
Revisiting Defects4J for Fault Localization in
Diverse Development Scenarios

Md Nakhla Rafi∗, An Ran Chen†, Tse-Hsun (Peter) Chen∗, and Shaohua Wang‡
∗Software Performance, Analysis, and Reliability (SPEAR) Lab,

Concordia University, Montréal, Québec, Canada
Email: {r mdnakh, peterc}@encs.concordia.ca

†University of Alberta, Edmonton, Canada
Email: anran6@ualberta.ca

‡Central University of Finance and Economics, Beijing, China
Email: davidshwang@ieee.org

Abstract—Defects4J stands out as a leading benchmark dataset
for software testing research, providing a controlled environment
to study real bugs from prominent open-source systems. While
Defects4J provides a clean and valuable dataset, we aim to
explore how fault localization techniques perform under less-
controlled development scenarios. In this paper, we revisited
Defects4J to study developers’ changes to fault-triggering tests
after the bugs were reported/fixed. We aim to introduce a new
evaluation scenario within Defects4J, focusing on the implications
of regression tests and test changes added after the bug was fixed.
We analyze when these tests were modified relative to bug report
creation and examine spectrum-based fault localization (SBFL)
performance in less-controlled settings. Our findings show that
1) 55% of the fault-triggering tests were added to replicate the
bug or test for regression; 2) 22% of the tests were changed after
the bug reports, incorporating information related to the bug;
3) developers often update tests with new assertions or changes
to match source code updates; and 4) SBFL performance differs
significantly in less-controlled settings (down by at most 90% for
Mean First Rank). Our study points out the diverse development
scenarios in the studied bugs, highlighting new settings for future
SBFL evaluations and bug benchmarks.

Index Terms—Fault localization, Defects4J, Empirical study

I. INTRODUCTION

Locating and fixing bugs is an expensive and time-
consuming task, especially due to the ever-increasing com-
plexity of modern software. Prior research [8] has found that
developers spend a significant portion of their time on bug-
fixing activities. To assist developers in locating and fixing
bugs, prior research has proposed different fault localization
(FL) techniques [38], [48], [53], [56], [66] and automated
program repair (APR) techniques [33], [34], [50]. Spectrum-
based fault localization (SBFL), one of the most widely used
fault localization techniques, analyzes the code coverage to
suggest a ranked list of possible buggy statements in the code
based on failed tests [4], [24]. They operate on the intuition
that statements covered by more failed tests and fewer passed
tests are more likely to contain a bug. These techniques are
also crucial for automated program repair, as they help identify
potential buggy locations [38].

Given the increasing community attention on software test-
ing research, prior studies introduced benchmarks for auto-

matic program repair and fault localization. For example, there
are many benchmarks available for both C and Java, such as
ManyBugs [30] QuixBugs [37], Bugs.jar [49], Bugswarm [55],
and Defects4J [1]. These benchmarks often provide code
coverage, test failure information, and the corresponding bug
fix. Researchers can easily evaluate new fault localization
techniques using these benchmarks.

Particularly, Defects4J is one of the most widely-used
benchmarks [43], [44], [48], [53], [66]. Defects4J has been
instrumental in advancing software testing research by pro-
viding clean, easily executable data. Defects4J provides a
controlled environment by isolating real bugs from version
control histories. It offers both buggy and fixed versions and
comprehensive test suites, which greatly enhance the reliability
and reproducibility of testing studies. Defects4J 2.0 contains
835 bugs from 17 open-source Java systems, and every bug is
accompanied by at least one failing test that triggers it (i.e.,
fault-triggering test).

While Defects4J aims to provide complete information
to replicate bugs, some bugs may not have tests available
when they were first reported. Some prior studies [22], [40]
found that developers derived certain fault-triggering tests in
Defects4J from system versions where the bug had already
been resolved. Hence, although the structured data provided
by Defects4J has greatly facilitated research, it only represents
one of the many perspectives of development scenarios when
all the data is available. Real-world development scenar-
ios, including evolving test suites, ad-hoc fixes, and various
developer-specific practices, can be less controlled.

In this paper, we revisited Defects4J to study and organize a
collection of bugs that can serve as a benchmark for evaluating
fault localization techniques in less controlled settings. We
conduct the first comprehensive study on the fault-triggering
tests in Defects4J. We define fault-triggering tests as tests
that fail when the bug is introduced and pass once the bug
is fixed [1], [59]. Firstly, we classify the tests in relation to
developers’ bug-fixing activities (e.g., a test is newly added
or modified after a bug was reported). We find that 55% of
the fault-triggering tests in Defects4J were newly added after
the bugs were fixed, and 22% of the tests were modified

1



after the bugs were reported for replication and regression
testing purposes. Given the large proportion of such tests,
our findings confirm a common development practice—where
tests are often written or adapted after a bug is reported—and
highlight the need to examine how fault localization techniques
perform when applied in these evolving and less-controlled
settings.

Secondly, we analyze developers’ modifications on the fault-
triggering tests and identify different categories of reasons
why developers modify them. We find that developers often
add new assertions or modify the tests to cope with source
code changes and fixes (i.e., 77% of the analyzed cases).
Finally, we examine how existing fault localization techniques
perform on these datasets by applying state-of-the-art SBFL
techniques to the commits before and after the bugs are
fixed. Our findings show that spectrum-based fault localization
techniques perform significantly worse in these less controlled
settings. This highlights the importance of proposing and
evaluating fault localization techniques on controlled datasets
like Defects4J and other datasets that reflect more variable
development scenarios.

Building on the strengths of Defects4J, our work further
contributes by organizing a dataset that distinguishes between
bugs with and without post-resolution information in tests, as
well as the coverage of tests when the bugs were reported.
This new dataset is valuable for 1) evaluating new and existing
fault localization and automated program repair techniques
in various development settings, 2) providing insights and
guidance for future bug benchmarks, and 3) offering a better
understanding of the developers’ bug-fixing process to suggest
additional settings for evaluation. We hope the study can
complement the dataset provided by Defects4J and enhance
its utility for research that simulates diverse development
scenarios.

The main contributions of this paper are:
• Our findings show that most fault-triggering tests (77%)

were modified after bugs were reported or even fixed,
highlighting other perspectives of software development
scenarios that may happen in less-controlled settings.

• We manually studied and categorized the modification on
fault-triggering tests. We uncovered five categories, such
as modifying tests to co-evolve with code and adding
new assertions. The uncovered categories may provide
a starting point for understanding developers’ bug-fixing
process and assist in proposing future techniques or
creating/extending bug benchmarks.

• We evaluated the performance of SBFL techniques in
less-controlled settings by comparing the reported version
(before the bug was reported) with the version provided
by Defects4J. The fault localization results on less-
controlled settings are significantly worse than that on
the Defects4J version, with a degradation up to –90% for
Mean First Rank and –85% for Mean Average Rank.

• We discussed the implications of our findings and high-
lighted future research direction. We also made our
dataset publicly available online [2], which includes a

comprehensive list of the bugs that contain tests added or
modified after the bug report, the details of our manual
study results, and the test results and coverage that we
collected for the buggy commit (before the bug was
reported).

Our study points out the diverse development scenarios in
the studied bugs. Future research may use our annotated data
to study fault localization and automated program repair in
less-controlled settings.
Paper Organization. Section II discusses the background
and motivation of this study. Section III presents our stud-
ied dataset and the motivation, approach, and results of the
research questions. Section IV discusses the findings and high-
lights potential future research directions. Section V presents
related work to our study. Section VI discusses threats to
validity. Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

The Defects4J v2.0.0 benchmark contains 835 bugs from
17 Java open source systems [1]. All 835 bugs are extracted
from different phases of software development, and the 17
projects span a wide range of domains and maturities. The
benchmark aims to facilitate research in software testing and
debugging. Due to its ease of use and the realistic nature
of the bugs, Defects4J has been widely used for research
in fault localization [38], [48], [53], [56], [66], automated
program repair [18], [43], [44], [63], and automated test
generation [16], [51], [65].

In Defects4J, each bug comes with at least one failed test to
ensure reproducibility. This failed test is known as the fault-
triggering test. As not all bugs are guaranteed to have a fault-
triggering test at the time they are first uncovered, Defects4J
utilizes an automated step to mine candidate fault-triggering
tests from the bug fix and buggy commit of the system [1].
Specifically, a fault-triggering test must deterministically pass
on the fixed commit and fail on the buggy commit. Every
bug and fault-triggering test is then manually examined to
eliminate irrelevant code changes, such as the addition of new
features. By default, Defects4J uses developer-written tests as
fault-triggering tests to reproduce the bugs.

However, fault-triggering tests may be mined from the bug-
fixing commit where developers may have already fixed the
bug or were in the process of fixing it. This can include added
information about the bug that was not available at the time the
bug was reported in the tests. Table I provides an excerpt of
a bug, CLI-51, from the Defects4J benchmark with a test that
has developer knowledge. CLI-51 is a bug from Commons-
Cli where the code misinterpreted parameter values as new
parameters. When developers first received this bug report,
there was no test failure in the system. Developers provided
a patch to fix the bug and commented in the report that a
fault-triggering test (i.e., BugCLI51Test) was developed as
part of the patch for regression testing. The fault-triggering test
was introduced after the corresponding bug fixes. In particular,
developers developed the test based on the content of the
bug report and the bug fix. The fault-triggering test verifies

2



TABLE I: An excerpt of the Bug report CLI-51 from the
Defects4J benchmark.

BugID CLI-51

Summary Parameter value “-something” misinterpreted as a pa-
rameter

Developer’s
comment

“Fix so parser doesn’t burst options which are not
defined. (-s) in the above case.
Includes unit test [BugCLI51Test].”

the parameter value “-t -something” that triggers the bug, as
the bug report mentions. As a result, the test contains post-
resolution information, which provides hints on the causes and
location of the bug in the source code.

Although prior studies [10], [23], [26], [57] suggest that
some tests in Defects4J may include information from the
bug-fixing process, there has been no systematic study differ-
entiating these tests from those reflecting more development-
centric scenarios. Fault localization is crucial for helping
developers locate faults [7], [41], [48], [70] and for guiding
automated program repair techniques [29], [38], [46]. Thus,
evaluating these techniques in varied development scenarios
and curating a bug collection that serves as a benchmark
for fault localization research in less-controlled settings is
essential.

III. STUDY DESIGN AND RESULTS

In this section, we first discuss an overview of the studied
systems. Then, we present the motivation, approach, and
results for the three research questions (RQs).

A. Overview of the Studied Systems

We performed our study on the Defects4J (V2.0.0) bench-
mark [1], which includes real and reproducible faults from a
wide range of systems. Defects4J forms the basis of many prior
studies on fault localization [31], [48], [53], [57], [66], where
these studies use it as the benchmark dataset for evaluation and
comparison with state-of-the-art. Table II provides an overview
of our studied systems. We collected the number of lines of
code (LOC) and the number of tests from the HEAD version
of each system. The sizes of the studied systems in Defects4J
range from 4K to 90K lines of code, and the benchmark
contains 1,655 fault-triggering tests. We did not consider the
system Chart from Defects4J since it does not use Git as the
version control system. For our study, we rely on analyzing
the development history in Git repositories to understand the
changes in the fault-triggering tests. We studied 809 bugs from
16 systems in total. Since one bug may have more than one
fault-triggering test, there are more fault-triggering tests than
bugs.

RQ1: Were Fault-triggering Tests Added/Modified After a Bug
Was Reported?

Motivation. When localizing faults, SBFL techniques primar-
ily rely on analyzing the coverage of fault-triggering tests.
Prior research [10], [26], [57] has highlighted that Defects4J
may include some tests added by developers after the bug was

TABLE II: An overview of our studied systems from Defects4J

System #Bugs LOC #Tests Fault-triggering
Tests

Cli 39 4K 94 66
Closure 174 90K 7,911 545
Codec 18 7K 206 43
Collections 4 65K 1,286 4
Compress 47 9K 73 72
Csv 16 2K 54 24
Gson 18 14K 720 34
JacksonCore 26 22K 206 53
JacksonDatabind 112 4K 1,098 132
JacksonXml 6 9K 138 12
Jsoup 93 8K 139 144
JxPath 22 25K 308 37
Lang 64 22K 2,291 121
Math 106 85K 4,378 176
Mockito 38 11K 1,379 118
Time 26 28K 4,041 74

Total 809 409K 25,708 1,655

reported or fixed. Although the data provided by Defects4J has
greatly facilitated research, it primarily represents scenarios
where most data is available in a controlled setting. Therefore,
in this RQ, we classify the tests in relation to developers’
bug-fixing activities to examine the timelines of test modifi-
cations and additions for every bug, from the creation of the
bug report until its resolution. We also investigate whether
these changes incorporate information from the developers’
debugging process. These findings aim to provide a clearer
distinction between bugs with cleaner data and those reflecting
less controlled development conditions, ultimately highlighting
alternative perspectives on software development scenarios
that may occur in more variable settings.

Approach. We conducted a tool-assisted manual study on the
timelines of events for every bug. We first collected the bug
report, fault-triggering tests, and bug-fixing patches for all of
the 809 studied bugs. We then identified the events (e.g., bug
report creation) associated with each piece of information. We
analyze these events automatically in relation to bug resolution
and manually review the test modifications to ensure their
relevance to the bug. Below, we discuss our data collection
process in detail.

Bug report creation and resolution date: To determine the time
interval of the bug resolution and identify whether the fault-
triggering tests were modified during this period, we collected
the creation and resolution time of the bug reports. We
retrieved the bug reports from the bug tracking systems (i.e.,
Jira and GitHub) using REST APIs and the bug IDs provided
in Defects4J. We then extracted the creation and resolution
time from the “Created” and “Resolved” fields (or the issue
creation and closed dates on GitHub) of each bug report. Using
the creation and resolution dates, we can determine if a test
was added/modified after a bug was reported.

Date of fault-triggering test creation and modification: We
identified all the commits that are associated with the fault-
triggering tests and analyzed when the commits happened
(e.g., before or after the bug was reported/fixed). We used
the git command “git log -L:[funcname]:[file]”

3



TABLE III: Timelines of the changes on the fault-triggering tests. Note that the same bug may belong to more than one pattern
because a bug may have more than one fault-triggering test.

Patterns Description Example Timeline #Tests #Bugs

Pattern 1 Fault-triggering tests were newly added after the bug was reported. Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Aug 17, 2007 July 23, 2008

872 (53%) 558

Pattern 2 Fault-triggering tests were newly added then modified after the bug was reported. Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Modified

Dec 31, 2009 Dec 30, 2009

44 (2%) 31

Pattern 3 Fault-triggering tests were modified after the bug was reported and before the bug was
marked as fixed.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Dec 5, 2011

Modified

March 3, 2009

362 (22%) 155

Pattern 4 Fault-triggering tests were not modified after the bug was reported and before the bug
was marked as fixed.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

March 3, 2011July 1, 2010

377 (23%) 149

Total 1,655 -

to identify the list of commits that modified the fault-triggering
test and the modification date.

Bug Fix Date: In addition to the bug report creation/resolution
time, we study the time of the bug fix to understand if a
test was modified before or after the fix became available.
To find the bug fix date, we first retrieved the resolution
date of the bug report from the bug tracking system. Using
this date and the bug ID, we traced related commits by
analyzing commit messages referencing the bug ID. We then
used the “git log [commit]” command to inspect these
commits in detail. For cases with multiple related commits, we
identified the final bug-fix commit as the one where the fault-
triggering test failed on the buggy version but passed on this
commit. We then aligned the bug fix dates with modifications
made to the fault-triggering tests.

Change patterns of the tests and their relevance to the bugs:
We arranged the events – bug report creation and resolution,
creation and modification of fault-triggering tests, and bug fix
time – in chronological order to reconstruct the timeline. In
particular, we focused on the creation and modifications of
fault-triggering tests with respect to bug resolution. We used
an automated script to sequence the events into timelines.
We then manually studied the commit messages and related
code changes to examine if the added/modified tests included
developer knowledge about the bug. Our collected data is
publicly available [2].

Results. We find that 77% of the fault-triggering tests in
Defects4J were either added or modified during the bug
fixing process (i.e., after the bug report was created). In total,
we uncovered four timelines of change patterns on the fault-
triggering tests. Table III shows the uncovered change patterns
and corresponding timelines of the events. In summary, our
manual analysis reveals that developers often modify or add
tests after bug reports are created, incorporating additional
bug-related information into all tests from Pattern 1 and Pattern
2, and the majority of tests from Pattern 3 (357/362). Below,
we discuss each pattern in detail.

Pattern 1: Test created after bug report creation (53%). When
developers are trying to fix a bug, they often rely on fault-
triggering tests to understand and replicate the problem [6],
[10], [14], [52], [59]. However, as illustrated in Table III, we
found that in Defects4J, a large portion of these fault-triggering
tests may not exist before the bug report was created. The
most common change pattern is that the tests were added
to the system only after developers began to fix the bug.
As an example, in CLI-144, the bug report was created on
August 17, 2007. On July 23, 2008, developers created a
new fault-triggering test called BugCLI144Test as part of the
bug fixing commit (the test was named using the bug report
ID). This new fault-triggering test was added because existing
tests were unable to capture the reported bug. Thus, the test
contains information on the ground truth of the bug-fixing
location. However, this test was marked as the fault-triggering

4



test in Defects4J. Through manual inspection, we found that
developers added all the fault-triggering tests belonging to this
pattern as part of the bug-fixing process. Namely, nearly 50%
of the fault-triggering tests in Defects4J were regression tests
that were added to replicate/prevent the bug.
Pattern 2: Test created and modified after bug report creation
(2%). As shown in Table III, after a bug report is created,
developers may create initial versions of the fault-triggering
tests that require further enhancement (e.g., the initial version
is not able to cover all possible scenarios). Nevertheless, in
our manual analysis, similar to Pattern 1, we found that all
these fault-triggering tests were created for regression testing
purposes and contained information specific to the bug-fixing
process. As an example, in MATH-320, the developer initially
added a bug fix and a new test to reproduce the bug. However,
the developer commented that the fix was incomplete and
shared the test to facilitate discussions with other developers.
Later, the developer applied a patch to fix the bug along with
the updated test. For all the tests that belong to Pattern 2, either
the commit messages or the names of these fault-triggering
tests contain the ID of the bug report, further indicating their
connection to the bug-fixing process.
Pattern 3: Test modified after bug report creation (22%). In
practice, some bugs reported by users or other developers
cannot be revealed by existing tests. Hence, when fixing
these bugs, developers may modify and enhance the tests for
regression testing purposes. For example, in COMPRESS-10,
the test UTF8ZipFilesTest was enhanced as part of the bug
fix. Developers modified the assertions to better capture the
bug. It is possible that the test modification is not related to
the bug fix. However, after our manual analysis, we found that
99% (357/362) of the tests contained changes that altered the
test execution for replicating the bug, while the remaining 1%
(5/362) did not introduce new knowledge to the tests (e.g.,
code re-styling, and enabling or disabling a failed test). In
short, we find that most modifications to the fault-triggering
tests were made during the bug-fixing process, incorporating
information related to the bug after it was reported.
Pattern 4: Test unmodified during bug resolution (23%).
We found that developers may fix the bug without mak-
ing any changes to the fault-triggering tests. As an exam-
ple (CLOSURE-79), when the problem was initially uncov-
ered, the fault-triggering test testPropReferenceInExterns3
failed. Developers work on the bug fix without having to
change the test as it was working as intended (i.e., failing
upon unexpected behavior). The fault-triggering tests were not
changed during the resolution of the bug report. This pattern
consists of 378 manually verified fault-triggering tests.
Discussion. In our manual analysis, we identified four change
patterns in fault-triggering tests. Based on Patterns 1 and 2,
55% (916/1,655) of the fault-triggering tests were created after
the bug report was filed. These tests were not involved in the
initial detection of bugs and included information from the
bug-fixing process, potentially providing information on the
bug’s location. While leveraging these tests in fault localization

can be beneficial, it also introduces potential biases in how
effectively code coverage can identify faults in less controlled
environments. Additionally, 22% (362/1,655) of the tests were
modified after the bug report, resulting in significant differ-
ences from their initial versions and potentially influencing
fault localization outcomes. We found that 23% of the studied
fault-triggering tests detected bugs (i.e., the tests failed),
accounting for 19% (150/809) of the total bugs.

Fault-triggering tests in Defects4J might not be available in
all situations, as highlighted in our findings. Future research
should consider finding other data (e.g., logs or stack traces)
to complement fault localization in case such tests are not
available [11], [47]. Our findings highlight the importance of
considering the context and timing of test creation and mod-
ification, emphasizing the need to evaluate fault localization
techniques on datasets reflecting more variable development
scenarios.

RQ1-Takeaway. The majority of the fault-triggering tests
in Defects4J (77%) incorporate details from the bug-fixing
process. These tests were either added or modified to
replicate the bug or to prevent future regressions. Only
23% of the tests were able to detect the bugs (19% of the
total bugs) as intended.

RQ2: How Do Developers Modify the Fault-triggering Tests?

Motivation. Automated testing environments often detect bugs
first through failing tests [12], [17], [25], [27]. Once developers
identify a bug, they analyze these test failures to debug the
issue and understand its root causes. However, as we found in
RQ1, many fault-triggering tests may not exist before the bug
report. Even when they exist, they can only trigger the bug
after developers modify them during the bug-fixing process.
In this RQ, we manually study the modifications made by
developers to the fault-triggering tests and discuss the common
reasons behind them.

Approach. We conducted a manual study on 16 studied
systems by analyzing a sample of 300 fault-triggering tests
drawn from 1,361 modified tests collected from Patterns 1,
2, and 3. The sample size was determined to achieve a
95% confidence level with a 5% confidence interval, ensuring
statistical validity for the population size. We use the stratified
sampling strategy [45] to obtain the number of samples for
each studied system that is proportional to their total number of
tests. For each test, we study its code changes, code comments,
commit message, and corresponding bug report and bug fix
to understand the potential motivation for its modification.
Following prior studies [15], [35], [36], we conduct our
manual study in three phases using the open coding method.

Phase 1: The first author manually reviews the tests to create a
preliminary list of categories for 100 fault-triggering tests that
are randomly selected. The author also lists the justifications
for creating each category regarding its code changes, code
comments, commit messages, bug reports, and bug fixes.

5



TABLE IV: List of categories of the modifications to fault-triggering tests.

Category Description Count Percentage

Adding New Test Developers added a new test to reproduce the bug. 189 63%
Adjusting Test Outputs Developers modified the expected output in tests to cope with source code evolution. 58 20%
Adding New Assertion Developers added a new assertion to replicate the bug and for regression testing purposes. 41 13%
Improving Test Logic During Bug Fixes While modifying a test to replicate the bug, developers also enhance the structure or the logic in the test. 7 2%
Others Developers reformated the style in the test (e.g., indentation), or eliminated code that is not essential to the

reproduction of faults.
2 1%

Together with the second author, the two authors revise the
list of categories and address any discrepancies.
Phase 2: The two authors independently review the remaining
300 tests based on the discussed categories and assign the test
to one of the identified categories from Phase 1.
Phase 3: The two authors independently assigned categories
and discussed any disagreements until reaching a consensus.
A Cohen’s Kappa [13] score of 0.86, calculated before the
consensus process, indicates substantial agreement on the
initial categorization. Each disagreement was reviewed, with
both authors considering the context of code changes and bug
reports until a final agreement was achieved.
Results. Other than test addition, most changes on the
fault-triggering tests are related to improving test oracles
or updating tests in response to source code changes. In
our manual analysis, we uncover five categories of reasons
why developers changed the fault-triggering tests as shown in
Table IV. Below, we discuss each category in detail.
Adding New Test (189/300, 63%). We found that some tests are
specifically created to aid in reproducing a bug. As developers
work towards resolving a bug, they may create new tests
designed to replicate the problematic behavior. Once the bug is
fixed, developers often incorporate these tests into their patch
to ensure it does not re-occur in future releases (i.e., regression
testing). All test changes from this category belong to Patterns
1 and 2 that we found in RQ1. These tests are often named
after the bug report ID to ease traceability and management.
Adjusting Test Outputs (58/300, 19%). We find that developers
may change the test code to accommodate the bug-fixing
changes in the source code. As shown in Listing 1, developers
fixed bug #207 in JacksonCore by modifying the calcHash
method in the source code (as shown below). In addition to
the bug fix, developers patched the test testSyntheticWith-
BytesNew responsible for verifying the stability of the hash
code, which failed after the new bug fix. One of the developers
highlighted in a comment that this bug fix improved “hashing
[with regards to] existing test”. The system is expected to
have a different distribution of collision count. Therefore,
developers modified the test to match its expected output to
the system’s actual behavior.

// ByteQuadsCanonicalizer.java
public int calcHash(int q1){

int hash = q1 ˆ _seed;
hash += (hash >>> 16); // to xor hi- and low- 16-bits
- hash ˆ= (hash >>> 12); // as well as lowest 2 bytes
+ hash ˆ= (hash << 3); // shuffle back a bit
+ hash += (hash >>> 12); // and bit more
return hash;

}

// TestSymbolTables.java
public void testSyntheticWithBytesNew() throws

IOException{
...
// anywhere between 70-80% primary matches
- assertEquals(8524, symbols.primaryCount());
+ assertEquals(8534, symbols.primaryCount());

}

Listing 1: Example of adjusting test outputs.

Adding New Assertion (41/300, 14%). During the bug-fixing
process, developers may add new assertions to help reproduce
a bug (belongs to Pattern 3 from RQ1). Typically, as we found
in our manual study, the modification to the test involves
adding single-line assertion statements. For example, as seen
in the test testCreateNumber shown in Listing 2 (LANG-
822), developers added a new assertion to reproduce the bug.
The assertion checks whether the method createNumber can
execute as expected if the input starts with the string “--”.
According to the developer’s comment, numerous edge cases
can expose problematic behaviors when calling the method,
so whenever a new edge case arises, it is added to the test as
a new assertion statement.

public void testCreateNumber() {
...

// LANG-693
assertEquals("createNumber(String) LANG-693 failed",

Double.valueOf(Double.MAX_VALUE),
NumberUtils.createNumber("" + Double.MAX_VALUE));

+ // LANG-822
+ assertFalse("createNumber(String) LANG-822 succeeded",

checkCreateNumber("--1.1E-700F"));
}

Listing 2: Examples of new assertion.

Improving Test Logic During Bug Fixes (7/300, 2%). Devel-
opers may modify tests to change the logic of the tests when
trying to fix a bug. Typically, these modifications happen when
developers are trying to replicate the bug in a test. Examples
of modifications include simplifying complex logic and reor-
ganizing the code structure, which can alter the execution of
the test. In Figure 3, we show an example of a test modifica-
tion in this category based on the JsonAdapterNullSafeTest
from issue #800 in GSON. During the bug-fixing process,
developers discussed providing a “simpler” test to reproduce
the bug. They incorporated new changes that simplified the
initialization of the Device class from the test and removed
logic that was irrelevant in triggering the fault. It contributed
to the improvement of test quality and maintenance.

public void testNullSafeBugDeserialize() throws
Exception {

- String json =
"\"\\\"id\\\":\\\"ec57803e2\\\",\\\"category\\\":2\"";

- Device device = gson.fromJson(json, Device.class);

6



+ Device device = gson.fromJson("’id’:’ec57803e2’",
Device.class);

...
@JsonAdapter(Device.JsonAdapterFactory.class)
private static final class Device {
String id;
- int category;
- Device(String id, int category)
+ Device(String id)
...

}

Listing 3: Example of improved test logic during bug fixes.

Others (2/300, 1%). We find two other reasons why developers
may modify the tests, which do not belong to any of the
above categories. In particular, we observe that developers may
reformat the source code files without necessarily changing
any of the logic in the code. For instance, developers removed
the extra indentation in the test to improve its readability.
We also observe that developers may clean up the test which
entails eliminating any obsolete variables or comments.

RQ2-Takeaway. Developers often add new tests (63%)
or assertions (14%) to replicate the bug and sometimes
improve tests (21%), e.g., to reflect the fix in source code
or improve test logic to regression test the fix.

RQ3: How Do Spectrum-Based Fault Localization Approaches
Perform in Less Controlled Settings?

Motivation. In the previous RQs, we discovered that many
tests are newly added or modified for replicating bugs and
regression testing. In many development scenarios, similar
information or tests may not be available. Therefore, it is
important to understand how fault localization techniques
perform when such data is absent. In this RQ, we aim to
compare fault localization results between controlled and less-
controlled settings. The findings will provide insights into how
these tests impact fault localization performance in diverse
development scenarios.

Approach. Among existing fault localization techniques,
spectrum-based fault localization (SBFL) is one of the most
widely studied techniques [3], [24], [31]. SBFL techniques are
also an important building block for automated program repair
techniques since they rely on SBFL to list potentially buggy
locations to start repairing [38]. SBFL techniques differentiate
the buggy statements from the non-buggy ones through the
program spectrum (code coverage profile). Intuitively, a state-
ment covered by more failed tests but fewer passed tests is
more likely to contain the bug. As a result, developer-modified
fault-triggering tests can significantly affect SBFL, as these
tests may not have existed when the bug was first reported, or
may not have been able to trigger the bug (i.e., do not fail)
when first introduced.

In particular, we study the effectiveness of SBFL techniques
on bugs where fault-triggering tests existed before the bug
report but were modified after the bugs were reported. This lets
us compare fault localization techniques in controlled settings
with those in less controlled, real-world scenarios. The tests in

Pattern 3 existed before the bug report and were later modified,
often incorporating additional information from the bug-fixing
process (RQ2). Therefore, we focus our study on bugs that
belong to Pattern 3. We compare the performance of SBFL
techniques in two versions: 1) vReported: the version when the
bug was first reported, and 2) vD4J: the version provided by
Defects4J, where the tests were modified during bug fixes. Our
comparison is conducted on all 155 bugs with fault-triggering
tests in Pattern 3. By examining these scenarios, we aim to
understand how fault localization techniques perform in less
controlled, unclean development environments.

Since Defects4J only provides the code coverage and test
execution result for vD4J, we need to collect the data for
vReported. To collect vReported, for each bug, we extract the
timestamp when the bug report was created and identify the
nearest commit before the bug was reported. In practice, the
bugs remain unfixed in these commits, and if there are any test
failures, they are more likely to be related to the bug. We check
out these commits on Git, compile the systems, and execute
the tests. Note that, if a bug has no failed tests in vReported,
we exclude the bug from our analysis for a more direct
comparison between the two versions. Since most systems do
not report code coverage, we manually modified the systems to
use JaCoCo to collect the coverage information. We configured
JaCoCo and resolved compilation issues, such as missing
dependencies and incompatible environment settings. Our data
is made publicly available in order to facilitate replication and
future research [2].

After collecting the data for vReported, we apply SBFL
techniques on both vReported and vD4J and compare the
localization result. In particular, we use four following com-
monly used SBFL techniques [9]: Ochiai [3], Tarantula [19],
DStar [60], and Barinel [5]. To evaluate the fault localization
techniques, we use the following metrics:
Top-K is defined as the number of faults with at least one faulty
statement correctly identified within the first K statements in
the ranking. Therefore, a better Top-K result indicates that
developers are able to find faulty statements by examining
fewer statements. We set K to 1, 3, and 5 in our evaluation.
Mean First Rank (MFR) calculates, for all the bugs, the mean
of the first faulty statement in the ranked result. Therefore, a
smaller value means that the technique, on average, is able to
identify a faulty statement early in the ranked list.
Mean Average Rank (MAR) first calculates the average rank
of all the faulty statements for a bug. Then, MAR calculates
the average of the ranks from all the bugs. A smaller value
means that the faulty statements are ranked earlier.
Results. For all the four fault localization techniques that
we studied, the localization results degrade significantly on
vReported compared to vD4J on bugs in Pattern 3. Table V
shows the fault localization (FL) results on vReported and
vD4J for the bugs whose fault-triggering tests belong to Pattern
3 (fault-triggering tests exist but were modified after the bug
was reported). Out of the 155 unique bugs that we considered,
118 of them caused test failures. The remaining 25 bugs either

7



TABLE V: Fault localization results for the bugs that belong
to Pattern 3 (fault-triggering tests exist but were modified). We
compare the results of running the techniques in the commits
before the bugs were reported (vReported) and in the commits
that were provided by Defects4J (vD4J).

Technique Version Bugs Top-1 Top-3 Top-5 MFR MAR

Ochiai vReported 118 3 3 3 2965 (-75.92%) 3254 (-62.69%)
vD4J 118 49 64 70 714 1214

Tarantula vReported 118 4 4 4 2988 (-76.41%) 3244 (-61.84%)
vD4J 118 47 62 66 705 1238

D-Star vReported 118 10 11 15 2827 (-90.34%) 3231 (-85.73%)
vD4J 118 29 39 44 273 461

Barinel vReported 118 3 3 3 2954 (-73.56%) 3282 (-63.19%)
vD4J 118 45 60 65 781 1208

TABLE VI: Fault localization results for the bugs that belong
to Pattern 4 (the fault-triggering tests were not modified). We
compare the results of running the techniques in the commits
before the bugs were reported (vReported) and in the commits
that were provided by Defects4J (vD4J).

Technique Version Bugs Top-1 Top-3 Top-5 MFR MAR

Ochiai vReported 105 2 2 6 2097 (-59.23%) 2561 (-50.64%)
vD4J 105 10 18 26 855 1264

Tarantula vReported 105 2 2 6 2100 (-59.48%) 2587 (-51.53%)
vD4J 105 12 17 28 851 1254

D-Star vReported 105 2 2 5 2073 (-60.01%) 2553 (-48.73%)
vD4J 105 10 16 23 829 1309

Barinel vReported 105 2 2 5 2075 (-57.20%) 2564 (-45.83%)
vD4J 105 9 17 28 888 1389

did not lead to any test failures or their commits before the
bug report (vReported) were too old and could not be retrieved.
Thus, we perform our analysis on 118 bugs. Table V shows
that the results in vReported are significantly worse than that of
vD4J for all the metrics. All four FL techniques in vReported
have much fewer times of a faulty element ranked in Top-
1, Top-3, and Top-5 than in vD4J. The finding indicates that
in the best scenario, 15 of the bugs have faulty statements
that are ranked early in the list. In comparison, for vD4J,
the number of faulty elements ranked in Top-1 and Top 5
is around 40 and 60, respectively. The MFR and MAR results
for vReported are in the range of 3,000, whereas the results
for vD4J are in the range of 200 to 1200. In other words, most
faulty statements are ranked very low in vReported and, the
ranking results cannot help developers with locating the bugs.
The performance decrease in MRF and MAR values is in the
range of 60% to 90%. In short, the findings indicate that, in
vReported, the fault-triggering tests (excluding Pattern 3 tests)
are ineffective in locating the bugs.

As a comparison, we also study the effectiveness of fault
localization (FL) techniques on vReported and vD4J for the
bugs that belong to Pattern 4 (the fault-triggering tests were
not modified). Unlike the bugs that belong to Pattern 3, Pattern
4 consists of 150 bugs where developers did not modify the
fault-triggering tests. This implies that the bugs of Pattern 4
may provide a more representative setting for development and
fault localization. We performed a similar analysis on bugs
in Pattern 4. 105 out of the 150 unique bugs we analyzed
have test failures, while the remaining 45 bugs either have no

TABLE VII: The number of bugs with failed fault-triggering
tests on the buggy commit (vReported). We consider the bugs
whose fault-triggering tests belong to Pattern 3 and Pattern 4
(Table III).

Project Total #Bugs with no #Bugs with
bugs failed tests failed tests

Pattern 3 Pattern 4 Pattern 3 Pattern 4

Cli 17 0 2 9 6
Closure 93 11 3 32 47
Codec 5 1 0 3 1
Collections 0 0 0 0 0
Compress 14 1 2 8 3
Csv 2 1 0 1 0
Gson 9 1 6 1 1
JacksonCore 7 2 3 1 1
JacksonXml 1 1 0 0 0
JacksonDatabind 17 0 0 10 7
JxPath 1 1 0 0 0
Lang 27 0 0 22 5
Math 36 2 2 30 2
Mockito 31 1 0 2 28
Time 3 0 0 2 1

Total 263 22 18 121 102

test failures occurred or the commits before the bug report
(vReported) being too old to be retrieved. Surprisingly, the
fault localization results for the bugs belonging to Pattern 4
also have worsened. Table VI shows that for Top-1, Top-3,
and Top-5, vReported ranges from 2 to 6 while vD4J ranges
from 9 to 28. Similarly, MFR and MAR are much higher for
vReported (in the range of 2,000), meaning developers must
investigate an average of 2,000 to find the faulty statements.
The MFR and MAR range from 800 to 1,300 for vD4J. The
decrease in MRF and MAR performance is within around 45%
to 60%.

RQ3-Takeaway 1. The fault localization results on vRe-
ported (MFR and MAR around 3,000) are significantly
worse than those on vD4J (MFR and MAR around 700
and 1,200). Our results indicate that fault localization
outcomes with Defects4J may differ significantly from
those observed in less controlled, real-world development
settings.

Discussion. Given that the effectiveness of fault localization
techniques can degrade significantly in less controlled settings,
we further investigate the possible causes beyond the presence
of specific information from the bug-fixing process in the tests.
We examine how many bugs with fault-triggering tests from
Patterns 3 and 4 actually failed in vReported (i.e., the version
when the bug was first reported). Note that our study focuses
on 263 out of 305 bugs, as some earlier system versions could
not be retrieved. Table VII shows the number of bugs with
failed fault-triggering tests in vReported.

We noticed that in both Pattern 3 and Pattern 4, a small
percentage (15%) of fault-triggering tests did not cause any
failure in vReported, indicating that they could not detect
the fault. On the other hand, the remaining fault-triggering
tests (85%) failed and assisted in fault localization. This result
suggests that while most of these tests failed in vReported, they
were not as effective in detecting the bugs compared to more

8



controlled settings. This highlights the need for additional data
(e.g., using stack traces or logs from bug reports that contain
system execution information [11], [47]) to complement fault
localization techniques when such tests are not available.

Interestingly, in Pattern 4, despite not having fault-triggering
tests modified by developers during the bug-fixing process, we
also observed a decrease in the fault localization result for
vReported. Through manual analysis, we found that develop-
ers might have introduced additional information that affects
fault localization results even without direct modifications to
the fault-triggering tests. This information can be introduced
in various ways, such as modifying functions involved in
test execution or adjusting the test setup configuration. For
example, in the case of bug Lang 57, developers added a
setUp method to initialize all test execution within the test
suite LocaleUtilsTest. This new setUp method made the
fault-triggering test fail if some variables were not correctly
initialized before execution. Although this modification was
made after the bug report was submitted and no direct changes
were made to the fault-triggering test, this change pattern
belongs to Pattern 4. The additional information introduced in
the test setup configuration altered test execution and coverage,
affecting fault localization results.

Our findings show that additional information from the
bug-fixing process may not always be directly incorporated
into the fault-triggering tests themselves. Future research may
explore bugs from Pattern 4 to investigate and characterize
instances where this information is introduced outside of the
fault-triggering tests. Nevertheless, our findings reveal that
fault-triggering tests in Pattern 4, which were not modified
by developers during the bug-fixing process, resulted in better
performance for fault localization, as indicated by both MFR
and MAR metrics. These bugs are better suited for evaluating
fault localization techniques in less controlled, real-world
development settings. Future studies may benefit from using
bugs/tests from Pattern 4 to assess fault localization techniques
in a more development-oriented context.

RQ3-Takeaway 2. Future studies may consider using the
fault-triggering tests that were not modified by developers
after the bug report to provide a practical setting for
evaluating fault localization techniques.

IV. DISCUSSION AND FUTURE WORK

In this paper, we studied the bugs and their corresponding
fault-triggering tests in Defects4J. We classified the bugs based
on whether their tests contained additional information from
the bug-fixing process and the code coverage data on the buggy
commit (i.e., the commit prior to the bug report creation). We
made the dataset publicly available [2], and we believe that it
can inspire future research. Below, we discuss the implications
of our findings and potential future research directions.
Future research may use our annotated data to re-
evaluate fault localization and automated program repair
techniques. We find that a majority of the fault-triggering

tests in Defects4J contain information from the bug-fixing
process, which can affect the fault localization results. Our
findings provide additional insights into the effectiveness of
fault localization techniques in development settings where
these techniques are used in practice (e.g., analyzing the
failing tests associated with a reported bug). Our dataset also
annotates the fault-triggering tests based on whether they are
influenced by the bug-fixing process. We believe the dataset
can be used in three valuable directions. First, future studies
can leverage the dataset to re-evaluate the effectiveness of
fault localization or automated program repair techniques
using fault-triggering tests that are not influenced by the bug-
fixing process. Second, future research can use our dataset
to conduct separate evaluations of the bugs in Defects4J,
considering those with and without influence from the bug-
fixing process. Third, future studies may use our dataset
to investigate the characteristics of fault-triggering tests that
require less maintenance during bug fixes, such as tests that
involve minimal or no code changes (e.g., tests in Pattern
4). We believe these insights complement the strengths of
Defects4J and can enhance its utility for simulating real-world
development scenarios.

Future studies may need to consider developers’ bug-fixing
process when creating benchmarks. In RQ2, we discovered
that developers might not have fault-triggering tests at the time
of receiving a bug report, often creating them during the bug-
fixing process. This underscores the need for empirical studies
to understand better these activities and their implications for
benchmark dataset creation. Our dataset offers a starting point
for investigating the bug-fixing process, suggesting expansion
to other systems and contexts. Our findings are particularly
relevant in environments where testing drives bug diagnosis
and fixing. For projects emphasizing automated testing and test
modifications post-fixing, our insights can aid in developing
and evaluating benchmark datasets.

There is a need for more comprehensive and diverse bench-
marks. To help facilitate software testing research, several
bug benchmarks have been proposed, with Defects4J [20]
being the most popular and widely used. Defects4J pro-
vides a clean, well-organized dataset that is easy to use and
has significantly advanced the field. However, many existing
benchmarks assume that fault-triggering tests are available at
the time of bug discovery, whereas in real-world scenarios,
tests are often created or modified as part of the debugging
process. Our study highlights that some fault-triggering tests in
Defects4J may include information from subsequent commits,
potentially influencing fault localization results. This insight
offers an additional perspective that may be useful in real-
world development scenarios.

Other datasets like Bugs.jar [49] and BEARS [42] may
exhibit similar characteristics. For example, Bugs.jar also
isolates bugs and tests based on later commits. In our initial
examination, some fault-triggering tests in BEARS were also
derived from later commits. These datasets share similarities
with Defects4J and may be influenced by the bug-fixing pro-

9



cess. We acknowledge the challenges of curating benchmarks
and the inherent biases in existing datasets. A key question
arises: how effective are fault localization and automated
program repair techniques that assume pre-existing tests, given
that many tests are written after a bug is reported? Future
research should explore how these methods perform in real-
world scenarios where tests are unavailable at bug discovery
and whether alternative sources, such as bug reports or logs,
can aid fault localization.

Our findings serve as a reminder and guide for future
researchers or practitioners. We urge the community to con-
sider the assumptions and constraints under which these
datasets were created and to exercise caution when gener-
alizing findings. There is an opportunity to develop more
comprehensive benchmarks. For example, a recent study [12]
compiles consecutive commits across systems to gather code
coverage, offering a more representative basis for assessing
fault localization and repair techniques. This underscores the
need for improved benchmarks in software testing research to
complement datasets like Defects4J.

V. RELATED WORK

Empirical studies on Defects4J. The popularity of automated
debugging has made the Defects4J benchmark essential for
evaluating research approaches, as it enables a controlled
evaluation environment. However, few studies [23], [26], [40]
have thoroughly examined how subsequent test modifications
within this benchmark impact its evaluations. Liu et al. [40]
found that certain fault-triggering tests might be derived
from versions of the system where the bug had already
been resolved, potentially aiding fault localization techniques.
Kabadi et al. [22] highlighted the importance of distinguishing
between tests added or modified after the bug was fixed and
those that existed before, as tests added or modified after
the fix may inadvertently offer extra assistance to automated
program repair techniques due to their specificity. Koyuncu
et al. [26] noted that tests modified during bug fixes could
influence evaluations but lacked a systematic study on their
prevalence and effects on fault localization. Just et al. [21]
also discussed some limitations of fault-triggering tests in
Defects4J, noting that they may not fully reflect real-world sce-
narios. In our study, we conducted a comprehensive analysis of
the timeline and evolution of fault-triggering tests, indicating
that these tests may undergo changes throughout the entire
bug resolution process. We also conducted a manual study on
how developers modified these tests and evaluated their impact
on the performance of state-of-the-art spectrum-based fault
localization techniques, providing insights into their impact
on fault localization in less-controlled settings.

Bug benchmarks. Several bug benchmarks have been pro-
posed by the automated testing research community to support
empirical evaluations. Besides Defects4J, two other popular
Java benchmarks are Bugs.jar [49] and BEARS [42]. Both of
these benchmarks follow the same bug replication process as
Defects4J, where fault-triggering tests may be committed to

system versions before bug fixes. However, through our initial
investigation, some of these tests were added after the bug
report or during the bug fix, which means they may also suffer
from a similar issue as Defects4J. Kang et al. [23] highlighted
this issue and proposed LIBRO, a Large Language Model-
based framework that generates fault-triggering tests directly
from bug reports, supporting automated debugging techniques
in the absence of pre-existing tests. Future research should
analyze fault-triggering test timelines in benchmarks and their
effects on research methods.
Fault Localization and Program Repair Techniques. Due
to the importance and high cost of bug-fixing activities, a large
number of research studies focus on fault localization (FL) [7],
[32], [62], [69] and automated program repair (APR) [33],
[34], [50]. The Defects4J dataset has been used extensively as
a benchmark in the evaluation of FL and APR techniques.
Fault Localization (FL). Since its release in 2014, De-
fects4J has become a benchmark for evaluating FL techniques.
Learning-to-Rank (LtR) methods have advanced FL by using
suspiciousness scores from various techniques to rank potential
faults [7], [32], [54], [62]. For instance, MULTRIC [62]
and others integrate spectrum-based fault localization (SBFL)
scores with additional metrics, such as program invariants [7]
and code complexity [54]. Recent efforts also apply deep
learning to interpret code coverage data, generating suspi-
ciousness scores [31], [41], [67], [68], such as GRACE [41],
which uses a graph representation merging method. Our study
utilizes Defects4J’s test cases and source code to examine
the impact of developer knowledge on SBFL performance,
providing insights for refining coverage-based FL techniques.
Automated Program Repair (APR). Defects4J is widely used
for evaluating APR techniques [18], [38], [39], [58]. A com-
mon evaluation approach is verifying that candidate patches
make the program pass all test cases. Our work investigates
the prevalence of information from subsequent commits in
tests, which may impact prior APR research on Defects4J.
Fault localization, crucial in APR, reduces the search space
for generating patches. Fault-triggering tests play a key role
in identifying code to repair. Some studies [61], [64] use
test cases to eliminate overfitted patches and improve patch
quality, which may also be influenced by subsequent test
modifications.

VI. THREATS TO VALIDITY

Internal Validity. Threats to internal validity are related to
analysis errors or biases. One main threat comes from the
human analysis in our study. We manually analyzed and
categorized the modifications on fault-triggering tests in RQ2.
However, we adopted the manual analysis approaches used
in prior studies [15], [28], [35], [36] to mitigate subjectivity.
Three phases were used and two authors independently were
involved in the analysis. The analysis results achieve a Cohen’s
Kappa of 0.86, which indicates a substantial level of agree-
ment [13]. In RQ1, we also manually reviewed the relevance
of the test modification to a bug. However, the main work in
extracting events about bug resolution was automatic and we

10



only manually checked whether there were any errors in the
generated results.
External Validity. Threats to external validity concern our
findings’ generalizability. Though focused on Defects4J, dif-
ferent datasets may lead to varying outcomes. Given De-
fects4J’s prominence in fault localization and automated pro-
gram repair (APR) research, especially for Java programs, its
characteristics might influence research results and methodolo-
gies. However, our insights on developer knowledge in fault-
triggering tests and test modifications could apply to other
datasets, particularly those with similar development practices
or curation processes. While our study is based on Defects4J,
the themes we identified, like the effect of developer knowl-
edge, might be common in other datasets. Researchers should
thus consider the potential biases highlighted by our study
when exploring similar datasets.

VII. CONCLUSION

A significant amount of research has been conducted in fault
localization and automated program repair to provide develop-
ers with solutions for automated debugging. Benchmarks like
Defects4J are crucial for assessing these techniques, offering
real bugs, fault-triggering tests, and fixes in a controlled envi-
ronment. However, our findings show that most fault-triggering
tests (77%) were modified or added after the bugs were re-
ported or fixed, highlighting other perspectives of software de-
velopment scenarios that may occur in less-controlled settings.
Our experiments demonstrated that spectrum-based fault local-
ization techniques perform significantly worse in these less-
controlled environments. We categorized these modifications
to provide insights into developers’ bug-fixing processes and
emphasize the need to evaluate fault localization techniques
on datasets that reflect more variable development scenarios.
Our publicly available dataset supports future research in these
less-controlled environments.

REFERENCES

[1] The Defects4J dataset version 2.0.0. https://github.com/rjust/defects4j,
2022.

[2] Public repository of our work. https://github.com/nakhlarafi/Studying-
Data-Cleanness-in-Defects4J, 2024.

[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. An evaluation
of similarity coefficients for software fault localization. In 2006
12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06), pages 39–46. IEEE, 2006.

[4] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. On the
accuracy of spectrum-based fault localization. In Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pages 89–98, 2007.

[5] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. Spectrum-
based multiple fault localization. In 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 88–99, 2009.

[6] Gabin An, Jingun Hong, Naryeong Kim, and Shin Yoo. Fonte: Finding
bug inducing commits from failures. arXiv preprint arXiv:2212.06376,
2022.

[7] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A
learning-to-rank based fault localization approach using likely invariants.
In Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 177–188, 2016.

[8] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. Reversible debugging software. Judge Bus. School,
Univ. Cambridge, Cambridge, UK, Tech. Rep, 229, 2013.

[9] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. Gzoltar:
An eclipse plug-in for testing and debugging. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’12, page 378–381, 2012.

[10] An Ran Chen, Tse-Hsun Chen, and Junjie Chen. How useful is code
change information for fault localization in continuous integration?
In 37th IEEE/ACM International Conference on Automated Software
Engineering, pages 1–12, 2022.

[11] An Ran Chen, Tse-Hsun Peter Chen, and Shaowei Wang. Demystifying
the challenges and benefits of analyzing user-reported logs in bug
reports. Empirical Software Engineering, 26(1):1–30, 2021.

[12] An Ran Chen, Tse-Hsun Peter Chen, and Shaowei Wang. T-evos: A
large-scale longitudinal study on CI test execution and failure. IEEE
Transactions on Software Engineering, 2022.

[13] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[14] Domenico Cotroneo, Michael Grottke, Roberto Natella, Roberto Pietran-
tuono, and Kishor S Trivedi. Fault triggers in open-source software:
An experience report. In 2013 IEEE 24th International symposium on
software reliability engineering (ISSRE), pages 178–187. IEEE, 2013.

[15] Zishuo Ding, Jinfu Chen, and Weiyi Shang. Towards the use of the
readily available tests from the release pipeline as performance tests.
are we there yet? In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pages 1435–1446. IEEE, 2020.

[16] Gregory Gay and René Just. Defects4J as a challenge case for the search-
based software engineering community. In Search-Based Software
Engineering: 12th International Symposium, SSBSE 2020, Bari, Italy,
October 7–8, 2020, Proceedings 12, pages 255–261. Springer, 2020.

[17] Bo Jiang, Zhenyu Zhang, Tsun-Him Tse, and Tsong Yueh Chen. How
well do test case prioritization techniques support statistical fault local-
ization. In 2009 33rd Annual IEEE International Computer Software
and Applications Conference, volume 1, pages 99–106. IEEE, 2009.

[18] Jiajun Jiang, Yingfei Xiong, and Xin Xia. A manual inspection
of Defects4J bugs and its implications for automatic program repair.
Science china information sciences, 62:1–16, 2019.

[19] James A. Jones and Mary Jean Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05, page 273–282, 2005.

[20] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440, 2014.

[21] René Just, Chris Parnin, Ian Drosos, and Michael D Ernst. Comparing
developer-provided to user-provided tests for fault localization and
automated program repair. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 287–
297, 2018.

[22] Vinay Kabadi, Dezhen Kong, Siyu Xie, Lingfeng Bao, Gede Artha
Azriadi Prana, Tien-Duy B. Le, Xuan-Bach D. Le, and David Lo. The
future can’t help fix the past: Assessing program repair in the wild.
In 2023 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 50–61, 2023.

[23] Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models
are few-shot testers: Exploring LLM-based general bug reproduction. In
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE), pages 2312–2323, 2023.

[24] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van
Hoorn, and David Lo. A critical evaluation of spectrum-based fault
localization techniques on a large-scale software system. In 2017 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), pages 114–125. IEEE, 2017.

[25] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. Where
should we fix this bug? a two-phase recommendation model. IEEE
transactions on software Engineering, 39(11):1597–1610, 2013.

[26] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin
Monperrus, Jacques Klein, and Yves Le Traon. ifixr: Bug report driven
program repair. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, pages 314–325, 2019.

[27] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring
the cost of regression testing in practice: A study of java projects using
continuous integration. In Proceedings of the 2017 11th joint meeting
on foundations of software engineering, pages 821–830, 2017.

11



[28] Maxime Lamothe and Weiyi Shang. When apis are intentionally
bypassed: An exploratory study of api workarounds. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages
912–924. IEEE, 2020.

[29] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven
program repair. In 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), volume 1, pages 213–
224. IEEE, 2016.

[30] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun,
Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. The
ManyBugs and IntroClass benchmarks for automated repair of C pro-
grams. IEEE Transactions on Software Engineering (TSE), 41(12):1236–
1256, December 2015.

[31] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 169–180, 2019.

[32] Xia Li and Lingming Zhang. Transforming programs and tests in
tandem for fault localization. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–30, 2017.

[33] Yi Li, Shaohua Wang, and Tien N. Nguyen. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 602–614, New York, NY, USA, 2020. Association for
Computing Machinery.

[34] Yi Li, Shaohua Wang, and Tien N Nguyen. Dear: A novel deep learning-
based approach for automated program repair. In Proceedings of the
44th International Conference on Software Engineering, pages 511–523,
2022.

[35] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where shall we log?
studying and suggesting logging locations in code blocks. In Proceed-
ings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pages 361–372, 2020.

[36] Zhenhao Li, Tse-Hsun Chen, Jinqiu Yang, and Weiyi Shang. Dlfinder:
characterizing and detecting duplicate logging code smells. In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 152–163. IEEE, 2019.

[37] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.
Quixbugs: A multi-lingual program repair benchmark set based on the
quixey challenge. In Proceedings Companion of the 2017 ACM SIG-
PLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity, pages 55–56, 2017.

[38] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques
Klein, and Yves Le Traon. You cannot fix what you cannot find!
an investigation of fault localization bias in benchmarking automated
program repair systems. In 2019 12th IEEE conference on software
testing, validation and verification (ICST), pages 102–113. IEEE, 2019.

[39] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé.
Tbar: Revisiting template-based automated program repair. In Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, pages 31–42. ACM, 2019.

[40] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein,
and Tegawendé F Bissyandé. A critical review on the evaluation of
automated program repair systems. Journal of Systems and Software,
171:110817, 2021.

[41] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao,
Lu Zhang, and Lingming Zhang. Boosting coverage-based fault local-
ization via graph-based representation learning. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 664–
676, 2021.

[42] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus.
Bears: An extensible java bug benchmark for automatic program repair
studies. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 468–478. IEEE,
2019.

[43] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan,
and Martin Monperrus. Automatic repair of real bugs in java: A
large-scale experiment on the Defects4J dataset. Empirical Software
Engineering, 22(4):1936–1964, 2017.

[44] Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy
Brun. Do automated program repair techniques repair hard and important
bugs? In Proceedings of the 40th International Conference on Software
Engineering, pages 25–25, 2018.

[45] Jerzy Neyman. On the two different aspects of the representative
method: the method of stratified sampling and the method of purposive
selection. In Breakthroughs in statistics, pages 123–150. Springer, 1992.

[46] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In 2013
35th International Conference on Software Engineering (ICSE), pages
772–781. IEEE, 2013.

[47] Lorena Barreto Simedo Pacheco, An Ran Chen, Jinqiu Yang, et al.
Leveraging stack traces for spectrum-based fault localization in the
absence of failing tests. arXiv preprint arXiv:2405.00565, 2024.

[48] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and
improving fault localization. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 609–620. IEEE,
2017.

[49] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R
Prasad. Bugs. jar: A large-scale, diverse dataset of real-world java bugs.
In Proceedings of the 15th international conference on mining software
repositories, pages 10–13, 2018.

[50] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad.
Elixir: effective object oriented program repair. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pages 648–659. IEEE Press, 2017.

[51] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. Do automatically generated unit tests find
real faults? an empirical study of effectiveness and challenges (t). In
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 201–211. IEEE, 2015.

[52] Jeongju Sohn, Yasutaka Kamei, Shane McIntosh, and Shin Yoo. Lever-
aging fault localisation to enhance defect prediction. In 2021 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 284–294. IEEE, 2021.

[53] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 273–
283, 2017.

[54] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’17),
pages 273–283. ACM, 2017.

[55] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-
Chuan Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-
González. Bugswarm: Mining and continuously growing a dataset of
reproducible failures and fixes. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 339–349. IEEE,
2019.

[56] Shaowei Wang and David Lo. Amalgam+: Composing rich information
sources for accurate bug localization. Journal of Software: Evolution
and Process, 28(10):921–942, 2016.

[57] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao,
Shi Han, and Shing-Chi Cheung. Historical spectrum based fault
localization. IEEE Transactions on Software Engineering, 47(11):2348–
2368, 2019.

[58] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
Context-aware patch generation for better automated program repair. In
Proceedings of the 40th international conference on software engineer-
ing, pages 1–11, 2018.

[59] Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-
Chi Cheung, and Zhendong Su. Exploring and exploiting the correlations
between bug-inducing and bug-fixing commits. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 326–337, 2019.

[60] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The dstar
method for effective software fault localization. IEEE Transactions on
Reliability, 63:290–308, 2014.

[61] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. Precise condition synthesis for program repair.
In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE), pages 416–426. IEEE, 2017.

[62] Jifeng Xuan and Martin Monperrus. Learning to combine multiple
ranking metrics for fault localization. In IEEE International Conference
on Software Maintenance and Evolution (ICSME’14), pages 191–200.
IEEE, 2014.

12



[63] Deheng Yang, Kui Liu, Dongsun Kim, Anil Koyuncu, Kisub Kim,
Haoye Tian, Yan Lei, Xiaoguang Mao, Jacques Klein, and Tegawendé F
Bissyandé. Where were the repair ingredients for Defects4J bugs?
exploring the impact of repair ingredient retrieval on the performance of
24 program repair systems. Empirical Software Engineering, 26:1–33,
2021.

[64] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test
cases for better automated program repair. In Proceedings of the 2017
11th joint meeting on foundations of software engineering, pages 831–
841, 2017.

[65] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux,
and Martin Monperrus. Alleviating patch overfitting with automatic test
generation: a study of feasibility and effectiveness for the nopol repair
system. Empirical Software Engineering, 24:33–67, 2019.

[66] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. Boost-
ing spectrum-based fault localization using pagerank. In Proceedings of
the 26th ACM SIGSOFT international symposium on software testing

and analysis, pages 261–272, 2017.
[67] Z. Zhang, Y. Lei, X. Mao, and P. Li. CNN-FL: An effective approach

for localizing faults using convolutional neural networks. In IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER’19), pages 445–455, 2019.

[68] Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. Cnn-fl:
An effective approach for localizing faults using convolutional neural
networks. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 445–455. IEEE,
2019.

[69] Wei Zheng, Desheng Hu, and Jing Wang. Fault localization analysis
based on deep neural network. Mathematical Problems in Engineering,
2016, 2016.

[70] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and
Lu Zhang. An empirical study of fault localization families and their
combinations. IEEE Transactions on Software Engineering, 47(2):332–
347, 2019.

13


