
Challenges in Adopting Artificial Intelligence Based
User Input Verification Framework in Reporting

Software Systems
Dong Jae Kim∗, Steve Locke∗, Tse-Hsun (Peter) Chen∗

Andrei Toma†, Steve Sporea†, Laura Weinkam†, Sarah Sajedi†
Software PEformance, Analysis and Reliability (SPEAR) Lab, Concordia University∗

Montreal, Quebec, Canada
ERA Environmental Management Solutions†

Montreal, Quebec, Canada
{k dongja, s loc, peterc}@encs.concordia.ca

{andrei.toma, steve.sporea, laura.weinkam, sarah.sajedi}@era-ehs.com

Abstract—Artificial intelligence is driving new industrial so-
lutions for challenging problems once considered impossible.
Many large-scale companies use AI to identify opportunities to
improve business processes and products. Despite the promise
and perils of AI, many traditional software systems (e.g., taxation
or reporting) are implemented without AI in mind. Adopting
AI-based capabilities in such software can be challenging due
to a lack of resources and uncertainties in requirements. This
paper documents our experience working with our industry
partner on adopting AI capabilities in enterprise software. The
enterprise software receives and processes thousands of user
inputs with different configuration settings daily, which makes
manual user input verification infeasible. To assist our industry
partner, we design and integrate an AI-based input verification
framework into the software. However, during the design and
integration of the framework, we encounter many challenges
that range from the requirement engineering process to the
development, adoption, and verification process. We discuss the
challenges we encountered and their corresponding solutions
while working with our industrial partner to integrate the AI-
based input verification framework into their non-AI software.
Our experience report may provide valuable insight to practition-
ers and researchers on better integrating AI-based capabilities
with existing software systems.

Index Terms—User Input, Verification, Testing, Experience
Report

I. INTRODUCTION

Many existing traditional software, such as compliance
reports, bookkeeping, and management software, relies heavily
on user-provided data. They store and process user-provided
data to help users achieve business goals (e.g., filing tax returns
or generating reports). Hence, from the software engineering
perspective, verifying user input quality to detect user mistakes
is critical to the software product’s success.

Traditional software testing ensures the functional aspects
of user input and data quality, such as testing the input data for
illegal characters and incorrect value types. However, context-
related issues may hinder data quality. Users can input abnor-
mally high or low inputs instead of expected values. In such
a scenario, artificial intelligence (AI) based anomaly detection

algorithms are a natural procedure to find irregularities in user-
provided data. Using AI has several advantages. Firstly, due to
considerable variations in user data, it is improbable for soft-
ware developers, who may not have a detailed understanding
of the client’s behavior, to apply the rule-based technique to
detect anomalies in the input data. From the users’ perspective,
it is infeasible to manually investigate tremendous user input
data, whereas AI can automatically flag potential anomalies.

AI is rapidly spreading across the global business [1], from
autonomous vehicle software (e.g., Tesla) to AI-guided surg-
eries in medicine [2]. In light of its prevalence, companies new
to AI have a misconception that AI is a magic bullet capable
of providing answers to any problem. Our experience working
with an industrial partner new to AI has let us discover
many unexpected challenges that hinder AI implementation.
Challenges adopting AI from an engineering perspective are
relevant yet rarely discussed in many research-industrial col-
laborations implementing AI. Hence, this paper documents our
experience integrating AI into large-scale reporting software.

Our subject system is a large-scale business-to-business
enterprise software in environmental and manufacturing. It
allows manufacturers to maintain and regulate chemical usage
to adhere to government health and safety regulations. The
software takes thousands of user inputs with many configura-
tions, values, and units daily. Since the quality of data input di-
rectly connects to the stakes of the manufacturing companies,
our industrial partners have dedicated environmental analysts
to verify the quality issues. Maintaining high-quality data is
of utmost interest to stakeholders (i.e., manufacturers) since
even slight deviations may cause negative consequences for
stakeholders against government regulations. To reduce the
manual intensive stage of anomaly detection, we implemented
and integrated AI to automatically detect anomalies and rec-
ommend them to domain experts.

We provide insights on the three stages of challenges
when integrating the AI component into a non-AI system:
1) Challenges in the requirement engineering process with



Anomaly Pattern Description

Pattern 1
- Amount Entry Irregularities in the product usage reported by the users. Namely, a reported input is too little or too

much in value compared to the general amount.
Pattern 2
- Period Entry Irregularities in the usage period reported by users. These are durations for which a manufacturer

may use the product. Hence, a reported input may have a longer or shorter usage period than the
general usage period. For example, product X, generally used for 30 days, was reported to be used
for 90 days.

Pattern 3
- Report Frequency Irregularities in the report frequency. These are frequencies in which user may report product usage.

For example, product X, generally reported at the beginning of every month, was reported three
months later. Hence, there is a missing entry.

SubFig. (1) Two products made from the same chemical X SubFig. (2) Same products made from the different chemical

Fig. 1: The first table shows different types of anomalies detected in our input-verification framework. The plots below show
the complexity of amount distribution difference between different chemical usages. Note, the plot only shows the amount of
used chemicals entered by users, it does not show period or report frequency of the data entered.
a development team from a diverse background. 2) Chal-
lenges in adopting AI in user-intensive software from an end-
user navigation perspective. 3) Challenges in AI verification,
specifically anomaly verification, where stakeholders have
diverse patterns of operational behavior and context-specific
anomalies. We then provide insights into avoidance strategies
for how we overcame each of these challenges. For 1) we
share our process to facilitate better identification of the scope
of problems with domain experts; for 2) we share our process
to facilitate better adoption of the AI component; and for 3)
we share our process of verifying the robustness of anomaly
detection model when ground truth is absent. In particular, the
main contributions of this paper are:

• We provide an experience report that discusses the chal-
lenges of integrating an AI-based user input verification
framework into an existing non-AI software system,
which may help other practitioners who face similar
issues in the industry.

• We discuss our challenges encountered during require-
ment engineering, AI adoption, and validation.

• We provide a detailed design decision of our AI-based
user input verification framework.

Paper Organization. Section II discusses our background &
motivations. Section III presents the design and implementa-
tion of our AI-based user-input verification application. Sec-
tion IV discusses the challenges encountered in the integration

and our solutions to these challenges. Section VI surveys
related work. Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section discusses our industry partner’s problem state-
ments and motivation for adopting AI (artificial intelligence)
to the software. Their software is a large-scale business-
to-business software that allows stakeholders to book-keep
chemicals used in their manufacturing process. The software
then automatically generates reports, enabling stakeholders
to report to the government and help them align with envi-
ronmental regulations. However, the software is not a direct
plugin in their manufacturing process, i.e., it does not collect
live usage data. It requires humans to manually enter the
collected data into our systems after manufacturing, which
opens potential data quality issues. Even the slightest mistake
in the data input may cause severe consequences for our
stakeholders. Hence, our industrial partners’ mission is to
work closely with stakeholders to improve the quality of data
coming into their systems.

While our industrial partner has a great data quality as-
surance team, it takes time to validate every piece of data
entered into the system. Dealing with 100+ clients with various
manufacturing products and chemicals used in the process
exacerbates manual labor, which could cause many unchecked
anomalies to manifest in the data. Hence, our industrial
partner expressed interest in using AI to detect data anomalies



Fig. 2: The overview of the end-to-end process in our outlier detection strategy.

automatically. We currently detect three types of anomalies
suggested as critical by domain experts. The table in Figure 1
summarizes the initial types of anomalies detected in our
AI-based input verification framework: Anomalous amount,
period, and frequency, and their correct and incorrect values.

While seemingly straightforward, identifying quality issues
(e.g., anomalies) in these chemical usage inputs is challenging
as it differs on the products manufactured and stakeholders.
For instance, let us look at the amount of the same chemical
used (e.g., lb) during manufacturing products X and Y in
SubFigure 1 in Figure 1. In such case, some AI models would
algorithmically flag the high usage amount to manufacture
product X in the second year as normal (e.g., recurring pattern)
and flag product Y’s second year as anomalous. However,
the high peak in product Y is actually due to increased
manufacturing demand and is normal behavior. SubFigure
2 shows another distribution change when using a different
chemical for manufacturing Z. The model may flag the first
two maxima usage as non-anomalous and the final data point
as anomalous as it does not agree with recurring patterns.
However, we find that stakeholders may replace materials in
manufacturing, hence a decrease in usage for the third year for
the first plot and its corresponding increase in the second plot.
Hence, many context-specific anomalies can cause false alarm.
Since the software is critical for stakeholders, our partner is
interested in decreasing false negatives by flagging as many
potentially anomalous data points as possible at the expense
of allowing false positives.

III. THE DESIGN AND IMPLEMENTATION OF OUR
AI-BASED USER-INPUT VERIFICATION FRAMEWORK

This section discusses our AI-based user input verification
framework, which may help other practitioners who want to
adopt similar frameworks to their systems. Figure 2 shows an

overview of the framework. The pipeline acts as a channel be-
tween stored data and downstream anomaly recommendations.
In particular, our framework has three main processes given
the user input data: (1) Model specification and construction,
(2) Model interpretation, and (3) Model validation. Section
4 will further discuss our design decisions and the challenges
they helped to overcome in AI integration.

A. (Component-1) Model Specification & Construction

(A) User-Provided Parameterization. We allow users to de-
cide how to aggregate the dataset before executing the AI
model. For example, each client has various facilities for
manufacturing their products. Depending on its facility, the
exact product X could also have different usage behaviors.
(B) Preprocessing & Feature Engineering. We preprocess
(e.g., feature engineer) our dataset to allow the data to be
learnable by our AI model and detect anomalies indicated in
the top table of Figure 1.
1) Amount Entry - To detect anomalies in amount entry, we
preprocess amount entry by converting all unit scales to the
same scale. For example, product X may utilize volume or
mass units, which are inconsistent.
2) Period Entry - To detect anomalies in period entry, we
preprocess the period entry by finding the difference between
the start and end date of usage for product X.
3) Report Frequency - Finally, we need at least two rows
of entries to find anomalies in report frequency. For example,
given Xistart, Xiend and Xjstart, Xjend, which are the start
and end date of usage for product X for time i and j, entry
frequency is Xjstart − Xiend. This value tells us the report
duration between each row of entries.
(C) Ensemble Unsupervised Learning. After data is aggre-
gated and preprocessed according to the user-configured pa-
rameterization, the next step is to run our AI model to detect



anomalies. Since we do not know the exact recall of the
outliers, we chose an ensemble of unsupervised anomaly
detection algorithms, including isolation forest, local isolation
factor, density-based spatial clustering, and the traditional
Z-score statistic. Each then outputs a score indicating the
likeliness of an outlier. We calculated the weighted average
of their score to obtain the unified anomaly score. Namely,
we have different techniques to help us flag many suspicious
anomalies.

B. (Component-2) User Parameterized Post-Processing

(D) Rank Anomalies based on Anomaly Score. We sort the
weighted average anomaly score from the ensemble model to
prioritize anomalies that may require immediate attention, as
domain experts may not have the time to validate all potential
anomalies. We consider moderate anomalies to lie between
0.5 and 0.75 and severe ones to be greater than 0.75. Scores
less than 0.5 are considered non-anomalous. These anomaly
severity cut-off scores are initial heuristics deployed by our
pipeline and may be subject to modifications by end users.
(E) Ranking the Anomalies based on Effect Size. One limi-
tation of unsupervised outlier detection algorithms is the lack
of effect size. For example, multiple outliers have similar
outlier scores but different sizes in magnitude. Hence, we cal-
culate the absolute and relative difference for outliers against
their median distribution, allowing users’ to select anomalies
based on effect size.
(F) Model Importance in Unsupervised Ensemble Learning.
Clients may want to understand the result of the ensemble
models. Since the different models in the ensemble capture
different characteristics in the data, we describe the model’s
importance in the ensemble. Namely, we specify which model
contributes to a higher weighted average anomaly score.
(G) Visualization Techniques. We also implemented a user
interface to visualize our anomaly detection. We mainly focus
on two graphs: time-series and cluster, which are easier to
comprehend for wider audiences. For example, the scatter plot
will show a product’s historical usage pattern color-coded into
the three severity of anomalies (non-anomalous, moderate, and
severe).

C. (Component-4) Model Validation

(H) Domain Expert Validation. We do not have a ground
truth for the anomalies in the user-provided inputs. The ground
truth may vary between manufacturers, making the model
validation especially challenging. Thus, our goal is to fine-
tune result based on the direct feedback given by the domain
experts and hide the expert-flagged false positives in future
reports. We currently implemented a report generation module
scheduled by users to run our AI model, generate a report and
send it automatically to end-users.

IV. CHALLENGES IN AI INTEGRATION IN TRADITIONAL
COMPANIES

In this section, we share our challenges encountered in
AI integration. We arrange our findings according to the

three main activities Requirement Elicitation, Adoption, and
Evaluation. For each, we discuss concrete challenges that are
especially important for practitioners and AI engineers. We
arrange our discussion into the following flow, 1) a description
of the challenge, 2) a misstep that led to the manifestation of
the challenge, 3) share lessons learned in the form of avoidance
strategy to help practitioners, and 4) additional discussion on
how this challenge fit in the scope of our overall system.

A. Requirement Elicitation between AI and non-AI experts

Implementing AI is challenging from requirement specifica-
tions. This section demonstrates how to manage requirements.
A.1) Data Source Requirement.
Challenge A.1. Training data is an integral part of the AI
system. The model’s performance depends heavily on the
data example size that the model could learn. However,
finding all relevant data sources is a time-consuming aspect
of the requirement engineering process, especially when data
is absent. We work in a team with diverse expertise arranged
in two groups, the AI engineer in one and the other group
involves business managers, domain experts, and scientific
writers. While input from such diverse expertise could offer
valuable help, knowledge transfer can be ad-hoc and may lack
structure. Provoking valuable feedback from domain experts
in an input that can directly specify the data discovery is
challenging.
Misstep A.1. Knowledge transfer works both ways and is
Mutual for both AI engineers and domain experts. While
domain experts have valuable insights, it is up to the AI
engineer to help domain experts convey their insights. Our
industrial partner said: “We do not know how to help you get
the relevant resources since we don’t know what it is that you
need”. In knowledge transfer, it is unclear how much input
is sufficiently collected from domain experts to cover all the
requirements. In our case, we went straight into modeling the
AI and later found the missing data source, which caused the
evaluation slowdown.
Avoidance Strategy A.1. For domain experts, understanding
the inner workings of AI algorithms should not be the focus
of the collaboration since the common consensus is to leave
the detail to the experts. However, we found that giving a
short workshop on a high-level understanding of AI pipeline
improved data source retrieval. In the workshop, we covered
feature engineering strategies on how to take current data
into a processed form that can be used by the model, and
raising intuition behind AI algorithms to help understand AI’s
limitations. We communicated to the domain experts that
AI is only powerful as the data wrangling steps, “Without
data sources and a proper preprocessing of that data source,
we cannot fully leverage AI.” Since domain experts know
their data, the feature engineering step was more apt to their
expertise. One domain expert pointed out, “Our X dataset can
tell us when clients are likely to ramp up the manufacturing
process. It can help us reduce false positives.”
Discussion A.1. For companies new to AI, direct knowledge
transfer between the different bodies of expertise and AI engi-



neers is challenging due to the disparity between expectations
and outcomes of AI. Nevertheless, we strongly suggest AI
engineers invest time in teaching domain experts in the whole
AI development process. From our experience, the more we
involve domain experts in many aspects of AI development
the better they can provide feedback.
A.2) Expectation Requirement.
Challenge A.2. It is easier to satisfy stakeholders by making
requirements and expectations explicit. However, requirements
are never complete in an evolving environment (e.g., anomaly
detection) and AI must evolve with it. There are always
uncertainties about how to label the data when data behavior
changes, i.e., often very frequently, evaluate the prediction
and integrate AI into the final legacy systems. While these
are necessary, discussing these concerns earlier in requirement
engineering is very challenging.
Misstep A.2. A common misconception is that AI is another
technology that should be independent of the requirement
engineering in legacy systems. In our case, due to challenges
in requirement engineering, one mistake we committed was
building AI immediately and incrementally improving the
model results upon domain feedbacks and justifications. How-
ever, incremental changes may go on for days or months and
still may not yield output in a usable form. Hence, delays may
cause stakeholders to lose interests/commitment.
Avoidance Strategy A.2. An AI engineer’s responsibility is
to raise awareness of what it takes to integrate AI into the
end product during the initial requirement engineering process.
For example, evaluation requirements are never complete in
anomaly detection due to missing ground truth, especially
in the evolving system. It is impossible to give a success
metric (i.e., accuracy) to indicate the completion of AI. Our
industrial partner said: “Similar to our safety-critical software,
which accumulated decade-old knowledge receiving feedback
from stakeholders, this anomaly detection is an ongoing effort
to help them regulate their environmental laws.” As many
practitioners may view AI as a magic bullet (i.e., magically
providing solutions), clarity on its expectations is necessary
early on to avoid dissatisfaction. For example, anomaly detec-
tion often cannot be evaluated during training due to missing
labels. AI engineers must help practitioners understand the
concept of adaptive learning. It deals with limited labels at
runtime by adapting to incoming data (i.e., human labeling)
to make further adjustments to its AI parameter.
Discussion A.2. The AI model we built is an assistance to
help these domain experts improve at anomaly detection but
not a complete anomaly detection solution that should be
trusted blindly. Our industrial partners’ software is critical
and will always require verification by domain experts (e.g.,
environmental scientists). Hence, it reduces the existing over-
head of domain experts, but it does not create new overheads.
While initial fine-tuning takes time, this tuning may go a long
way to help detect new types of anomalies that may come
in the future. It is crucial that AI engineers and industrial
collaborators have a clear understanding of these expectations
early on.

B. AI Adoption in traditional non-AI software

Implementing an AI application is tricky from an end-user
adoption perspective. This section demonstrates better adop-
tion stems from enhancing user navigation and interpretation.
B.1) Change Management in AI.
Challenge B.1. Stakeholders often need help understanding
what comes after the model implementation. In our case, we
needed to integrate the AI pipeline first to acquire feedback
(e.g., correct anomalies) from domain experts to adjust our
model. This differs from the traditional AI pipeline, where
labels are available, and the model can be trained before
integration. In practice, this stage of integration can be time-
consuming as domain experts may have little time and may
not see how AI could be utilized in practice.
Misstep B.1. In our collaboration, we decided every develop-
ment decision from AI research perspectives, such as selecting
which model to use, understanding the data source, pre-
processing data, and evaluating the model. When we were
ready to integrate our AI for evaluation in run-time, we found
that domain experts did not know what it took to incorporate it
into their system. We frequently had back-and-forth meetings,
where we asked “We shared out code, and AI is ready for
integration to obtain feedback on the results”, and domain
experts’ reply would be “Due to X release in our software, we
did not have time to work on it”. It took us a significant amount
of time to push the integration and finally obtain feedback.
Avoidance Strategy B.1. While integration slowdowns are
related to social and business issues, from our experience,
AI engineers can still impact change management. Due to
domain experts’ limited time, we took the initiative to build a
simple prototype to help domain experts see the end product.
For example, Figure 3-C displays the general statistics about
the anomaly type and the number of anomalies detected
for each product. Furthermore, as shown in Figure 3-D, we
implemented the table that shows the original dataset with
severe anomalies highlighted in grey. For example, the severe
anomaly is indicated by a 0.125 value reported by the user,
which was lower than the general report amounts, which is, on
average, 1.041. Although this interface shows the anomalies
detected for pattern 1 (e.g., anomalous amount), the interface
for other patterns is similar. As a design decision, if we detect
pattern 1, we only show the result for pattern 1. This design
decision keeps the user focused on analyzing one anomaly at a
time. We also added functionality where end-users can export
the table as an excel spreadsheet. This step is crucial since
users come from various non-software backgrounds, and excel
is the go-to option for data analytic for traditional companies.
Therefore, users can quickly obtain a glimpse of the anomalies
and export the dataset into the dedicated analytic tool for
detailed validation. When our industrial partner witnessed
the prototype, they were able to give more suggestions. One
domain expert said: “This really helps to see how we can
integrate AI. We now have some idea as to what we can
reuse.” This strategy is incorporated in Model Interpretation
component shown in Figure 2.



Fig. 3: Dashboard of anomaly detection results. We aggregate the dataset at a record level according to user-parameterization
in Section III-A. Interface C shows the statistics for the anomalous amount entry for product A. Interface D shows the amount
entry for product A. Grey highlights the severely anomalous entry.

Discussion B.1. While high prediction and accuracy are the
ambitions of AI engineers, the story-telling aspect of AI is im-
portant for its integration as we are building AI for end-users.
Based on our experience, companies new to AI may have
challenges from AI implementation to integration. Namely,
due to a lack of resources or existing infrastructure, integrating
AI into existing software is time-consuming. Hence, AI engi-
neers should invest time in prototyping the user interface to
demonstrate theories into practice. Based on our experience,
Dash Plotly [3] was the most straightforward framework to
prototype the reporting component of our anomaly results.
Dash Plotly ships with many out-of-the-box components that
are easy to prototype. Many frameworks and libraries help
integrate the user interface and AI-based input verification
framework. Another advantage was that the API is abstracted
in Python, which can integrate with many popular Python-
based AI/ML frameworks and libraries (e.g., Pytorch and Sci-
learn). Finally, we find it vital to use tools and analytics that
are more familiar to a broader range of audiences. Hence, we
implemented our AI application as an upstream component
to quickly summarize anomalies and serialize results to any
downstream analytics tool of the user’s choice. For example,
domain experts wanted data serialization into Excel to perform
additional validation.
B.2) End-User Navigation.
Challenge B.2. Our stakeholders come from various manu-
facturing domains with unique operational behaviors. Each
manufacturer has multiple facilities that change the outcome
of the dataset. There are also time constraints in the datasets.
Some stakeholders care about yearly anomalies, while others
care about weekly criteria. To cater to diverse stakeholders,

Fig. 4: Interface A allows users to select aggregation strategy.
The user defines what the model should learn. The pre-
processing is based on (1) Facility 4 and (2) Yearly.

the AI pipeline, pre-processing, and feature engineering details
must also vary. However, it is challenging to derive all rules
in the pipeline to cater diverse stakeholders.
Misstep B.1. Many existing AI pipelines in the wild generally
stay consistent in the pipeline step, i.e., preprocessing. Once
built, the model remains constant, and its source of variation
is its ability to intake new dataset examples to learn the
new pattern. Our first iteration of the model did not consider
pipeline adaptation due to a lack of understanding of user
behavior. We chose two stakeholder datasets (e.g., out of 100+)
for our initial evaluation to analyze with the domain experts
and applied a similar AI pipeline. However, the preprocessing
for one company could not work for another due to differences
in behavior. Our model needed to adapt in this step from
stakeholder guidance.
Avoidance Strategy B.2. The issue with our current pipeline
is that our preprocessing must adapt to stakeholders’ behavior.
For example, if the three anomaly types are only relevant
monthly due to the way stakeholders enter the chemical usage,
then it may not make sense to study daily. Only they know



how to preprocess the dataset. As a solution, we implemented a
user-enabled parameterization strategy where users can change
preprocessing step in the pipeline. One domain expert said:
“The parameterization allows the adoption by closely aligning
the navigation from the end-user perspective”. We imple-
mented various ways for user interactions, allowing better
control over the model input. Figure 4 - A, Component 1 (i.e.,
Model specification & Construction) allows users to decide
how to aggregate the dataset before executing the anomaly
detection model. As suggested by domain experts, we provided
two aggregation parameters based on facility location and
time. This strategy is incorporated in Model Specification
component shown in Figure 2
Discussion B.2. From our experience, user-enabled parame-
terization mutually benefits both domains, i.e., AI engineers
and stakeholders. For example, domain experts, who are more
familiar with their data, can become directly involved in
specifying the model’s outcome, increasing trusts in the model.
It also simplifies the implementation from the application
designers’ perspective. For example, it would be impossible
to cater to every client since there is tremendous end-user
behavior. We allow users to decide the preprocessing that
are advantageous for their environment. Hence, researchers
engaging in AI integration in the industry should consider: 1)
it is crucial to look for opportunities to parameterize the model
based on domain experts’ input, and 2) these parameterized
configurations should be impactful, such as to allow domain
experts to make operational decisions.
B.3) Explainability of AI.
Challenge B.3. AI consists of many complex parameters hid-
den away for ease of use for end users. However, abstraction
may hinder user understanding and cause a loss of trust in the
AI output. Finding a balance between AI interpretability and
abstraction is challenging.
Misstep B.3. We used unsupervised ensemble learning to
tackle the absence of ground-truth. Since different models have
different advantages, we wanted to run many distinct ones to
flag many suspicious anomalies. We initially abstracted many
details of our ensemble model to ease the interpretation of
the AI output. We only revealed the final anomaly score for
end users and described a high anomaly score as being more
anomalous. However, we found that having a metric without
explanation caused a lot of suspicion for domain experts.
When results did not agree with their opinion, they did not
have good intuition behind the output to give feedback. One
domain expert said: “How do we justify the given anomaly
score?”. Explaining the weighted average output of the ensem-
ble model was a huge challenge for end-user interpretation.
Avoidance Strategy B.3. Most AI model uses feature im-
portance to explain the model result. Unfortunately, feature
importance is unattainable for unsupervised learning, where
ground truth is absent. To allow the interpretability of the
ensemble model, we took on a different approach. We explain
individual anomaly scores returned by distinct models and
how much they contribute to the final score. Namely, if the
isolation forest model contributed more to the score than the

local outlier factor, we described the result for anomalous
report frequency as, “31 days is the number of days between
two report dates. Historically, users reported one day apart;
31 days is a rare frequency.” If the local outlier factor score
contributed to the final score, we would append the following,
“31 days is also anomalous based on its neighboring pattern
of report frequency”. Describing the model based on the
intuition of the outlier algorithm helped users understand
the output. Namely, domain experts could either agree or
disagree with the result without needing clarification about
the ambiguous metric. Model importance is incorporated in
Model Interpretation component shown in Figure 2.
Discussion B.3. In our learning, the ensemble model can flag
many patterns that are less intuitive for end-users. Domain
experts initially disagree with the flagged anomaly, even if it
is truly anomalous. Hence, we provided how our model flagged
them as an anomaly, using the model importance factors.
Since different models look for different abnormalities in the
data, explaining the anomaly based on model contributions
improved interpretability.

C. Ongoing Challenge in Verification of User-centric AI-
based Models

Integrating an AI application is challenging from an AI
evaluation perspective. As ground truth is absent initially,
anomaly detection requires working with domain experts to
evaluate accuracy of the model.
C.1) Bias in Human-in-the-loop.
Challenge C.1. The limitation of an outlier detection algo-
rithm is bounded by accuracy issues. In our case, we find that
none of the manufacturing stakeholders in the industry have
considered quality control at this level in the business process.
Hence, no prior dataset exists to help us evaluate our result.
Our evaluations require verification with stakeholders involved
in the manufacturing process, which can be time-consuming.
Misstep C.1. In the safety-critical system, domain experts
must always need to verify the results. While domain experts’
opinions may be the only source of validity in anomaly evalu-
ation, feedback can sometimes be challenging to integrate into
the AI pipeline. During our collaboration, we found that feed-
back on anomalies could change depending on circumstances.
For example, one domain expert said “This X value is not
flagged as an anomaly but should be considered anomalous
because it seems anomalous compared to its nearby values.”
Another domain expert said: “I don’t think it’s an anomaly
because it is pretty common if you look at other data points.”
Justifications can sometimes be purely from a data distribution,
which the model has already learned, instead of the actual
source of the cause. We find that sometimes justifications can
be uncertain and challenging to adopt.
Avoidance Strategy C.1. To avoid bias in the anomaly justi-
fications, we can consult two groups of domain experts, our
industrial partner, and the stakeholder domain expert. The in-
dustrial domain experts first derive justifications for anomalous
or normal data and indicate new anomaly suggestions. Our
industrial domain experts then consult the stakeholder domain



experts to clarify the justifications. Hence, experts may suggest
multiple views on the anomalies. Finally, in human-in-the-loop
justifications, it is very important to distinguish what has been
learned by the model from the actual source of the anomalies.
For example, saying that the anomaly is flagged as data does
not align with general distribution is still a symptom of the
anomaly. It needs to explain why it is an anomaly from a
business domain perspective.
Discussion C.1. Most work in anomaly detections focuses on
the algorithm of the model given ground truth. They often
take for granted the labeled dataset, which is hard to obtain.
Unlike traditional software settings, such as software testing,
our user-centric system does not have immediately visible
downstream errors. Hence, these errors, i.e., anomalies, need
to be manually derived. While there are works in requirement
engineering that try to automate collaborations in data labeling,
it is domain-specific and difficult to utilize in our scenario [4],
[5], where there are many complex depths in the anomalies.
Hence, we use a more hands-on approach and rely on multi-
experts opinions to suggest multiple views on the anomalies
to reduce bias. However, it may be difficult to incorporate
justifications into the model.
C.1) Complexity of Anomalies in Evolving System.
Challenge C.2. While unsupervised learning gives a quick
analysis of anomalies in the data, there is usually a discrep-
ancy between algorithm-assumed and real-world anomalies,
which requires numerous adaptations. The challenge remains
in explaining what has been learned by the model and distin-
guishing whether anomalies align with domain experts’ views.
Misstep C.2. Based on our domain experts’ feedback, some
detected anomalies were common behavior shown for changes
in manufacturing decisions. One domain expert said: “a sud-
den decrease in chemical usage is common for companies try-
ing out a new chemical product before phasing out its usage.”
Hence, there is a discrepancy between real-life anomalies and
algorithmically-assumed anomalies. Detecting such context-
related issues is often undermined in research, which only
endeavors to improve synthetic accuracy. The real challenge
remains understanding what has been learned by AI in a way
understandable by the end-users and revisiting the requirement
engineering process to adjust the model.
Avoidance Strategy C.2. Due to the existence of incorrectly
flagged anomalies related to context-specific behavior, we used
an example-driven feedback strategy. We present the result of
each anomaly to domain experts, and they will justify whether
it is true or false. Using this, our domain experts helped
us curate a new dataset to add the missing context to the
learning process. However, while example-driven evaluation
is practical, it may not cover all potential context-dependent
anomalies. One domain expert said: “Some incorrectly flagged
behaviors frequently appear within the company.” Hence, we
needed a way to ensure all examples of anomalies we validate
cover an entire range of possible contexts. To tackle this
issue, we decided to use an external post-processing strategy
to categorize context-related behaviors. Hence, we clustered
the time series of the anomalous chemical usages using a

dynamic-time-warping algorithm (DTW) [6]. Other clustering
techniques may work, but one advantage of DTW is that it can
cluster time series of different lengths [6]. We then conducted
a large-scale analysis by presenting the clustering result (e.g.,
similar behavior) to our domain experts to determine which
behaviors are normal and should be filtered out in the output.
We then preserved those time-series behaviors as negative ex-
amples, indicating potential false positives. In the future, when
we run our anomaly detection, we could use the similarity
score in the DTW algorithm to automatically filter out the
candidates.
Discussion C.2. Our ensemble learning utilized isolation for-
est, which assumes no distribution and distance metric, and
DBSCAN, which utilizes distance metric and its variant local
outlier factor. The downside of using these models is that they
cannot extract sequential information from the dataset. While
we could have used deep learning (e.g., LSTM) to extract
sequential information, it was impractical as datasets were too
diverse and had a minimal history (e.g., some may only have 5
data points). To mitigate this, we used dynamic time warping
to cluster time series to expose frequently occurring behaviors
and present them to domain experts to filter out context-
dependent anomalies that are not anomalies. Moreover, while a
constraint-based input management system may seem probable
for a particular type of dataset (e.g., value reported is greater
than X), we find that it is not as easy to decide on such a level
of threshold for our use cases. Since parameters may change
over time; hence we rely on a continuous feedback loop by
the practitioner.
C.3) Scaling Human-in-the-loop in User-Centric System
Challenge C.3. In a user-intensive system, there is no single
oracle to evaluate the AI model, as anomalies are context-
specific to different end-users. Hence, deriving the ground
truths requires manually working with numerous stakeholders,
which is time-consuming.
Misstep C.3. While human-in-the-loop is necessary for
anomaly detection with non-existent labels, it is nonetheless
time-consuming. Our industrial domain experts host one-to-
one meetings with manufacturing companies to discuss re-
quirement changes in the business. However, anomaly valida-
tion for 100+ client is time-consuming. Initially, we worked
with a single stakeholder to verify the anomalies. However,
given anomaly validation’s time-consuming nature, it may
need to scale better when dealing with 100+ stakeholders.
Avoidance Insight C.3. Our legacy system possesses a report

generation module. Many clients employ this module for
generating a monthly report to maintain compliance with
government environmental protocol. Hence, we serialized our
output from the AI module to the existing report generation
module to send detected anomalies to the users as a report. The
report module has a scheduler to send environmental reports
to its companies automatically. In the report, users can provide
false positive and negative feedback.
Discussion C.3. While many researchers utilize AI to achieve
state-of-art performance metrics, there needs to be more dis-
cussion on obtaining ground truths for evaluation, especially



Fig. 5: Evolution of Anomalous Usage Amounts Reported by Users.

in settings with diverse user behaviors. Since we cannot
avoid human validation, our solution was to use an existing
function that is already prominently used, the report generation
module. If the user needs to generate the report, then providing
additional information on flagged anomalies should be in their
interest and should have minimal impact on their workflow.
This was made possible with the scalability infrastructure
that our industrial software already possessed in its system.
For researchers working on AI integration, similar scalability
advantages will be available in their industrial partner, which
can significantly enhance the process of acquiring AI feedback.
C.4) Root Cause Analysis in User-Centric Sytems.
Challenge C.4. As discussed in II, our software system
collects manufacturing data from stakeholders. As data are
manually inserted into the system by domain experts, mistakes
are highly likely to occur during data entry. While anomaly
detection is the first step toward identifying mistakes in user
data, our goal is to understand the root cause of anomalies
to obtain correct anomalies from normal behaviors. However,
root cause analysis is difficult because stakeholders have
diverse operational behaviors. Even within the manufacturing
stakeholders, many users can introduce anomalies.
Misstep C.4. As our industrial partners’ software is safety-
critical, their concern was to reduce false negatives at the
expense of allowing false positives (e.g., detecting all potential
anomalies). We then needed to consult multiple domain ex-
perts, i.e., our industrial domain experts and their stakeholders,
to find the correct cause-effect relationship to distinguish
noise from anomalies. However, in a user-centric system,
stakeholder feedbacks are very difficult to receive due to
wide range of users who can introduce anomalies within the
company, which causes a huge delay in our model evaluation.
Avoidance Insight C.4. While it is straightforward to leave
the cause-and-effect analysis of anomalies to the stakeholders,
providing them with the ability to understand anomalies may
be easier for stakeholders to analyze results or even speed
up feedback. In our case, improving the feedback loop is
important to tune/improve the model. Hence, we hypothesized
that stakeholders would be greatly interested in details about
the User who introduced the anomalies over time. Hence, as
shown in the left plot of Figure 5, we analyzed the number
of anomalies introduced by different users each month. We

can see that anomalies are introduced in different periods by
different users. Given this frequency, as shown in the right
plot of Figure 5, we compared the correlation between the
introduced anomalies and the total number of reported records
(e.g., all data entered by the users) for User 0 and User 1. A
larger positive correlation indicates that a user may introduce
more anomalies, i.e., make more mistakes, as they enter more
inputs into the system. This can give us insights into users who
require proper training to circumvent further anomalies. In the
analysis, we find that User 1 has a high positive correlation,
and stakeholders can discuss the anomalies with user 1. Our
industrial partner possesses a generalizable report generation
module. Many clients frequently employ this module for
generating a monthly report to maintain compliance with
government environmental protocol. Hence, we serialized our
output from the AI module to the existing report generation
module to send detected anomalies to the users as a report.
The report module has a scheduler to send environmental
reports to its companies automatically. In the report, users can
provide false positive and negative feedback. This strategy is
Incorporated in model interpretation in Figure 2.
Discussion C.4. Researchers working on anomaly detection in
the user-provided dataset may benefit from looking at anoma-
lies at the user level. Such information is readily available
and leveraged to study the root cause of anomalies. Exposing
users with a larger positive correlation with a higher effect
size should indicate taking action (i.e., giving proper training
to the user) to avoid future misreports.

V. FUTURE WORKS & FINAL DISCUSSIONS

While AI is a natural solution to the problem we face, we are
in no way proposing a new solution to AI but instead giving
an experience report on challenges we encountered when in-
tegrating AI into non-AI software. Not all companies have the
scalability and resource capacity of large-scale companies like
Facebook and Google. Despite this, many companies can still
leverage AI and obtain a cost-efficient return on investment
given the proper execution and delivery. We aim to provide
such insights to companies in similar situations and help them
integrate and adopt AI successfully. From our experience,
there still needs clarity between AI implementation and actual
adoption. Implementing AI is easy, as many readily available



API libraries exist nowadays, allowing quick prototyping.
Much of the work in AI comes post-mortem; how can we
validate the result so that users can trust them and use them
in their operations? Moreover, sometimes research’s purpose
is only to improve the technique relative to some metric,
which is becoming a blinding aim for many AI papers. There
are tremendous other challenges that easily tip the scale for
failure in AI integration; 1) how to work with domain experts
effectively at every step and 2) applicable human-computer
interaction for the business-to-business user-intensive system.
Our ongoing challenge is the validation of our AI model. We
are at a prototyping stage with a few dedicated clients with
whom we have worked closely over the years. We plan to make
this component available to all our users. Finally, we intend
to conduct surveys to collect insights into improving anomaly
validation, which would be invaluable for AI engineers.

VI. RELATED WORKS

We divide the related work into two categories: 1) user input
verification in databases and 2) integrating AI-based software
capabilities into existing systems.

A. User Input Verification in Databases

Verifying user inputs is one of the essential verification
goals in user-centric software systems, as mistakes or anoma-
lies in user input may result in harmful consequences for
software systems. There exist diverse domains of input ver-
ification studies, from errors in clinical systems [7], cross-site
scripting vulnerabilities [8], to errors in spread sheets [9], [10].
In such verification methods, there are two primary locations
of the verification strategy in user inputs data: pre-sanitizing
the data before insertion into the database, and post-mortem
analysis, where anomalies are detected and analyzed for their
root cause. Prior studies apply data sanitization techniques are
used to remove illegal characters and invalid values during a
user input operation [8], [11], [12]. While data sanitization
may help reduce errors, many errors can bypass this stage
and insert into software storage. Hence, more intelligence
softwares harness the power of AI/ML to verify the user
input after being inserted into storage. AI-based capability
software is becoming widespread in software industries due to
its ease of accessibility and automatically; AI-based software
(e.g., computer vision) [13]–[16] or AI for software (e.g.,
harnessing AI) [17]–[19]. While many existing studies focus
on the methodology for designing software with AI-based in-
put verification capabilities, very few studies address the even
more challenging nature of integrating AI-based capability into
existing non-AI infrastructure.

B. Integrating AI-based Capabilities into Existing Software.

Many existing studies focus on a new methodology for
designing a software system with AI-based capabilities, ed-
ucational workflow [20], workflow management [21], require-
ment elicitation [18] and clinical science [22]. However, our
work reports our experience of integrating the AI-based input
verification capabilities into an existing software system that

did not consider AI capabilities in its infrastructure. The most
relevant to our research is work come from a study by [23],
who describe the experience report of integrating autonomic
computing capabilities to reduce human intervention on per-
formance configuration tuning. Another relevant work by [24]
reports experience on adopting a defect prediction model in
practice. Our work is different from the studies mentioned
above. Our work does not focus on the methodology but the
software process of integrating AI into non-AI infrastructure.
Moreover, our work is an experience report in AI-based user
input verification/testing, which was never studied in any prior
researches. In particular, we focus on the notable challenges
we faced while integrating AI-based user input verification
into industrial software. From the challenges we faced during
requirement soliciting and data wrangling, facilitating the
integration of the AI-based input verification into non-AI
infrastructure. Finally, we discuss the challenging nature of
evaluating the user-centric AI model.

VII. CONCLUSION

In user-centric reporting software systems, there are thou-
sands of records added daily by diverse clients. In these
systems, checking for the quality of user input is of utmost im-
portance as users rely on these reporting systems for mission-
critical tasks. Unfortunately, manual verification is costly and
almost impossible as there are tremendous user inputs. Hence,
harnessing AI in automatic user verification becomes im-
mensely helpful. Despite the promise and perils of AI/ML, it is
challenging to add its capabilities to the existing software from
an end-user adoption and navigation perspective. Users may
not know how to navigate the AI capabilities as the new frame-
work poses additional challenges. Moreover, since there may
be numerous end-users with diverse user behavior, it also poses
challenges for developers of AI frameworks to consider a com-
mon solution for various stakeholders. This paper documents
our experience of successfully adding AI into large-scale user-
centric reporting software. In particular, we focus on three
stages of challenges when integrating the AI component into
a non-AI system: 1) Challenges in collaborative requirement
engineering, involving many development teams of various
backgrounds, 2) Challenges in AI adoption in user-centric
reporting systems with stakeholders with diverse operational
behavior and 3) Challenge in AI verification, in user-centric
reporting systems with stakeholders with diverse patterns of
operational behavior and company-dependent anomalies. Our
experience can help software practitioners who also want to
integrate AI capabilities into existing non-AI software.

VIII. ACKNOWLEDGEMENT

We want to thank ERA Environmental Management Solu-
tions (ERA) for providing access to the enterprise systems that
we used in our case study. The findings and opinions expressed
in this paper are those of the authors and do not necessarily
represent or reflect those of ERA and/or its subsidiaries and
affiliation. Our results do not in any way reflect the quality of
ERA’s products.



REFERENCES

[1] M. Chui, “Ai adoption advances, but foundational barriers remain.”
[2] W. E. L. Grimson, M. E. Leventon, O. D. Faugeras, W. Wells, M. Mirme-

hdi, and B. Thomas, “Computer vision methods for image guided
surgery.,” in BMVC, pp. 1–12, 2000.

[3] P. T. Inc., “Collaborative data science,” 2015.
[4] J. S. Grosman, P. H. Furtado, A. M. Rodrigues, G. G. Schardong, S. D.

Barbosa, and H. C. Lopes, “Eras: Improving the quality control in the
annotation process for natural language processing tasks,” Information
Systems, vol. 93, p. 101553, 2020.

[5] S. Park, A. Y. Wang, B. Kawas, Q. V. Liao, D. Piorkowski, and
M. Danilevsky, “Facilitating knowledge sharing from domain experts to
data scientists for building nlp models,” in 26th International Conference
on Intelligent User Interfaces, pp. 585–596, 2021.

[6] M. Müller, “Dynamic time warping,” Information retrieval for music
and motion, pp. 69–84, 2007.

[7] S. I. Goldberg, A. Niemierko, and A. Turchin, “Analysis of data errors
in clinical research databases,” in AMIA annual symposium proceedings,
vol. 2008, p. 242, American Medical Informatics Association, 2008.

[8] F. Duchene, R. Groz, S. Rawat, and J.-L. Richier, “Xss vulnerability
detection using model inference assisted evolutionary fuzzing,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation, pp. 815–817, IEEE, 2012.

[9] S. G. Powell, K. R. Baker, and B. Lawson, “Errors in operational
spreadsheets,” Journal of Organizational and End User Computing
(JOEUC), vol. 21, no. 3, pp. 24–36, 2009.

[10] R. R. Panko, “What we know about spreadsheet errors,” Journal of
Organizational and End User Computing (JOEUC), vol. 10, no. 2,
pp. 15–21, 1998.

[11] M. Bishop, J. Cummins, S. Peisert, A. Singh, B. Bhumiratana, D. Agar-
wal, D. Frincke, and M. Hogarth, “Relationships and data sanitization:
A study in scarlet,” in Proceedings of the 2010 New Security Paradigms
Workshop, pp. 151–164, 2010.

[12] J. C.-W. Lin, J. M.-T. Wu, P. Fournier-Viger, Y. Djenouri, C.-H. Chen,
and Y. Zhang, “A sanitization approach to secure shared data in an iot
environment,” IEEE Access, vol. 7, pp. 25359–25368, 2019.

[13] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu,
M. Ott, K. Shuster, E. M. Smith, et al., “Recipes for building an open-
domain chatbot,” arXiv preprint arXiv:2004.13637, 2020.

[14] Yelp, “How we use deep learning to classify business photos at yelp,”
2015.

[15] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang, “Ernie
2.0: A continual pre-training framework for language understanding,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 8968–8975, 2020.

[16] Google, “Recent advances in google translate,” 2020.
[17] R. DeLine, “Research opportunities for the big data era of software

engineering,” in 2015 IEEE/ACM 1st International Workshop on Big
Data Software Engineering, pp. 26–29, IEEE, 2015.

[18] S. Sharma and S. Pandey, “Integrating ai techniques in requirements elic-
itation,” in Proceedings of International Conference on Advancements
in Computing & Management (ICACM), 2019.

[19] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” interactions, vol. 19, no. 3, pp. 50–59, 2012.

[20] J. McCardle, “The challenge of integrating ai & smart technology
in design education,” International Journal of Technology and Design
Education, vol. 12, no. 1, pp. 59–76, 2002.

[21] P. Kearney et al., “Integrating ai planning techniques with workflow
management system,” Knowledge-Based Systems, vol. 15, no. 5-6,
pp. 285–291, 2002.

[22] O. S. Pianykh, G. Langs, M. Dewey, D. R. Enzmann, C. J. Herold,
S. O. Schoenberg, and J. A. Brink, “Continuous learning ai in radiology:
implementation principles and early applications,” Radiology, vol. 297,
no. 1, pp. 6–14, 2020.

[23] H. Li, T.-H. Chen, A. E. Hassan, M. Nasser, and P. Flora, “Adopting
autonomic computing capabilities in existing large-scale systems,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), pp. 1–10,
IEEE, 2018.

[24] C. Tantithamthavorn and A. E. Hassan, “An experience report on defect
modelling in practice: Pitfalls and challenges,” in Proceedings of the 40th
International conference on software engineering: Software engineering
in practice, pp. 286–295, 2018.


	Introduction
	Background and motivation
	The Design and Implementation of Our AI-Based User-Input Verification Framework
	(Component-1) Model Specification & Construction
	(Component-2) User Parameterized Post-Processing
	(Component-4) Model Validation

	Challenges in AI Integration in Traditional Companies
	Requirement Elicitation between AI and non-AI experts
	AI Adoption in traditional non-AI software
	Ongoing Challenge in Verification of User-centric AI-based Models

	Future Works & Final Discussions
	Related Works
	User Input Verification in Databases
	Integrating AI-based Capabilities into Existing Software.

	Conclusion
	Acknowledgement
	References

