realistic addresses into customer
and address tables in BroadleafCommerce. Besides, all of the
synthesized database data still follows the association rela-
tionships and database constraints in the database. Hence, the
applications should execute well on the synthesized database
data. The synthetic database data and data-populating scripts
(written in procedures in MySQL) are publicly available [28].

6 CONCLUSION

Object-relational mapping (ORM) frameworks are widely
used to abstract database access in database-backed web
applications. However, when using ORM, developers do
not have full control of how a SQL query is generated.
Therefore, given a problematic SQL query, developers may
encounter challenges to know how and locate where the SQL
query is generated. In this paper, we propose SLocator, an
automated approach to locate the control flow path (i.e., the
origin) that generates a given SQL query. SLocator combines
static analysis and information retrieval (IR) techniques for
locating the origin. We evaluate SLocator on seven open
source applications by using two types of DBMS logs: SQL
session log and individual query log. SLocator achieves
good localization accuracy and has a better localization
result compared to the baseline. We also conduct a study
to demonstrate how SLocator may be used to locate the
database access code that generates problematic SQL queries
(i.e., slow SQL queries and database deadlocks). Our findings
show the potential of using IR techniques to help locate
database-related issues.
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