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Abstract In industrial environments it is critical to find out the capacity of
a system and plan for a deployment layout that meets the production traffic
demands. The system capacity is influenced by both the performance of the
system’s constituting components and the physical environment setup. In a
large system, the configuration parameters of individual components give the
flexibility to developers and load test engineers to tune system performance
without changing the source code. However, due to the large search space,
estimating the capacity of the system given different configuration values is a
challenging and costly process. In this paper, we propose an approach, called
MLASP, that uses machine learning models to predict the system key perfor-
mance indicators (i.e., KPIs), such as throughput, given a set of features made
off configuration parameter values, including server cluster setup, to help engi-
neers in capacity planning for production environments. Under the same load,
we evaluate MLASP on two large-scale mission-critical enterprise systems de-
veloped by Ericsson and on one open-source system. We find that: 1) MLASP
can predict the system throughput with a very high accuracy. The difference
between the predicted and the actual throughput is less than 1%; and 2) By
using only a small subset of the training data (e.g., 3% of the entire data for
the open-source system), MLASP can still predict the throughput accurately.
We also document our experience of successfully integrating the approach into
an industrial setting. In summary, this paper highlights the benefits and poten-
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tial of using machine learning models to assist load test engineers in capacity
planning.

Keywords Load Testing, Capacity Testing, Performance Testing, Machine
Learning, Deep Learning

1 Introduction

Modern large-scale systems, such as telecommunications systems (e.g., Erics-
son) and e-commerce websites (e.g., Amazon.com), need to handle millions of
concurrent user requests. Any unexpected load-related issues, such as the surge
in loads during Black Friday causing the system to crash, may cost these com-
panies millions or even billions of dollars (FastCompany, 2016). Thus, capacity
planning, which estimates the amount of load that the system can handle and
the expected performance, becomes a critical activity in the quality assurance
process of such systems.

To determine system capacity, load testing is a key step in the overall pro-
cess. The goal of load testing is to ensure that the system behaves correctly
under load (e.g., simulated real world usage), and help load test engineers
and developers evaluate system performance and capacity (Jiang and Hassan,
2015). Due to the complexity of modern large-scale systems and deployment
methods, developers often provide configuration parameters for additional flex-
ibility. Load test engineers would execute the same load against the system
under different settings to analyze the system’s behaviour and the expected
performance (Chen et al., 2017). Developers or load test engineers can change
the values of configuration parameters to adjust system performance (e.g., in-
crease the size of thread pools) without changing the source code. When tuning
the parameter values, load test engineers also need to consider different de-
ployment (e.g., horizontal scaling by adding more worker nodes) or hardware
configuration (e.g., vertical scaling by adding more computation power) set-
tings that the customers employ.

However, it is impossible for load test engineers to cover all the configura-
tion settings in load tests. Large-scale software systems may contain several
components and each component may have up to hundreds of configurable pa-
rameters and deployment settings (Ha and Zhang, 2019; Li et al., 2018). Due
to limited resources and time constraints before releases, it is impossible and
impractical to perform load testing on all the possible combinations of config-
uration parameter values to provide a comprehensive overview of the system
capacity (Guo et al., 2013, 2017; Ha and Zhang, 2019). In practice, load test
engineers often only test a handful combination of configuration parameter
values under the default deployment setting, and their selection process re-
mains ad hoc (Li et al., 2018). For example, load test engineers often use a
set of default configuration parameter values supplied by the developers, and
may only marginally modify some values during load tests. Such configuration
tuning is inefficient and largely depend on load test engineers’ domain knowl-
edge of the systems, and whether such knowledge is up to date as systems
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evolve. Failure to understand the effect of the parameter values on the system
capacity under a certain deployment setting may result in load-related issues
(e.g., low response time or even crashes), underutilization of the resources, or
violation of the service level agreement (Chen et al., 2016; Yin et al., 2011).

Many prior studies (Bao et al., 2018a; Guo et al., 2013, 2017; Ha and
Zhang, 2019; Sayyad et al., 2013) have proposed techniques to find the opti-
mal parameter values and maximize performance. However, there are major
differences between parameter optimization and capacity planning. Parameter
optimization often focuses on finding the optimal performance of a single in-
stance of a system (e.g., on one machine) using a relatively smaller load (e.g.,
within seconds). Capacity planning, on the other hand, often focuses on find-
ing the system’s capacity, such as the key performance indicator (KPI), given
a load, system configuration, and deployment setting. Customers or product
managers may want to know the system’s KPI when more worker nodes are
added to the system (e.g., for service level agreement), and what is the system
KPI under a specific set of parameter values (e.g., to provide a tuning guide-
line to customers). Therefore, capacity planning is often used in a larger test
environment involving a production-like deployment setting and long running
load.

In this paper, we propose an approach, called MLASP, that uses machine
learning models for capacity planning and prediction. In particular, MLASP
predicts the system capacity (i.e., throughput) given a set of configuration
parameter values (including cluster specific information such as environment
and deployment settings). MLASP is used to assist load test engineers at Er-
icsson in capacity planning and load testing. The results from the models also
produce empirical responses to customers and developers, who may ask why
certain values are being used in a particular configuration setting and to pro-
vide a performance estimation calculator (e.g., for service level agreement or
system tuning guideline). To train the models, MLASP requires load test engi-
neers to run a number of load tests, each with varied configuration parameter
values (including cluster information) and under the same load. The set of
configuration parameter values and the corresponding throughput are used
as training set for the machine learning models. MLASP uses a non-intrusive
approach to collect the input data to the model by only querying available ap-
plication programming interfaces (i.e., using JMX or other existing API based
interfaces), or through log parsing. Therefore, MLASP adds minimal overhead
to the system and does not affect the load test results.

We evaluate MLASP on two large-scale mission-critical enterprise systems
that are developed by Ericsson. The systems handle millions of concurrent
users around the world on a daily basis. Due to the non-disclosure agreement
(NDA), we can disclose only limited details of the experiment results as well as
about what the enterprise systems are. Therefore, we also conduct our expe-
rience on an open-source system. For the open-source system, we use Apache
Kafka (Apache, 2019), a popular open-source message streaming system. We
selected Kafka due to its internal architecture design, as it can scale both ver-
tically and horizontally, which is similar to the systems developed by Ericsson.
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However, the Ericsson systems are much more complex and are a conglomerate
of different applications. We execute the load tests in all studied systems with
varied configuration parameter values. Our experiment results on the open
source system show similar trends as the ones uncovered with our industrial
partner. We also made the test results from the open-source systems publicly
available online (MLASP, 2020).

We evaluate MLASP by answering the following research questions:

– RQ1: What is the prediction accuracy on the system throughput
given varied system configuration parameter values?
We evaluate the performance of six machine learning algorithms: ran-
dom forest, XGBoost trees, Multi-Layer-Perceptron (MLP) Neural Net-
works, Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM) Neural Networks, and Linear Regression. We find that models
such as XGBoost achieve a low mean absolute percentage error (e.g., 1%
to 3%) when evaluating the models on a test dataset.

– RQ2: What is the prediction accuracy by training the models
using a small number of test runs with different configuration
parameter values?
We find that by using a small subset of the training data (e.g., 3% of the
data used in RQ1 for the open-source system), the models can still achieve
a low mean absolute percentage error, with the best model achieving 1 to
2.7%. We also find that XGBoost gives the most stable results among all
the evaluated models when the training data is small.

In summary, the paper makes the following contributions:

– We propose an approach, MLASP, to model the throughput of the sys-
tem given difference sets of configuration parameter values. We use a non-
intrusive data collection approach that makes MLASP easier to be adopted
in practice and has minimal performance impact.

– We evaluate the performance of six machine learning algorithms. We find
that algorithms such as XGBoost and Multi-Layer Perceptron give great
prediction results, while the results vary for other algorithms. In partic-
ular, the results from XGBoost are the most stable among all evaluated
algorithms.

– We discuss our experience on integrating MLASP in an industrial setting.
The prototype of MLASP is now used by our industrial partner to assist
load test engineers with capacity planning.

– We make our test execution data for the open source system publicly avail-
able (MLASP, 2020), which contains 900 test runs with a total machine
time of over 18 days.

Paper organization. Section 2 provides motivating examples of our ap-
proach. Section 3 describes the studied systems and case study setup. Section 4
describes our methodology including model building and tuning. Section 5
presents the results of our case study by answering two research questions.
Section 6 discusses the lessons that we learned and our experience on integrat-
ing our approach in an industrial setting. Section 7 discusses the threats to
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the validity of our findings. Section 8 surveys related work. Finally, Section 9
concludes the paper.

2 Motivating Examples

In this section, we discuss the challenges that Ericsson faces in the process of
production capacity planning by using motivating examples.

Dave is a load test engineer working at Ericsson Inc. Dave’s task is to
test and verify the capacity of the systems in a short period of time, since
Ericsson has a short release cycle (i.e., six weeks1). The software development
teams at Ericsson rely on Dave’s test results to ensure that the new release
can be deployed in production and provide an updated service level agreement
(SLA) if needed. Hence, delays in Dave’s test schedule may delay the release
of the systems. However, it is difficult for Dave to run a comprehensive load
test within the given time frame due to the complexity of the systems and
hundreds of performance-related configurations.

The systems at Ericsson are composed of several components, where each
component is maintained by many developers and has millions or hundreds
of millions of lines of code. Depending on the situation, components may be
grouped together under the same or across several application servers, which
may be distributed across multiple different computing nodes, for redundancy
and increased capacity (throughput) purposes. In some cases, the redundancy
is geographically distributed across different data centres. To increase the flex-
ibility of the systems, each component has various configuration parameters
that may affect the systems’ performance and capacity (both at single instance
and cluster values). Dave needs to estimate the capacity of the system by tak-
ing into account both the hardware setting and configuration values to provide
a performance guideline that fulfills the service level agreements expected by
the customer.

On one hand, Dave does not know how each configuration parameter (or
a combination of various configuration parameters) affects the overall sys-
tem performance. He relies on the default values provided by the development
teams. On the other hand, developers may not know what type of hardware (or
virtualisation technology) will be used for running the software in production
environments. As also discussed in a prior study (Li et al., 2018), developers
sometimes may not even know the effects of a combination of configuration
parameter values. Therefore, they may provide the values based on guessing
and/or previous experience from similar projects. Given the time constraints
for testing, Dave cannot afford to tune all the configuration parameters. Dave
needs to rely on his experience for testing the most significant parameters.
After choosing an initial set of configuration parameter values, Dave needs
to further perform endurance testing to ensure that the systems perform nor-
mally under load, using the earlier determined configuration parameter values.

1 https://www.ericsson.com/en/press-releases/2017/9/ericsson-offers-continuous-
software-updates
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At the same time, throughout the endurance testing, the software system is
continuously monitored to verify its capacity (e.g., throughput) when the con-
figuration values change.

A major drawback of Dave’s approach is that when the systems are mod-
ified (i.e., can be any of the source code, deployment settings, or hardware
configuration), the effects of the configuration parameters may also change -
a problem known as the n-way feature interaction problem. Rerunning load
tests to verify the effect of different combinations of the configuration param-
eters is very time consuming and costly. In addition, when a new component
is added in the system, the number of configuration parameters may increase
exponentially. This makes it impossible to test out a sufficiently wide range
of values to say with confidence that a given combination of the configuration
parameter values leads to a desired capacity that can sustain under heavy
load the SLAs. Given the time constraints between releases, Dave could ac-
celerate testing should more computing resources be available to execute tests
in parallel on multiple testing environments. However, this approach not only
drastically increases the costs of the project by requesting a significant amount
of data centre resources, but it also may not be a feasible solution given the
time it may take to deploy new instances for every component in the sys-
tem. The cost of having wrongly, or poorly, configured software may lead to
suboptimal resource utilization, or may even lead to enormous losses due to
unexpected performance issues. Also, poorly configured software may lead to
larger than required deployments, increasing the capital expenditure costs for
hardware and electricity, etc. All these points highlight the criticality of proper
and efficient capacity planning and configuration analysis for the large scale
systems.

In this paper, we propose a machine learning based approach to assist load
test engineers, such as Dave, to reduce the number of needed test runs for
studying and verifying the capacity of a system. Based on a limited number
of test runs, our approach can automatically predict the measured key per-
formance indicators (i.e., throughput), given an unseen set of configuration
parameter values. Our goal is to predict the system capacity (i.e., through-
put) given the configuration parameter values and the deployment settings.
Our approach may help provide recommendations to load test engineers and
determine, in a shorter amount of time, a set of configuration parameters that
can sustain a desired capacity for the software system. Our approach is now
integrated into the testing process of the enterprise systems to help load test
engineers with load testing and capacity planning.

3 Case Study Setup

In this section, we present the studied systems as well as the methodology for
obtaining the data for evaluating our approach.
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3.1 Studied Systems

We conduct our experiment on two sets of studied systems: enterprise and
open-source.

Enterprise Systems. We evaluate our methodology on two large-scale en-
terprise systems built by Ericsson Inc. Due to the non-disclosure agreement
(NDA) in place, we cannot give the exact details about the enterprise systems.
Nonetheless, the systems have millions of lines of code and are maintained
by a large number of software developers. These systems provide Business-
2-Business and Business-2-Consumer telecommunication functions related to
messaging, location based services, and payments. These systems are inte-
grated to Ericssons in-house developed products, third party commercial prod-
ucts, as well as some open source products. Due to their criticality, the systems
are deployed in high redundancy settings, both locally and geographically dis-
tributed. These systems process tens of millions of requests on a daily basis,
and are used by millions of customers around the world for mission-critical op-
erations. In our study, we consider various deployment settings of the studied
systems.

Open-Source System. In order to provide a more detailed discussion on the
result and to allow others to replicate and verify our findings, we also perform
our experiment on an open-source system — Apache Kafka (Apache, 2019).
Kafka is a distributed stream processing system that runs in clusters of one
or more servers, also called brokers. A cluster may be formed in the same
or across several data centres. A cluster stores streams of records, also called
messages. The messages with similar contents are grouped by a “topic”. The
topics are then divided in partitions. The partitions may be distributed and
replicated across any number of brokers within the cluster.

We use Kafka as our open-source studied system because it is a highly
configurable system that supports non-intrusive measurement and dynamic
configuration changes (i.e., using JMX), and its performance depends on both
vertical and horizontal scaling settings. These features of Kafka are similar
to the ones existing in our enterprise studied systems, and thus make it a
good candidate for conceptual replication of the capacity planning process
used by our commercial partner. We implement a system that uses Kafka
to exchange messages in the Amazon Web Service (AWS) cloud with three
different environment (i.e., deployment) settings:

– One broker with a one-partition topic, without replication.
– One broker with a two-partition topic, without replication.
– Two brokers with a two-partition topic, each broker has one active partition

and the replica of the other one (cross replicated partitions).
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Fig. 1: A high-level overview of our approach and load test execution setup.

3.2 Running Load Tests

Figure 1 shows a high-level overview of the load test execution setup. For each
studied system, we use load scripts to generate traffic and exercise the system.
Since each system may contain multiple components, we collect the set of con-
figuration parameters and the corresponding throughput in each component
(details in section 4.1). Finally, we aggregate the collected information and use
it as the input for our machine learning models for capacity planning and pre-
diction. We use non-intrusive data collection mechanisms, which do not require
loading additional profiling modules that may increase the system overhead.
We implement this type of approach as it has the minimal performance im-
pact, it can be easily automated in continuous integration (CI) pipelines, and
it may be adopted and applied to other systems (Li et al., 2018). We rely
on out-of-the-box capabilities of the system to provide information or to re-
configure itself either by using specialized APIs (web-based APIs, RESTful
or SOAP, or Java Management Extensions - JMX), or periodic reloading of
configuration files. Throughput information about the studied software system
may also be collected from logs. Depending on the nature of the logging infor-
mation, expert knowledge may be required in order to perform the assembly
of the desired throughput information from logs.

Below, we describe the process of running load tests for the studied systems.

Enterprise Systems. The two enterprise systems are deployed at a large
scale. Each of these systems contains several different products that run to-
gether to fulfill certain business requirements. Some of the systems offer out-
of-the-box capabilities for querying dynamically collected performance met-
rics (i.e., for calculating the throughput), and others need further analysis to
extract the necessary metrics. To cope with the distributed information, we
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aggregated the metrics based on timestamps. In large-scale deployments, these
different components are required to be highly synchronized. We used the syn-
chronous property of the enterprise systems to extract information from each
component at the same synchronized time value intervals. Once the data col-
lection endpoints were in place, the load test engineers execute load tests by
following defined in-house process. Due to the nature of the studied systems,
the load test engineers use in-house custom scripts to generate and execute
the load. The test generation and execution process are integrated as part of
the CI pipeline. At the end of each test, we collect and calculate the through-
put of the studied systems under the executed load, the given values of the
configuration parameters, and the corresponding deployment setting.

Open-Source System. We consider three sets of configuration parameters
in our study: environment settings, broker, and load-generator. We executed a
total of 900 load tests, each test had the duration of 30 minutes, and 300 tests
on each of the three above-mentioned environment settings (Section 3.1). For
each environment setting, we vary the Kafka broker configuration parameters
as well as the load-driver parameters using the same sequence of values from
the selected range applicable to every parameter. Following recommendations
from previous academic research focused on Kafka performance (Bao et al.,
2018b; Le Noac’h et al., 2017), as well as from commercial support suppliers
for Kafka (Cloudera Documentation, 2018; Confluent Blogs, 2017), we select
and vary the most important Kafka broker configuration parameters in our
tests (Apache, 2019):

– background.threads: The number of threads to use for various background
processing tasks. The range of values we used in our experiments for this
parameter was [5-30].

– num.io.threads: The number of threads that the server uses for processing
requests, which may include disk I/O. The range of values we used in our
experiments for this parameter was [4-16].

– num.network.threads: The number of threads that the server uses for re-
ceiving requests from the network and sending responses to the network.
The range of values we used in our experiments for this parameter was
[3-6].

– num.replica.fetchers: The number of fetcher threads used to replicate mes-
sages from a source broker. Increasing this value can increase the degree of
I/O parallelism in the follower broker. The range of values we used in our
experiments for this parameter was [1-2].

Note that the three above-mentioned environment settings concerning the
Kafka cluster setup (i.e., the number of brokers and number of partitions per
topic) are also part of the configuration parameters. From the load-generator’s
standpoint, we use message size and the number of client threads publishing
messages into Kafka as input variables.

The measured target is the client side throughput in relation with the
server side capabilities of the target Kafka environment. In other words, given
a certain configuration tuple (i.e., broker, environment, load-generator), we
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calculate the throughput as how many messages can be published in Kafka
within 30 minutes. The load test results are aggregated per environment and
are used for building the machine learning models for capacity prediction,
which is described in the next section.

4 Predicting System Throughput Under Different Configuration
Parameters

In this section, we describe our modelling approach to predict throughput as
the key performance indicator (KPI) of a system under the same load with
different configuration parameter values.

4.1 Collecting Data from System Execution

As described in Section 3.2, we run load tests and collect the throughput under
different values of configuration parameters. In particular, we follow the steps
below for the open-source system:

– We used the load-driver to run tests for a fixed duration (i.e., 30 minutes).
– At the beginning of each test run, we update the configuration of both the

load-driver as well as of the Kafka brokers. We generate a total number of
300 distinct configurations.

– We executed load tests using the same 300 distinct configurations on each
of the three different Kafka environments (as described in Section 3.1). In
total, we executed 900 load tests with a total machine execution time of
over 18 days.

We leveraged expert knowledge to decide which configuration parameters
to tune on the Kafka broker side for each load test scenario (Bao et al., 2018b;
Cloudera Documentation, 2018; Confluent Blogs, 2017; Le Noac’h et al., 2017).
The range used to vary each configuration parameter was defined in a list of
values described by the function f(x) = nx, where both n and x are positive
integer numbers. The range contained values both higher and smaller than
the default configuration value for the parameter x. The upper and lower
bounds of the range (i.e., n) were selected based on domain knowledge for
each configuration parameter considered in the test scenarios. As an example,
in the open source environment the “BackgroundThreads” parameter values
of the Kafka broker were modelled by the function f(x) = 5x, where x ∈ [1, 6],
and the ’NumIoThreads’ parameter values of the Kafka broker were modelled
by the function f(x) = 4x, where x ∈ [1, 4].

We used a custom developed Java based command line application for the
load driver. Within the load-driver, we could control the number of client
threads used to send messages to the Kafka brokers, as well as the size of the
messages being delivered. The load-driver application recorded in a log file the
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configuration parameter values as well as the measured throughput (i.e., the
KPI for the studied open-source system) for each test run.

On the Kafka broker side, we developed an agent that collects Kafka
throughput metrics on a one-minute interval. For each test run, we aggregate
the broker’s throughput to correlate with the load-driver’s recorded through-
put for calculating the overall system throughput under a certain set of con-
figuration parameter values. The models source code and test results of the
open-source systems can be found online (MLASP, 2020).
Although we cannot disclose the details of the enterprise systems due to NDA,
we follow a similar process in running the load tests with different configuration
parameter val ues. We use customized scripts for test execution and data
collection, which are integrated with the CI process used by Ericsson Inc.

4.2 Feature Engineering and Selection

Before building the machine learning models for capacity prediction, we apply
feature engineering and selection techniques to preprocess the collected config-
uration parameter values and their corresponding throughput. The approaches
that we use are similar for both the open-source and the enterprise systems.
However, there are multiple KPIs in the enterprise systems whereas we only
model the throughput in the open-source system.

Since the magnitude of the values may vary significantly among the config-
uration parameters (e.g., number of threads vs memory size in megabytes), we
apply different scaling techniques to normalize the values. Prior studies also
show that applying normalization can improve the performance of machine
learning models (Singh et al., 2015; Sola and Sevilla, 1997). We use avail-
able scaling methods provided by the scikit-learn (SciKit-Learn, 2019) library,
namely StandardScaler and MinMaxScaler techniques. Note that we retrain
the models using two different scaling methods separately and only report the
model that achieves the best performance. The StandardScaler subtracts the
mean and scales the data to unit variance. The MinMaxScaler rescales the
dataset so that the entire feature set is in the range [0, 1]. Both scaling meth-
ods may be sensitive to outliers. However, this is not a real concern in our
experiments since our feature values are the configuration parameter values
within the defined range.

Some configuration parameters may be highly correlated (e.g., CPU read-
ings and application transaction per second rate - TPS). A high correlation
among the features (i.e., configuration parameters) in machine learning mod-
els may result in multicollinearity that affects the stability of the model (e.g.,
overfitting) (Friedman and Wall, 2005; Harrell, 2006). Hence, we conduct a
correlation analysis and remove one of the features if they have a correlation
of over 0.8 (Garcia Asuero et al., 2006).

Noteworthy is the aspect that the result of feature selection is highly cou-
pled with a given set of configuration parameters. This means that in the event
where new non-constant parameters are added into the system, the model may
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no longer provide accurate predictions, as it would not take into account the
new parameters. Therefore, the model should be recreated and retrained using
the updated feature set.

4.3 Applying Machine Learning Techniques

We apply various machine learning models to predict the throughput of the
system given a set of configuration parameter values. In particular, we apply
the following models:

Tree-based models:

– Random Forests is an ensemble learning algorithm that is based on con-
structing multiple decision trees. Random Forest is less sensitive to outliers
and can automatically identify important features (Breiman, 2001).

– XGBoost is an optimized library for the Gradient Boosting machine learn-
ing method based on decision trees. XGBoost is very efficient for modelling
regression problems (Chen and Guestrin, 2016; Montero-Manso et al., 2020;
Pan, 2018).

Deep Neural Network models: Different types of neural network may cap-
ture different relationships between the features and the target variable (i.e.,
throughput in our experiment). Thus, we apply various types of neural net-
works and study how well can each network model the given data.

– Multi-Layer Perceptron (MLP) is a fully connected feed forward neural
network that is able to model data that has a nonlinear relationship (Zac-
cone et al., 2017). MLP optimizes the weights of each neuron to minimize
the training error given the input data, and uses the trained network of
neurons for prediction.

– Convolutional Neural Networks (CNN) are regularized versions of MLP and
automatically consider the hierarchical pattern in the training data (Za-
ccone et al., 2017). Prior research (Lathuilire et al., 2019) demonstrated
that CNNs are very good at modelling regression problems, despite be-
ing originally created for image analysis type of problems (Giulli and Pal,
2017).

– Long Short Term Memory (LSTM) (Zaccone et al., 2017) is a recurrent
neural network (RNN) variant, which captures and remembers the order
of the data in the sequences during the training process (Ergen and Kozat,
2017; Wöllmer et al., 2009).

Traditional model:

– Linear Regression models the linear regression relationship between the
features and the response variable (i.e., throughput). We use Linear Re-
gression as a baseline model and compare its prediction performance with
other more advanced models.
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For each model, we use the same set of training and testing data. We train
the model using a subset of results from the test runs, using the configura-
tion parameter values as input features to predict the throughput (Section 5
discusses more on how we separate the training and testing data). We then
apply the model on another set of test runs to predict the throughput in tests
executed using different configuration parameter values.

Similar to the work by Ha and Zhang (Ha and Zhang, 2019), we devise
an iterative method to determine the optimal depth for the neural network
that will yield the best performance on the validation subset. We apply this
iterative search for network architectures using different widths, such as 32, 64
and 128 neurons per layer respectively. We start the evaluation with no hidden
layer and then the depth of the network is increased one layer at time, for a
predetermined maximum number of layers (i.e., 15 in our case). We store, for
each iteration, the following information:

– The model performance metrics of applying the trained network model on
the test data (e.g., R2 score, MAE, etc.).

– The training data and the validation data values for each training iteration.
We later visualize the difference between the training and validation history
to look for signs of overfitting or underfitting (e.g., the training result is
very different from the validation result).

– The predicted throughput for the test data.
– The file storing the details of the trained model (i.e., the file containing

the saved model parameters with the best training score). The files allow
us to reload the best fully trained model and deploy the model in the CI
process.

The network depth expansion process may be either manual or automated.
For the manual expansion process, ML model developers may follow an iter-
ative approach to determine the maximum depth of the neural networks or
trees. For example, in the first trial, the maximum depth may be set to N=5
and after reviewing the results, developers can decide whether the values are
acceptable or more modeling is required, in which case the max depth may
increase (e.g., N=10 or 15).

Although the manual process is easy to implement, it may not be the
most efficient method from a training time perspective. To optimize the depth
expansion, developers may also use an automated approach (Ha and Zhang,
2019), such as continuously increasing the depth as long as the results (i.e., the
model performance metrics) increase over a certain threshold (e.g., stop if the
result improvement is less than x% after adding N more layers, or stop if the
results are worsened by y% after adding M more layers). In our experiments,
we opted for a manual approach for the open-source system, while we use an
automated approach for the enterprise system.

During this iterative process, we also tune other neural network specific
parameters:

– Batch size: defines the number of samples (from the training set) the model
should work with before adjusting any weights (internal model parameters).
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– Epochs: defines the number of times the model will go through the dataset
while learning. One epoch is a complete pass (forward/backward) through
the entire dataset.

– Regularization values for L1 and L2 type of regularization (Ng, 2004).

Regularization is a process used to prevent overfitting. Regularization works
by adding a penalty to all the parameters (except the intercept) with the goal
for the model to generalize the data and avoid overfitting. This penalty is added
to the loss function used by the model. Prior research (Ng, 2004) recommends
verifying the model performance using two standard types of regularization
procedures:

– Lasso regression (Tibshirani, 2011), or L1 norm, uses a penalty term so
that the sum of the absolute values of the model parameters (weights) is
small.

– Ridge regression (Nigam et al., 1999), or L2 norm, uses a penalty term so
that the sum of the square of the parameters is small.

For the tree based algorithms, we also perform an iterative approach to
determine the number of trees as well as the L1 and L2 regularization values in
order to produce a model with better prediction result. We gradually increased
the number of trees until we saw little or no more prediction improvements.
Similarly, we gradually adjusted the L1 and L2 regularization values.

5 Case Study Results

In this section, we evaluates MLASP by answering two research questions.
To comply with the non-disclosure agreements with Ericsson Inc, we cannot
present the details about those systems, so we present only a brief summary
of our findings.

5.1 Training Machine Learning Models

Before presenting the actual results of the experiments, we discuss some of the
insights from the data collection process as well as the feature engineering and
modelling process.

In our approach, we applied a sequential model hyper-parameter tuning,
which may require a longer training time. In particular, we find that it may
take a significant amount of time (e.g., hours for the open-source system) to
search for optimal model hyper-parameters when training deep neural network
models due to their complexity (e.g., contain many parameters that can be
optimized). Even though deep neural network models in general give great
prediction results when there is more training data (as shown in the results of
RQ1), load test engineers may still choose to use algorithms such as XGBoost
due to its short training time and good prediction results.
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In our experience, as more test data becomes available, the optimal model
architecture (e.g., number of neurons per layer in Neural Network models)
or hyper-parameter values may change. For example, we find that using our
model hyper-parameter tuning approaches, the optimal hyper-parameter val-
ues that we found in RQ1 and RQ2 are different. Therefore, in additional to
online training, we need to retrain the models periodically to find the new
optimal model hyper-parameter values. We also observe similar findings in the
enterprise systems, which prompted our industrial collaborators into adding
model retraining and hyper-parameter tuning as part of the CI pipeline when
the number of new load tests exceed a certain number. By doing so, we find
that we can achieve a more accurate prediction result and better capture the
relationship between the subject system’s configuration parameters and the
throughput.

5.2 RQ1: What is the prediction accuracy on the system throughput given
varied system configuration parameter values?

Motivation. Due to the complexity of modern large scale systems, there may
be hundreds of different combinations of configuration parameter values, and
environment and deployment settings. Running load tests to verify the effect of
the configuration parameters and find the values that support a desired capac-
ity will take a significant amount of time. Even worse, when developers make
changes to the system or add new configuration parameters, load testers would
need to re-run the tests, which leads to significant and undesirable increases in
project costs. Therefore, being able to estimate the system throughput given
a set of configuration parameter values is important for capacity planning
and reducing the costs of load testing. In this RQ, we investigate if we can
accurately predict the system throughput, given a new set of configuration
parameter values, by using machine learning models.

Approach. For our experiments, we train and test the machine learning mod-
els using the complete dataset by following the Pareto principle (ALQahtani
and Whyte, 2016; Xu and Goodacre, 2018). Namely, we split the available data
into training, testing, and validation sets. We first split the data into train-
ing and testing sets using the 90% - 10% split. The training set is then split
again into actual training and validation sets, following the 80%-20% splitting
convention. The validation set is used to tune the model parameters that we
discussed in Section 4.3. We report the following metrics for model evaluation:

– Median Percentage Deviation is the median of the measured percent-
age deviation between the predicted and actual target (system throughput)
The percentage deviation between the actual and the predicted throughput
is calculated as: actual−predicted

actual .
– Mean Absolute Percentage Error (MAPE), also known as mean abso-

lute percentage deviation (MAPD), is a measure of prediction accuracy of a
forecasting method and measures the size of the error in percentage terms.
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Table 1: Model evaluation results when using the entire data with separated
training and testing. We excluded the MAE, MSE and RMSE for the enterprise
systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE
Type Deviation

Open-Src.

XGBoost 0.99964 0.0865 % 0.8060 % 2,193 2.4028e7 4,901
Random F. 0.99958 -0.1828 % 0.6617 % 2,266 2.8253e7 5,315
MLP NN 0.99969 0.1648 % 0.6822 % 2,110 2.0594e7 4,538
CNN 0.99949 0.1590 % 1.1940 % 3,555 3.4482e7 5,872
LSTM NN 0.99902 0.2583 % 1.4341 % 5,586 6.6280e7 8,141
Linear Regr. 0.90930 7.3951 % 41.3498 % 66,759 6.1744e9 78,579

Entprz. 1

XGBoost 0.99324 0.6323 % 2.3596 %

—–

Random F. 0.95078 -0.1450 % 4.5820 %
MLP NN 0.99512 2.2929 % 2.3435 %
CNN 0.98317 -1.0807 % 3.5182 %
LSTM NN 0.92908 -16.0805 % 8.0132 %
Linear Regr. 0.98830 4.6561 % 21.3450 %

Entprz. 2

XGBoost 0.99973 0.8091 % 4.5485 %

—–

Random F. 0.99647 1.5526 % 67.5510 %
MLP NN 0.99991 1.0868 % 3.3082 %
CNN 0.99067 -8.1808 % 23.6534 %
LSTM NN 0.97589 -5.9882 % 62.2091 %
Linear Regr. 0.92218 4.3187 % 10.4637 %

It is calculated by the formula: MAPE = 1
n

∑n
i=1 |

actuali−predictedi

actuali
|,

given n points in the testing set.
– Mean Absolute Error (MAE) is the average of the absolute errors, which

is the difference between the measured/predicted value and the actual value
and it is defined by the following formula: MAE = 1

n

∑n
i=1 | actuali −

predictedi |, given n points in the testing set.
– Mean Squared Error (MSE) measures the squared average distance be-

tween the real data and the predicted data and it is defined by the following
formula: MSE = 1

n

∑n
i=1(actuali−predictedi)2, given n points in the test-

ing set.
– Root Mean Squared Error (RMSE) is the square root of the mean

squared error, thus defined as: RMSE =
√

1
n

∑n
i=1(actuali − predictedi)2,

given n points in the testing set.
– R2 score, or the coefficient of determination is a statistical measure of how

close the data are to the fitted regression line and it is defined by the fol-
lowing formula: R2 = V ariance explained by the model

Total variance = SStot−SSres

SStot
, where

SStot = sum of total squares and SSres = sum of squares of residuals
(i.e., the unexplained variation).

Results. The ML models can predict the throughput with a high ac-
curacy. In particular, XGBoost and MLP Neural Network achieve
the best prediction result and the findings are consist across the
studied systems. Table 1 shows the throughput prediction results. We find
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Table 2: Mean of model evaluation results when using the entire data with
a 10-fold cross-validation. We excluded the MAE, MSE and RMSE for the
enterprise systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE
Type Deviation

Open-Src.

XGBoost 0.99967 0.0473 % 0.9716 % 2,360 2.2792e7 4,742
Random F. 0.99963 0.0789 % 0.7673 % 2,295 2.5318e7 5,004
MLP NN 0.99921 0.4544 % 1.8316 % 4,250 5.4934e7 7,320
CNN 0.99181 -0.6284 % 6.8631 % 14,891 5.7416e8 22,665
LSTM NN 0.99759 0.4520 % 1.9627 % 7,286 1.7208e8 11,423
Linear Regr. 0.91294 4.2547 % 42.1498 % 64,867 6.0917e9 77,905

Entprz. 1

XGBoost 0.96281 1.4391 % 3.7316 %
—–Random F. 0.92250 -1.5916 % 7.0361 %

MLP NN 0.95681 3.3302 % 3.0288 %
CNN 0.91407 1.6746 % 5.8063 %
LSTM NN 0.90522 -18.5884 % 10.0907 %
Linear Regr. 0.91538 4.5912 % 19.1878 %

Entprz. 2

XGBoost 0.94997 2.2235 % 8.1909 %
—–Random F. 0.90843 -1.3599 % 57.8177 %

MLP NN 0.95196 -3.4797 % 6.9008 %
CNN 0.91448 9.1220 % 33.5975 %
LSTM NN 0.93642 4.1062 % 69.3470 %
Linear Regr. 0.85118 4.5878 % 27.0634 %

that the MAPE values are low (0.68% to 4.5%) for models such as XGBoost
and MLP Neural Network, suggesting that the prediction results have a high
accuracy. However, for other models such as random forest, CNN, LSTM, and
linear regression, the MAPE values have a high variation in the studied sys-
tems (goes up to 62%). The finding suggests that some ML models may not be
able to capture the relationship between the configuration parameter values
and throughput in all studied systems.

The MAE for the open-source system shows the mean absolute difference
between the actual and predicted total number of sent messages during the
30 minutes test interval. The MAEs for the open-source system range from
2,200 to 5,600 for most ML models (except for the linear regression model
where the MAE is 66,759). Given that the number of sent messages ranges
from 100K to 700K (as shown in Figure 2 and Figure 3), a MAE of around
2,000 to 5,000 is considered very small. Although we cannot disclose the MAE
values for the enterprise systems, similar to the open-source system, the values
are also very low for models such as XGBoost and MLP but higher for other
models. One observation is that MLP Neural Network and XGBoost achieve
both the minimal MAE and MAPE compared to all other models. The findings
indicate that MLP Neural Network and XGBoost may be better at capturing
the relationship between the configuration parameter values and the system
throughput. As an example, Figure 2 and Figure 3 show the predicted vs actual
throughput across various test runs from the MLP Neural Net model of the
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Fig. 2: An example of the predicted v.s. actual throughput for the open-source
system from the MLP Neural Net model results built using the complete
dataset.

Fig. 3: An example of the predicted v.s. actual throughput for the open-source
system from the MLP Neural Net model results built using a subset of the
complete dataset.

open-source system. The results show that there is a very high overlap between
the predicted and actual throughput (i.e., there is a near-perfect alignment
between the two types of dots in the figure).

To better understand the models performance and stability (meaning the
measured deviations between the actual throughput values and the predicted
ones), Table 1 shows several model evaluation metrics including the median
value of the percentage deviation between the predicted and the actual through-
put of the open-source systems. Figure 4 further shows the distribution (i.e.,
each point is the deviation value for one load test result). The results show
that the percentage deviation is small for all the models in the open-source
systems, except for linear regression models. The finding indicates that, in the
open source system, the model prediction is consistent across various load tests
given different sets of configuration parameter values. We exclude the detailed
distribution for the enterprise systems due to NDA. However, as shown in Ta-
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Fig. 4: Distributions of the percentage deviation between the predicted and
actual value for the open-source system using the complete dataset with sep-
arated training and testing dataset.

ble 1, the median value of the percentage deviation is higher for models such
as CNN, LSTM, and linear regression. Our findings show that CNN, LSTM,
and linear regression may result in a higher deviation between the predicted
and the actual throughput. In contrast, XGBoost and MLP Neural Net have
the highest R2 and relatively low deviation in the prediction results.

To further study if our models suffer from any overfitting, we conduct a
10-fold cross validation. Table 2 shows the results of the mean of the metrics
obtained after applying a 10-fold cross-validation (following the same data
splitting and training process). Our findings show that using 10-fold cross
validation, the models show similar prediction results as before. Figure 5 shows
an example of the training v.s. validation loss for the MLP model obtained after
training on the training set. The training and the validation loss converges,
which shows that the model is not suffering from overfitting.



20 Arthur Vitui, Tse-Hsun (Peter) Chen

Fig. 5: An example of train v.s. validation loss for the open-source system
from the MLP Neural Net model results built using a subset of the complete
dataset.

Our prediction models can predict the throughput of a system given a set
of configuration parameter values with a very high accuracy. In particular,
ML models such as XGBoost and MLP achieve the best prediction results,
with a MAPE value that ranges from 0.81% to 8.2% and a low median
percentage deviation. However, other ML models, such as linear regression,
CNN, and LSTM have a lower prediction accuracy and a higher variation
in the prediction results across the studied systems.

5.3 RQ2: What is the prediction accuracy by training the models using a
small number of test runs with different configuration parameter values?

Motivation. As discussed in Section 2, running load tests can be resource
intensive. Load testers may not be able to run a large number of tests with
a wide range of configuration parameter values to build a capacity prediction
model. Therefore, in this RQ, we investigate if we accurately predict the sys-
tem throughput using the machine learning models that are trained using a
smaller number of test runs. The results would give an insight on the test exe-
cution time that may be saved when using our approach to predict the system
throughput given different configuration parameter values.

Approach. For the open-source system, we use a small subset (i.e., 30 test
results) out of the total 900 test results. We randomly selected these 30 test
results to build the models, and evaluated the models on several hundred of
randomly selected test results from the remaining test results. We follow a
similar process for the enterprise systems and use only a small subset of the
test results to build models. To evaluate the models, the same as RQ1, we
report the R2, MAE, and the percentage deviation between the predicted and
actual throughput.
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Table 3: Model evaluation results when using a subset of the entire data
with separated training and testing. We excluded the MAE, MSE and RMSE
for the enterprise systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE
Type Deviation

Open-Src.

XGBoost 0.99889 0.5694 % 1.0672 % 4,154 7.8966e7 8,886
Random F. 0.99893 0.5315 % 1.4713 % 5,539 7.6122e7 8,724
MLP NN 0.99953 2.1227 % 2.6546 % 4,392 3.3086e7 5,752
CNN 0.96168 -2.2649 % 15.5894 % 29,567 2.7289e9 52,239
LSTM NN 0.96830 -13.0955 % 14.7153 % 37,675 2.1557e9 46,430
Linear Regr. 0.89828 10.4876 % 36.4431 % 67,751 7.2433e9 85,108

Entprz. 1

XGBoost 0.99159 0.0262 % 2.7578 %

—–

Random F. 0.94208 -0.6794 % 5.0949 %
MLP NN 0.98547 1.5053 % 5.7127 %
CNN 0.98269 1.3599 % 4.5767 %
LSTM NN 0.90235 6.5161 % 17.8877 %
Linear Regr. 0.96475 8.4154 % 14.4674 %

Entprz. 2

XGBoost 0.99954 -1.0259 % 1.7781 %

—–

Random F. 0.99367 -1.2040 % 7.8301 %
MLP NN 0.99192 7.1343 % 13.3365 %
CNN 0.94616 -4.2667 % 36.1945 %
LSTM NN 0.95059 -13.1491 % 13.9580 %
Linear Regr. 0.96084 2.5049 % 8.18635 %

Results. When training the models using only a subset of the test
results, XGBoost achieves the best prediction results with the lowest
variability compared to other ML models. Table 3 shows the prediction
results when using a subset of the test results to train the model. We find
that, in general, the prediction accuracy has decreased compared to using the
entire dataset. The MAE values for the open-source systems have increased
to the range of 4,154 to 64,867, compared to 2,110 to 67,751 in RQ1. Sim-
ilarly, the MAPE values for the open source systems range between 1.06%
to 36.44% depending on the algorithm used to solve the regression problem,
where lower values suggest a high accuracy of the predictions. In particular,
XGBoost achieves a MAPE of 1.1% to 2.8%, which shows that the predic-
tion result is comparable to when training the models using the entire data.
Our findings show that even though the prediction performance has generally
decreased, the models can still achieve good prediction results.

We find that some algorithms may be less stable (i.e., have a higher per-
centage deviation) compared to others (Table 3). In particular, LSTM models
are the least stable and have the highest median percentage deviation across
all studied systems (-13% to 6.5%). On the other hand, as shown in Figure 6,
there are some test results in the open source system, where there is a very
high percentage deviation between the predicted and the actual throughput
(i.e., outliers in the box plot). Overall, XGBoost have the lowest MAPE and
percentage deviation in the prediction results. Among all the models, XGBoost
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Fig. 6: Distributions of the percentage deviation between the predicted and
actual value for the open-source system using a subset of data to train the
models.

achieves the best results when using a subset of test data to train the models.
Table 4 shows the results of the mean of the evaluation metrics when applying
a leave-one-out cross-validation on the subset dataset. We find that, for some
models (e.g., LSTM) the MAPE obtained in leave-one-out is very different
from using a subset of training and testing. The findings show that, due to
the smaller training and testing data, some models may have some issues of
overfitting (i.e., different runs achieve varied results in leave-one-out). Never-
theless, XGBoost models achieve very similar results when using a separate
training and testing dataset, and leave-one-out. Our finding shows that XG-
Boost models give the best prediction results and are the most stable when
using a subset of data for training. Future studies and practitioners may choose
XGBoost models for capacity prediction if there is only limited training data.
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Table 4: Mean of model evaluation results when using a subset of the entire
data with separated training and testing and leave-one-out cross-validation
technique on the training dataset. We excluded the MAE, MSE and RMSE
for the enterprise systems due to NDA.

System Model R2 Score Median (%) MAPE MAE MSE RMSE
Type Deviation

Open-Src.

XGBoost 0.99883 0.5632 % 1.0795 % 4,242 8.3032e7 9,092
Random F. 0.99877 0.7213 % 1.5241 % 5,857 8.7052e7 9,252
MLP NN 0.99660 -4.0275 % 7.8962 % 11,654 2.4191e8 14,454
CNN 0.88445 -4.8323 % 23.8084 % 51,175 8.2286e9 87,672
LSTM NN 0.83048 -33.5486 % 47.4998 % 73,846 12.149e9 90,930
Linear Regr. 0.89742 9.2974 % 36.4756 % 67,810 7.3047e9 85,466

Entprz. 1

XGBoost 0.96354 0.0879 % 3.6777 %

—–

Random F. 0.89339 0.7440 % 7.3675 %
MLP NN 0.91848 1.9285 % 5.7111 %
CNN 0.88238 2.6036 % 7.0554 %
LSTM NN 0.89979 7.2277 % 25.8928 %
Linear Regr. 0.86504 9.6058 % 21.4257 %

Entprz. 2

XGBoost 0.98516 0.5902 % 2.0413 %

—–

Random F. 0.94357 0.7911 % 13.3980 %
MLP NN 0.92409 8.1647 % 19.3214 %
CNN 0.88860 -6.4085 % 48.8870 %
LSTM NN 0.92140 -15.6541 % 21.1542 %
Linear Regr. 0.82025 3.0043 % 11.4730 %

MLASP can still achieve great prediction results on the throughput when
trained using a small subset of data (i.e., 3% of the open source data and a
subset of the enterprise systems data). We also find that XGBoost gives the
best prediction results (MAPE between 1% to 3% for all studied systems)
with the most stable performance when the training data is smaller.

6 Discussions

In this section, we discuss the lessons that we learned from conducting the
experiments and integrating the approach in the enterprise systems.

6.1 Understanding and Verifying the Effect of Configuration Parameters

As also discussed in prior research (Li et al., 2018), we find that developers
may not know the effect of a configuration parameter once the system is de-
ployed in a distributed and complex setting. As a result, load test engineers
need to spend a significant amount of time testing the system under different
configuration parameter values, which can be costly or even impossible. We
find that by building the models, we could understand the importance of a
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certain feature (i.e., configuration parameter) in relation to the target variable
(i.e., KPI), and detect upper boundaries that would produce the same results
in the target (i.e., continue to increase the values would not have a significant
effect on the KPI). For example, in the open-source system, we see that the
throughput remains unchanged, once the number of background threads in
a Kafka broker reaches a certain value. After examining the feature impor-
tance in the model, we find that the combinational effect of the configuration
parameter is more important than a single configuration parameter. In addi-
tion to the number of threads, the model results also show that the message
size is also an important feature. Our investigation finds that the overall in-
put/output operations per second (IOPS) of the disk and network will greatly
influence the total number of messages the system can process, regardless of
how high we go with the number of background threads. By using MLASP, we
can model the combinational effect of the configuration parameters and envi-
ronment/deployment settings by running fewer load tests, and provide more
suggestions to load test engineers and developers on the system capacity.

We found similar cases applicable for the enterprise systems. Namely,
MLASP helps not only in the knowledge gain about the importance of the
configuration parameters but also provide strong evidence on fine-tuning the
scaling strategy. For example, knowing the IOPS limits and requirements for
a certain system helps virtual machine allocation and relocation strategy for
multi-tenant hardware inside the private cloud and data centre. The models
can also help in the test automation procedure by reducing the number of tests
that involve tuning/verifying less important configuration parameters, leading
to an overall reduction of the load testing time. Overall, we find that MLASP
can help with significant cost savings, and can also help make the CI process
more streamlined and ensure more efficient load testing activity.

6.2 Integrating MLASP in Industrial Settings

There are different approaches to integrate MLASP in industrial settings, such
as modifying the source code to include the self-monitoring and self-tuning
functionalities. In the end, MLASP uses a non-intrusive approach for the data
collection procedure and configuration parameter tuning. As discussed in Sec-
tion 3, we calculate system throughput by leveraging readily available infor-
mation. Our approach ensures that we need no additional changes on the sys-
tem source code, and does not affect the testing activities that are part of the
software development process of the enterprise systems. This non-intrusive ap-
proach was highly regarded by the project management team since it avoided
adding additional cost in the project. This in turn avoided jeopardizing timely
delivery plans and release roadmaps, which ultimately led to the integration
of MLASP. Future studies may consider such a non-intrusive approach to in-
crease the adoption of the developed approaches.

In addition to the great prediction results, MLASP also helps load test en-
gineers identify the combination of configuration parameter values that yield
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a certain output. When integrating our approach with the industrial system,
we discussed with our industrial partner (with project management and with
technical personnel) on whether the models can be used for capacity plan-
ning, in addition to capacity prediction. For example, our industrial partner
may be interested in knowing what would be the expected throughput if the
number of deployed nodes decreases by two. If the model is able to make a
good prediction result, by giving the trained models a set of variable values
that one wishes to inquire about, the model can give an accurate estimated
outcome. Namely, MLASP helps load test engineers model the scalability of
the software system (e.g., the types and amount of resources that are needed
to achieve a desired throughput, using a forecast on future traffic needs). Such
inverse prediction/classification is commonly used in statistics and machine
learning to understand the effect of the variable and help make business deci-
sions (Aggarwal et al., 2010; Chen et al., 2012; Li et al., 2018). MLASP also
helps load test engineers identify possible physical limitations of the system
hardware by studying the correlation between the features (i.e., configuration
parameters) and the throughput, as discussed in Section 6.1. This information
was also very helpful for reporting purposes to both management and devel-
opment teams when simulating “what-if” scenarios. The results from these
simulations pointed out the relationship between different parameters (un-
derlying infrastructure and software configurations) and provided important
insight to development teams on where improvement efforts could be focused
in the next iteration. Project management also had a clearer perception of the
roadmap and were able to create risk mitigation plans much faster (e.g. when
to order additional hardware, and when and what communications should be
given to the customer with respect to the roadmap).

Given the high interest from our industrial partner, we also ported this
tool to use it with the open source system. We added the ported code to the
public GitHub repository, sharing the data and algorithms (MLASP, 2020).

During our integration process, we also provided enhancements to the exist-
ing load testing process by improving automation. In particular, we integrated
the earlier-mentioned random configuration generator tool and the machine
learning model training capability. Due to the NDA, we cannot disclose which
tools are used in each phase by our industrial partner. Nevertheless, we provide
a general depiction of the overall process and discuss a wide range of options
for tools in each stage. The process diagram is presented in Figure 7.

The automated load testing portion is controlled by a random configuration
generator which may be a script or an application written in any program-
ming language. Alternatively, configurations may be retrieved from a persis-
tent storage system that may be a database (e.g., MySQL, PostgreSQL, or
NoSQL databases) or a file versioning system. The configurations are pushed
by specialized tools (e.g., Ansible, Puppet, or Chef) or automated scripts to
the controlled load driver and the test systems. The load is generated by us-
ing either custom developed applications or specialized tools (e.g., JMeter,
Jenkins, or Soap-UI). Data is then collected in a non-intrusive fashion to a
central location using specialized tools (e.g., Prometheus, InfluxDB, Logstash,
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Fig. 7: MLASP Complete Process with its three stages: (1) Automated Load
Testing, (2) Feature Engineering and ML Training, and (3) Model On-Line
Serving.

or Elasticsearch). The aggregations may be permanently stored in databases.
The feature engineering pipeline shall extract and preprocess the data collected
from the data lake. The preprocessed data will be used for training the machine
learning models. Various tools are available for data collection, pre-processing,
and model training: Apache Spark, DeepLearning4J, keras, scikit-learn, pan-
das, pytorch, tensorflow, theano, etc. Once a model is trained, the model may
be deployed using frameworks such as Apache Spark, DeepLearning4J, Tensor-
Serving, Seldon, Flask, KFServing, etc.

7 Threats to Validity

Internal validity. Since the enterprise systems are continuously evolving,
changes in the source code may affect the throughput of a system. Therefore,
we tried to use the same release of the system throughout the process to min-
imize the effect of new code changes. We did not use any system KPI metrics
for the open-source system (e.g., CPU), as both the underlying hardware and
virtual servers capabilities may experience some noises (e.g., context switch
or garbage collection overhead). Therefore, we choose to model the KPI that
may better reflect users’ perception of a system (i.e., throughput).

External validity. We conducted our experiments on both open-source and
enterprise systems. In the end, MLASP is well received by our industrial part-
ner and the prototype is integrated with the software development process.
Although we find that the results are similar for the studied systems, our
results may not generalize to other systems.
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Construct validity. As found by prior studies (Ha and Zhang, 2019; Ng,
2004), parameters in machine learning models may affect the model perfor-
mance. Therefore, in our experiments, we applied semi-automated analysis to
tune a wide range of model parameters using a validation set. Other possible
issues with machine learning models are multicollinearity and overfitting. To
mitigate the risk, we split the data into training, validation, and testing set
to avoid training biases. We also applied different regularization methods to
reduce the possibility of overfitting. Our prediction results on external test
datasets show that our prediction results are still very good and are similar to
the results of the models when applied on the validation set. Thus, the models
are not suffering from the problem of overfitting.

8 Related work

Tuning configuration parameter values for software systems used in open-
source and commercial solutions has been of great interest in the research
community over the years. Previous research can be grouped in the following
categories (Bao et al., 2018a):

– Analytical optimizations - using mathematical models to calculate the ef-
fect of configuration parameters, often used in the early development cycles
of a software system (Chen et al., 2016; Sayyad et al., 2013).

– Measurement based configuration optimization - relying on statistical ap-
proaches (Guo et al., 2013, 2017).

– Search based configuration optimization - black box optimization problem
using search algorithms (Li et al., 2018).

– Learning based configuration optimization - make use of various machine
learning techniques (Bao et al., 2018a; Ha and Zhang, 2019; Sayyad et al.,
2013).

Prior studies by Guo et al. (Guo et al., 2013, 2017) use statistical learning
approaches to predict system performance given a random sample of various
sets of system configuration parameter values. However, these methods focus
on tuning binary system configuration parameters. With recent advances in
Neural Networks, some of earlier state of the art approaches have been tested
against more modern algorithms. Ha and Zhang (Ha and Zhang, 2019) have
proposed a novel approach, called DeepPerf, for performance prediction using
Deep Sparse Neural Networks. Alongside the novel approach, which includes
a strategy for hyper-parameter search, they also compare the performance of
their approach with existing state of the art methodologies on 11 open-source
systems. The proposed method outperforms other existing approaches. In our
paper, we focus on the aspects of large-scale load testing and the predicted
capacity of the system which is formed of many different components, given
a set of configuration parameter values. Similar to DeepPerf, our configura-
tion parameters include both numeric and binary. In contrast with our work,
DeepPerf, focuses on finding optimal configuration parameter values for a sin-
gle instance of a component, where we focus on predicting system capacity at



28 Arthur Vitui, Tse-Hsun (Peter) Chen

a larger scale (e.g., our tests may take hours to run). We also consider various
environment and deployment settings as part of the configuration. More im-
portantly, we conducted our experiment in an industrial setting, and reported
our experience on adopting MLASP in practice, instead of focusing only on
open-source systems. It is noteworthy to mention that in an industrial setting
the source code of the software systems is not always available. In addition,
profiling or sampling source code execution is not possible due to significant
performance overhead. Although design documents are sometimes available,
the accent is on system integration aspects (e.g., block diagrams). Lower level
design documents (i.e., software design documents) are often not available.
Considering these aspects, a white-box approach is not always possible, or
possible only to a certain extent.

Other work focused on determining the selection of optimal configuration
parameter values. Sayyad et al. (Sayyad et al., 2013) proposed an approach
called IBEA (Indicator-Based Evolutionary Algorithm) for finding the opti-
mum configuration models for very large software systems with thousands of
parameters (e.g. the Linux kernel). They used heuristics to determine a subset
of configuration affecting a part of a system. Chen et al. (Chen et al., 2016)
analyze logs to uncover system execution. They model the execution using
Petri net to recommend caching configuration. Bao et al. (Bao et al., 2018a)
proposed an approach called AutoConfig for automated configuration of dis-
tributed message systems (DMS). Although their work is centred around DMS
such as Apache Kafka (Apache, 2019) and RabbitMQ (Rabbit MQ, 2020), the
algorithm may be extended for other systems. Li et al. (Li et al., 2018) share
their experience on working with an industrial partner to include autonomic
computing capabilities to reduce human intervention on performance config-
uration tuning. Their approach can find the optimal configuration parameter
values dynamically in real-time. Different from prior studies, our approach
consider the entire set of configuration parameters and we focus on assisting
load testers with capacity prediction, rather than finding optimal configura-
tion for every component making the software system. In addition, we also
propose a blueprint for test pipelines integration.

9 Conclusions

The goals of load testing are to ensure that the system behaves correctly un-
der load (e.g., simulated real world usage) and help load test engineers and
developers evaluate system performance profile (i.e., capacity). As a result,
an important task for load test engineers is to understand the system capac-
ity under different configuration settings. However, there may be hundreds
of different configuration parameters in a large-scale system, which makes it
impossible for load test engineers to cover all combinations of the configura-
tion parameter values. In this paper, we propose an approach, called MLASP,
to help load test engineers determine the key performance indicators (KPIs),
such as throughput, given a set of configuration parameter values and en-



MLASP 29

vironment settings. MLASP leverages machine learning models and use the
values of configuration parameters as input features and predict the expected
throughput, used in capacity planning for production environments. MLASP
uses a non-instructive approach to collect data from the systems, which in turn
helps with the adoption of the MLASP in practice. We evaluated MLASP on
two large-scale enterprise systems developed by Ericsson Inc., and one popu-
lar open-source system (Apache Kafka). We find that MLASP can predict the
system throughput with a very high accuracy (with R2 values above 0.9 and
the percentage deviation between the predicted and the actual throughput
value is less than 1%). We also find that by using only a small subset of data
(e.g., 3% of the open-source test results), we can still achieve a great predic-
tion accuracy. Our approach is well received by our industry partner and the
prototype is being integrated in an industrial setting. We also document our
experience on applying MLASP at Ericsson and the lessons that we learned.
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