
DLFinder: Characterizing and Detecting Duplicate
Logging Code Smells

Zhenhao Li∗, Tse-Hsun (Peter) Chen∗, Jinqiu Yang and Weiyi Shang
∗Software PErformance, Analysis, and Reliability (SPEAR) Lab

Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
Email: l zhenha, peterc, jinqiuy, shang@encs.concordia.ca

Abstract—Developers rely on software logs for a wide variety
of tasks, such as debugging, testing, program comprehension,
verification, and performance analysis. Despite the importance
of logs, prior studies show that there is no industrial standard
on how to write logging statements. Recent research on logs
often only considers the appropriateness of a log as an individual
item (e.g., one single logging statement); while logs are typically
analyzed in tandem. In this paper, we focus on studying duplicate
logging statements, which are logging statements that have the
same static text message. Such duplications in the text message
are potential indications of logging code smells, which may affect
developers’ understanding of the dynamic view of the system.
We manually studied over 3K duplicate logging statements
and their surrounding code in four large-scale open source
systems: Hadoop, CloudStack, ElasticSearch, and Cassandra. We
uncovered five patterns of duplicate logging code smells. For
each instance of the code smell, we further manually identify
the problematic (i.e., require fixes) and justifiable (i.e., do not
require fixes) cases. Then, we contact developers in order to verify
our manual study result. We integrated our manual study result
and developers’ feedback into our automated static analysis tool,
DLFinder, which automatically detects problematic duplicate
logging code smells. We evaluated DLFinder on the four manually
studied systems and two new systems: Camel and Wicket. In total,
combining the results of DLFinder and our manual analysis, we
reported 82 problematic code smell instances to developers and
all of them have been fixed.

Index Terms—log, code smell, duplicate log, static analysis,
empirical study

I. INTRODUCTION

Software logs are widely used in software systems to record
system execution behaviors. Developers use the generated logs
to assist in various tasks, such as debugging [18], [49], [51],
testing [13], [15], [22], program comprehension [19], [41],
system verification [6], [9], and performance analysis [14],
[47]. A logging statement (i.e., code that generates a log)
contains a static message, to-be-recorded variables, and log
verbosity level. As an example, a logging statement may be
written as logger.error(“Interrupted while waiting for fencing
command: ” + cmd);. In this example, the static text message
is “Interrupted while waiting for fencing command:”, and the
dynamic message is from the variable cmd, which records
the command that is being executed. The logging statement
is at the error level, which is the level for recording failed
operations [2].

Even though developers have been analyzing logs for
decades [24], there exists no industrial standard on how

...
} catch (AlreadyClosedException closedException) {

s_logger.warn("Connection to AMQP service is lost.");
} catch (ConnectException connectException) {

s_logger.warn("Connection to AMQP service is lost.");
}
...

Fig. 1. An example of duplicate logging code smell that we detected in
CloudStack. The duplicate logging statements in the two catch blocks contain
insufficient information (e.g., no exception type or stack trace) to distinguish
what may be the occurred exception.

to write logging statements [18], [35]. Prior studies often
focus on recommending where logging statements should be
added into the code (i.e., where-to-log) [53], [54], and what
information should be added in logging statements (i.e., what-
to-log) [36], [41], [51]. A few recent studies [12], [20] aim
to detect potential problems in logging statements. However,
these studies often only consider the appropriateness of one
single logging statement as an individual item; while logs are
typically analyzed in tandem [14], [51]. In other words, we
consider that the appropriateness of a log is also influenced
by other logs that are generated in system execution.

In particular, an intuitive case of such influence is duplicate
logs, i.e., multiple logs that have the same text message. Even
though each log itself may be impeccable, duplicate logs
may affect developers’ understanding of the dynamic view
of the system. For example, as shown in Figure 1, there are
two logging statements in two different catch blocks, which
are associated with the same try block. These two logging
statements have the same static text message and do not in-
clude any other error-diagnostic information. Thus, developers
cannot easily distinguish what is the occurred exception when
analyzing the produced logs. Since developers rely on logs for
debugging and program comprehension [41], such duplicate
logging statements may negatively affect developers’ activities
in maintenance and quality assurance.

To help developers improve logging practices, in this paper,
we focus on studying duplicate logging statements in the
source code. We conducted a manual study on four large-
scale open source systems, namely Hadoop, CloudStack, Elas-
ticSearch, and Cassandra. We first used static analysis to
identify all duplicate logging statements, which are defined
as two or more logging statements that have the same static
text message. We then manually study all the (over 3K)
identified duplicate logging statements and uncovered five

Section II
Identifying

duplicate logging
statements

Identified
duplicate

logs
Manual
analysis

Patterns of
duplicate log code

smells

Section III: Patterns of duplicate logging code smells

RQ1: Evaluate on
exisitng systems

Problematic and
justifiable cases of
duplicate log code

smell patterns

Section IV:
Automatically

detecting duplicate
logging code smells

DLFinder
Evaluation
results of
DLfinder

Inquirying
 developers

Outcome of
our study

Study
steps

Data
RQ2: Evaluate on

new systems

RQ3: New instances
introduced

Source code

Section V: An
evaluation of

DLFinder

Fig. 2. The overall process of our study. The term “duplicate logging
statements” is referred as “duplicate logs” for simplification.

patterns of duplicate logging code smells. We follow prior
code smell studies [8], [17], and consider duplicate logging
code smell as a “surface indication that usually corresponds
to a deeper problem in the system”. However, not all of
the duplicate logging code smell are problematic and require
fixes (i.e., problematic duplicate logging code smells). In
particular, context (e.g., surrounding code and usage scenario
of logging) may play an important role in identifying fixing
opportunities. Hence, we further categorized duplicate logging
code smells into problematic or justifiable cases. In addition to
our manual analysis, we sought confirmation from developers
on the manual analysis result: For the problematic duplicate
logging code smells, we reported them to developers for fixing.
For the justifiable ones, we communicated with developers for
discussion (e.g., emails or posts on developers’ forums).

We implemented a static analysis tool, DLFinder, to auto-
matically detect problematic duplicate logging code smells.
DLFinder leverages the findings from our manual study,
including the uncovered patterns of duplicate logging code
smells and the categorization on problematic and justifiable
cases. We evaluated DLFinder on six systems: four are from
the manual study and two are new systems (Camel and
Wicket). We also applied DLFinder on the updated versions of
the four manually studied systems. The evaluation shows that
the uncovered patterns of the duplicate logging code smells
also exist in the two new systems, and duplicate logging code
smells may be introduced over time. An automated approach
such as DLFinder can help developers avoid duplicate logging
code smells as systems evolve.

In total, we reported 82 instances of duplicate logging code
smell to developers1 and all the reported instances are fixed.
Figure 2 shows the overall process of this paper.

In summary, this paper makes the following contributions:
• We uncovered five patterns of duplicate logging code

smells through an extensive manual study on over 3K
duplicate logging statements.

• We presented a categorization of duplicate logging code
smells (i.e., problematic or justifiable), based on both our

1The link to share our archived data is omitted due to the double blind
review policy.

manual assessment (i.e., studying the logging statement
and its surrounding code) and developers’ feedback.

• We proposed DLFinder, a static analysis tool that inte-
grates our manual study result and developers’ feedback
to detect problematic duplicate logging code smells. We
evaluated DLFinder for both the accuracy and general-
ization (i.e., on new systems and on the newer versions
as systems evolve).

• We reported 82 instances of problematic duplicate log-
ging code smells to developers (DLFinder is able to detect
72 of them), and all of the reported instances are fixed.

Paper organization. The rest of the paper is organized as
follows. Section II describes how we prepare the data for
manual study (i.e., duplicate logging statements) and the
studied systems. Section III discusses the process and the
results of our manual study, and also developers’ feedback on
our results. Section IV discusses the implementation details
of DLFinder. Section V evaluates DLFinder for both the
accuracy and generalization. Section VI discusses the threats
to validity of our study. Section VII surveys related work.
Finally, Section VIII concludes the paper.

II. IDENTIFYING DUPLICATE LOGGING STATEMENTS FOR
MANUAL STUDY

In this section, we describe how we define duplicate logging
statements and how we identify them for conducting a manual
study. We also introduce the studied systems.
Definition and how to identify duplicate logging statements.
We define duplicate logging statements as logging statements
that have the identical static text messages. We focus on
studying the log message because such semantic information
is crucial for log understanding and system maintenance [41],
[50]. As an example, the two following logging statements are
considered duplicate: “Unable to create a new ApplicationId
in SubCluster” + subClusterId.getId(), and “Unable to create
a new ApplicationId in SubCluster” + id.

To prepare for a manual study, we identify duplicate logging
statements by analyzing the source code with static analysis. In
particular, the static text message of each logging statement
is built by concatenating all the strings (i.e., constants and
values of string variables) and abstractions of the non-string
variables. We also extract information to support the manual
analysis, such as the types of variables that are logged, and
the log level (i.e., fatal, error, warn, info, debug, or trace).
Log levels represent the verbosity level of the log and can
be used to reduce logging overheads in production (e.g.,
only logging info level or above) [29], [50]. If two or more
logging statements have the same static text message, they are
identified as duplicate logging statements. We exclude logging
statements with only one word in the static text message since
those logging statements usually do not contain much static
information, and are usually used to record the value of a
dynamic variable during system execution.
Studied systems. We identify duplicate logging statements
from four large-scale open source Java systems: Hadoop,

TABLE I
AN OVERVIEW OF THE STUDIED SYSTEMS IN OUR MANUAL STUDY.

System Version Release date LOC Num. of Num. of Num. of Med. words Med. words
logs dup. logs dup. log sets in dup. logs in non-dup. logs

Hadoop 3.0.0 Nov. 2017 2.69M 5.3K 496 (9%) 217 6 6
CloudStack 4.9.3 Aug. 2017 1.18M 11.7K 2.3K (20%) 865 8 8
ElasticSearch 6.0.0 Nov. 2017 2.12M 1.7K 94 (6%) 40 6 7
Cassandra 3.11.1 Oct. 2017 358K 1.6K 113 (7%) 46 7 7

CloudStack, ElasticSearch, and Cassandra, which are com-
monly used in prior studies for log-related research [12], [20],
[28]. Table I shows the statistics of the studied systems. The
studied systems use the widely used Java logging libraries
(e.g., Log4j [2] and SLF4J [3]). Hadoop is a distributed
computing framework, which is composed of four subsystems:
Hadoop Common, Hadoop Distributed File System, YARN,
and MapReduce. CloudStack is a cloud computing platform,
ElasticSearch is a distributed search engine, and Cassandra is
a NoSQL database system. These systems belong to different
domains and are well maintained. In our study, we study all
Java source code files in the main branch of each system and
exclude test files, since we are more interested in studying
duplicate logging statements that may affect log understanding
in production. In general, we find that there is a non-negligible
number of duplicate logging statements in the studied systems
(6% to 20%). The median number of words in the duplicate
logging statements are similar to that of non-duplicate logging
statements (i.e., both range from 6 to 8 words), which shows
that they have a similar level of semantic information (in terms
of the number of words).

III. PATTERNS OF DUPLICATE LOGGING CODE SMELLS

In this section, we conduct a manual study to uncover
patterns of potential code smells that may be associated
with duplicate logging statements (i.e., duplicate logging code
smells). Similar to prior code smell studies [8], [17], we con-
sider duplicate logging code smells as a “surface indication
that usually corresponds to a deeper problem in the system”.
Such duplicate logging code smells may be indications of
logging problems that require fixes.

Furthermore, we categorize each code smell instance as
either problematic (i.e., require fixes) or justifiable (i.e., do
not require fixes), by understanding the surrounding code. Not
every duplicate logging code smell is problematic. Intuitively,
one needs to consider the code context to decide whether
a code smell instance is problematic and requires fixes. As
shown in prior studies [18], [28], [54], logging decisions, such
as log messages and log levels, are often associated with the
structure and semantics of the surrounding code. In addition to
the manual analysis by the authors, we also ask for developers’
feedback regarding both the problematic and justifiable cases.
By providing a more detailed understanding of code smells,
we may better assist developers to improve logging practices
and inspire future research.
Manual study process. We conduct a manual study by
analyzing all the duplicate logging statements identified from
the studied systems. In total, we studied 1,168 sets of duplicate

logging statements in the four studied systems (more than 3K
logging statements in total; each set contains two or more
logging statements with the same static message).

The process of our manual study involves five phases:
• Phase I: The first two authors manually studied 289

randomly sampled (based on 95% confidence level and
5% confidence interval [7]) sets of duplicate logging
statements and the surrounding code to derive an initial
list of duplicate logging code smell patterns. All disagree-
ments were discussed until a consensus was reached.

• Phase II: The first two authors independently categorized
all of the 1,168 sets of duplicate logging statements to
the derived patterns in Phase I. We did not find any new
patterns in this phase. The results of this phase have a
Cohens kappa of 0.806, which is a substantial-level of
agreement [31].

• Phase III: The first two authors discussed the categoriza-
tion results obtained in Phase II. All disagreements were
discussed until a consensus was reached.

• Phase IV: The first two authors further studied all logging
code smell instances that belong to each pattern in order
to identify justifiable cases of the logging code smell that
may not need fixes. The instances that do not belong
to the category of justifiable are considered potentially
problematic and may require fixes.

• Phase V: We verified both the problematic instances of
logging code smells and the justifiable ones with the
developers by creating issue reports and pull requests,
sending emails, or posting our findings on developers
forums such as Stack Overflow. In particular, we reported
every instance that we believe to be problematic (i.e.,
require fixes). We also reported a number of instances
for each justifiable category.

Results. In total, we uncovered five patterns of duplicate
logging code smells. Table II lists the uncovered code smell
patterns and the corresponding examples. Table III shows the
number of problematic code smell instances for each pattern.
Below, we discuss each pattern according to the following
template:

Description: A description of the pattern of duplicate logging
code smell.

Example: An example of the pattern.
Code smell instances: Discussions on the code smell in-

stances that we manually found. We also discuss the
justifiable cases if we found any.

Developers’ feedback: A summary of developers’ feedback
on both the problematic and justifiable cases.

TABLE II
PATTERNS OF DUPLICATE LOGGING CODE SMELLS AND CORRESPONDING EXAMPLES.

Name Example

Inadequate information in catch
blocks (IC)

Inconsistent error-diagnostic in-
formation (IE)

Log message mismatch (LM)

Inconsistent log level (IL)

Duplicate log in polymorphism
(DP)

TABLE III
NUMBER OF PROBLEMATIC INSTANCES VERIFIED BY OUR MANUAL STUDY

AND DEVELOPERS’ FEEDBACK (Prob.), AND TOTAL NUMBER OF
INSTANCES (TOTAL) INCLUDING NON-PROBLEMATIC INSTANCES.

IC IE LM IL DP
Prob. Total Prob. Total Prob. Total Prob. Total Prob. Total

Hadoop 5 5 0 0 9 9 0 17 27 27
CloudStack 8 8 4 14 27 27 0 47 107 107

ElasticSearch 1 1 0 5 1 1 0 9 3 3
Cassandra 1 1 0 1 0 0 0 3 2 2

Total 15 15 4 20 37 37 0 76 1391 139
1 Developers acknowledged the problem but we did not report all the

instances, because systematic refactoring of DP would require supports from
logging libraries.

Pattern 1: Inadequate information in catch blocks (IC).
Description. Developers usually rely on logs for error diag-
nostics when exceptions occur [48]. However, we find that
sometimes, duplicate logging statements in different catch
blocks of the same try block may cause debugging difficulties
since the logs fail to tell which exception occurred.
Example. As shown in Table II, in the ParamProcessWorker
class in CloudStack, the try block contains two catch blocks;
however, the log messages in these two catch blocks are
identical. Since both the exception message and stack trace are
not logged, once one of the two exceptions occurs, developers
may encounter difficulties in finding the root causes and
determining the occurred exception.
Code smell instances. After examining all the instances of
IC, we find that all of them are potentially problematic that
require fixes. For all the instances of IC, none of the exception
type, exception message, and stack trace are logged.
Developers’ feedback. We reported all the problematic in-
stances of IC (15 instances) by using pull requests. All the
pull requests were accepted by developers and the fixes were
integrated to the studied systems. Developers agree that IC
will cause confusion and insufficient information in the logs,
which may increase the difficulties of error diagnostics.
Pattern 2: Inconsistent error-diagnostic information (IE).
Description. We find that sometimes duplicate logging state-
ments for documenting exceptions may contain inconsis-
tent error-diagnostic information (e.g., one logging statement
records the stack trace and the other does not), even though
the surrounding code is similar.
Example. As shown in Table II, the two
classes CreatePortForwardingRuleCmd and
CreateFirewallRuleCmd in CloudStack have similar
functionalities. The two logging statements have the same
static text message and are in methods with identical names
(i.e., create(), not shown due to space restriction). The
create() method in CreatePortForwardingRuleCmd is
about creating rules for port forwarding and the method
in CreateFirewallRuleCmd is about creating rules for
firewalls. These two methods have very similar code
structure and business logic. However, the two logging
statements record different information: One records the
stack trace information and the other one only records the
exception message (i.e., ex.getMessage()). Since the two

logging statements have similar context, the error-diagnostic
information recorded by the logs may need to be consistent
for the ease of debugging. We reported this example, which
is now fixed to have consistent error-diagnostic information.
Code smell instances. As shown in Table III, we find 20
instances of IE, and four of them are considered problematic
based on our understanding. From the remaining instances of
IE, we find three justifiable cases that may not require fixes.

Justifiable case IE.1: Duplicate logging statements record
general and specific exceptions. For 11/20 instances of IE,
we find that the duplicate logging statements are in the catch
blocks of different types of exception. In particular, one dupli-
cate logging statement is in the catch block of a generic excep-
tion (i.e., the Exception class in Java) and the other one is in
the catch block of a more specific exception (e.g., application-
specific exceptions such as CloudRuntimeException). In all
the 11 cases, we find that one log would record the stack trace
for Exception, and the duplicate log would only record the
type of the occurred exception (e.g., by calling e.getMessage())
for a more specific exception. The rationale may be that
generic exceptions, once occurred, are often not expected by
developers [48], so it is important that developers log more
error-diagnostic information.

Justifiable case IE.2: Duplicate logging statements are in
the same catch block for debugging purposes. For 3/20 in-
stances of IE, we find that the duplicate logging statements are
in the same catch block and developers’ intention is to use a
duplicate logging statement at debug level to record rich error-
diagnostic information such as stack trace (and the log level of
the other logging statement could be error). The extra logging
statements at debug level help developers debug the occurred
exception and reduces logging overhead in production [29]
(i.e., logging statements at debug level are turned off).

Justifiable case IE.3: Having separate error-handling
classes. For 2/20 instances, we find that the error-diagnostic
information is handled by creating an object of an error-
handling class. As an example from CloudStack:
public final class LibvirtCreateCommandWrapper {

...
} catch (final CloudRuntimeException e) {

s_logger.debug("Failed to create volume: " +
e.toString());

return new CreateAnswerErrorHandler(command, e);
}

...
}

public class KVMStorageProcessor {
...

} catch (final CloudRuntimeException e) {
s_logger.debug("Failed to create volume: ", e);
return new CopyCmdAnswerErrorHandler(e.toString());

}
...

}

In this example, extra logging is added by using error-
handling classes (i.e., CreateAnswerErrorHandler and
CopyCmdAnswerErrorHandler) to complement the logging
statements. As a consequence, the actual logged information
is consistent in these two methods: One method records

e.toString() in the logging statement and records the exception
variable e through an error-handling class; the other method
records e in the logging statement and records e.toString()
through an error-handling class.
Developers’ feedback. We reported all the instances of IE
(four in total) that we consider problematic to developers
as pull requests, all of which are accepted by developers.
Moreover, we ask developers whether our conjecture was
correct for each of the justifiable cases of IE. We received
positive feedback that confirms our manual analysis on the
justifiable cases.

Pattern 3: Log message mismatch (LM).
Description. We find that sometimes after developers copy and
paste a piece of code to another method or class, they may
forget to change the log message, thus resulting in duplicate
logging statements that record inaccurate system behaviors.
Example. As an example, in Table II, the method doScale-
Down() is a code clone of doScaleUp() with very similar code
structure and minor syntactical differences. However, develop-
ers forgot to change the log message in doScaleDown(), after
the code was copied from doScaleUp() (i.e., both log messages
contain scaling up). Such instances of LM cause confusion
when developers analyze the logs.
Code smell instances. We find that there are 37 instances
of LM that are caused by copying-and-pasting the logging
statement to new locations without proper modifications. For
all the 37 instances, the log message contains words of
incorrect class or method name that may cause confusion when
analyzing logs.
Developers’ feedback. Developers agree that the log messages
in LM should be changed in order to correctly record the exe-
cution behavior (i.e., update the copy-and-pasted log message
to contain the correct class/method name). We reported all the
37 instances of LM that we found through pull requests, and
all of the reported instances are now fixed.

Pattern 4: Inconsistent log level (IL).
Description. Log levels (e.g., fatal, error, info, debug, or trace)
allow developers to specify the verbosity of the log message
and to reduce logging overhead when needed (e.g., debug is
usually disabled in production) [29]. A prior study [50] shows
that log level is frequently modified by developers in order to
find the most adequate level. We find that there are duplicate
logging statements that, even though the log messages are
exactly the same, the log levels are different.
Example. In the IL example shown in Table II, the two meth-
ods, which are from the same class CompactionManager,
have very similar functionality (i.e., both try to perform
cleanup after compaction), but we find that the log levels are
different in these two methods.
Code smell instances. We find three justifiable cases in IL
that may be developers’ intended behavior. We do not find
problematic instances of IL after communicating with devel-
opers – Developers think the problematic instances identified
by our manual analysis may not be problems.

Justifiable case IL.1: Duplicate logging statements are in
the catch blocks of different types of exception. Similar to what
we observed in IE, we find that for 8/76 instances, the log
level for a more generic exception is usually more severe (e.g.,
error level for the generic Java Exception and info level for
an application-specific exception). Generic exceptions may be
more unexpected to developers [48], so developers may use
a log level of higher verbosity (e.g., error level) to record
exception messages.

Justifiable case IL.2: Duplicate logging statements are in
different branches of the same method. There are 35/76
instances belong to this case. Below is an example from
ElasticSearch, where a set of duplicate logging statements may
occur in the same method but in different branches.

if (lifecycle.stoppedOrClosed()) {
logger.trace("failed to send ping transport message",

e);
} else {

logger.warn("failed to send ping transport message",
e);

}

In this case, developers already know the desired log level
and intend to use different log levels due to the difference in
execution (i.e., in the if-else block).

Justifiable case IL.3: Duplicate logging statements are fol-
lowed by error-handling code. There are 18/76 instances that
are observed to have such characteristics: In a set of duplicate
logging statements, some statements have log levels of higher
verbosity, and others have log levels of lower verbosity. How-
ever, the duplicate logging statement with lower verbosity log
level is followed by additional error handling code (e.g., throw
a new Exception(e);). Therefore, the error is handled elsewhere
(i.e., the exception is re-thrown), and may be recorded at a
higher-verbosity log level.
Developers’ feedback. In all the instances of IL that we found,
developers think that IL may not be a problem. In particular,
developers agreed with our analysis on the justifiable cases.
However, developers think the problematic instances of IL
from our manual analysis may also not be problems. We con-
cluded the following two types of feedback from developers
on the “suspect” instances of IL (i.e., 15 problematic ones
from our manual analysis out of the 76 instances of IL). The
first type of developers’ feedback argues the importance of
semantics and usage scenario of logging in deciding the log
level. A prior study [50] suggests that logging statements that
appear in syntactically similar code, but with inconsistent log
levels, are likely problematic. However, based on developers’
feedback that we received, IL still may not be a concern,
even if the duplicate logging statements reside in very similar
code. A developer indicated that “conditions and messages
are important but the context is even more important”. As
an example, both of the two methods may display messages
to users. One method may be displaying the message to
local users with a debug logging statement to record failure
messages. The other method may be displaying the message
to remote users with an error logging statement to record
failure messages (problems related to remote procedure calls

may be more severe in distributed systems). Hence, even if
the code is syntactically similar, the log level has a reason
to be different due to the different semantics and purposes of
the code (i.e., referred to as different contexts in developers’
responses). Future studies should consider both the syntactic
structure and semantics of the code when suggesting log levels.

The second type of developers’ feedback acknowledges the
inconsistency. However, developers are reluctant to fix such
inconsistencies since developers do not view them as concerns.
For example, we reported the instance of IL that we discussed
in Table II to the developer. The developer replied: “I think
it should probably be an ERROR level, and I missed it in
the review (could make an argument either way, I do not feel
strongly that it should be ERROR level vs INFO level.” Our
opinions (i.e., from us and prior studies [29], [50]) differ from
that of developers’ regarding whether such inconsistencies
are problematic. On one hand, whether an instance of IL is
problematic or not can be subjective. This shows the impor-
tance of including perspectives from multiple parties (e.g.,
user studies, discussions with developers) in future studies of
software logging practice. On the other hand, the discrepancy
also indicates the need of establishing a guidance for logging
practice and further even enforcing such standard.

Pattern 5: Duplicate logging statements in polymorphism
(DP).
Description. Classes in object-oriented languages are expected
to share similar functionality if they inherit the same parent
class or if they implement the same interface (i.e., polymor-
phism). Since log messages record a higher level abstraction
of the program [41], we find that even though there are no
clones among a parent method and its overridden methods,
such methods may still contain duplicate logging statements.
Such duplicate logging statements may cause maintenance
overhead. For example, when developers update one log
message, he/she may forget to update the log message in all
the other sibling classes. Inconsistent log messages may cause
problems during log analysis [1], [20].
Example. As shown in Table II, the two classes
(PowerShellFencer and ShellCommandFencer) in
Hadoop both extend the same parent class and implement the
same interface. These two classes share similar behaviors.
The inherited methods in the two classes have the identical
log message. However, as the system evolves, developers may
not always remember to keep the log messages consistent in
the two inherited methods, which may cause problems during
system debugging, understanding, and analysis.
Code smell instances. We find that all the 139 instances of DP
are potentially problematic that may be fixed by refactoring.
In most of the instances, the parent class is an abstract class,
and the duplicate logs exist in the overridden methods of
the subclasses. We also find that in most cases, the overrid-
den methods in the subclasses are very similar with minor
differences (e.g., to provide some specialized functionality),
which may be the reason that developers use duplicate logging
statements.

Developers’ feedback. Developers generally agree that DP is
associated with logging code smells and specific refactoring
techniques are needed. One developer comments that:
“You want to care about the logging part of your code base
in the same way as you do for business-logic code (one can
argue it is part of it), so salute DRY (do-not-repeat-yourself).”

Resolving DP often requires systematic refactoring. How-
ever, to the best of our knowledge, current Java logging
frameworks, such as SLF4J and Log4j 2, do not support
refactoring logging statements. The way to resolve DP is
to ensure that the log message of the parent class can be
reused by the subclasses, e.g., storing the log message in
a static constant variable. We received similar suggestions
from developers on how to refactor DP, such as “adding
a method in the parent class that generates the error text
for that case: logger.error(notAccessible(field.getName()));”,
or “creat[ing] your own Exception classes and put message
details in them”. However, we find that without supports from
logging frameworks, even though developers acknowledged
the issue of DP, they do not want to manually fix the
code smells. Similar to some code smells studied in prior
research [23], [42], developers may be reluctant to fix DP
due to additional maintenance overheads but limited supports
(i.e., need to manually fix hundreds of DP instances). In
short, logging frameworks should provide better support to
developers in creating log “templates” that can be reused in
different places in the code.�

�

�

�

We manually uncovered five patterns of duplicate logging
code smells and six justifiable cases (for the IE and
IL pattern) where the code smell instances may not
need fixes. In total, our study helped developers fix 56
problematic duplicate logging code smells in the studied
systems.

IV. DLFINDER: AUTOMATICALLY DETECTING
PROBLEMATIC DUPLICATE LOGGING CODE SMELLS

The manual study uncovers five patterns of duplicate log-
ging code smells and also provides guidance in identifying
problematic logging code smells that require fixes. To help
developers detect such problematic code smells and improve
logging practices, we propose an automated approach, specif-
ically a static analysis tool, called DLFinder. DLFinder uses
abstract syntax tree (AST) analysis, data flow analysis, and
text analysis. Below, we discuss how DLFinder detects each
pattern of duplicate logging code smell.

Detecting inadequate information in catch blocks (IC).
DLFinder first locates the try-catch blocks that contain du-
plicate logging statements. Specifically, DLFinder finds the
catch blocks of the same try block that catch different types of
exceptions, and these catch blocks contain the same duplicate
logging statement. Then, DLFinder uses data flow analysis to
analyze whether the handled exceptions in the catch blocks are
logged (e.g., record the exception message). DLFinder detects
an instance of IC if none of the logs in the catch blocks record
either the stack trace or the exception message.

Detecting inconsistent error-diagnostic information (IE).
DLFinder first identifies all the catch blocks that contain dupli-
cate logging statements. Then, for each catch block, DLFinder
uses data flow analysis to determine how the exception is
logged by analyzing the usage of the exception variable in
the logging statement. The logging statement records 1) the
entire stack trace, 2) only the exception message, or 3) nothing
at all. Then, DLFinder compares how the exception variable
is used/recorded in each of the duplicate logging statements.
DLFinder detects an instance of IE if a set of duplicate logging
statements that appear in catch blocks has an inconsistent way
of recording the exception variables (e.g., the log in one catch
block records the entire stack trace, and the log in another
catch block records only the exception message, while the two
catch blocks handle the same type of exception). Note that for
each instance of IE, the multiple catch blocks with duplicate
logging statements in the same set may belong to different
try blocks. In addition, DLFinder decides if an instance of
IE belongs to one of the three justifiable cases (IE.1–IE.3). If
so, the instance is marked as potentially justifiable and thus
excluded by DLFinder.
Detecting log message mismatch (LM). LM is about having
an incorrect method or class name in the log message (e.g.,
due to copy-and-paste errors). Hence, DLFinder analyzes the
text in both the log message and the class-method name (i.e.,
concatenation of class name and method name) to detect LM
by applying commonly used text analysis approaches [16].
DLFinder detects instances of LM using four steps: 1) For
each logging statement, DLFinder splits class-method name
into a set of words (i.e., name set) and splits log message into
a set of words (i.e., log set) by leveraging naming conventions
(e.g., camel cases) and converting the words to lower cases.
2) DLFinder applies stemming on all the words using Porter
Stemmer [37]. 3) DLFinder removes stop words in the log
message for each system. We find that there is a significant
number of words that are generic across the log messages in
a system (e.g., on, with, and process). Hence, we obtain the
stop words by finding the top 50 most frequent words (each
of our four studied systems has an average of 3,178 unique
words in the static text messages) across all log messages in
a system [46]. 4) For every logging statement, between the
name set (i.e., from the class-method name) and its associated
log set, DLFinder counts the number of common words shared
by both sets. Afterward, DLFinder detects an instance of LM
if the number of common words is inconsistent among the
duplicate logging statements in one set.

For the LM example shown in Table II, the common words
shared by the first pair (i.e., method doScaleUp() and its
log) are “scale, up”, while the common word shared by
the second pair is “scale”. Hence DLFinder detects an LM
instance due to this inconsistency. The rationale is that the
number of common words between the class-method name
and the associated logging statement is subject to change if
developers make copy-and-paste errors on logging statements
(e.g., copy the logging statement in doScaleUp() to method
doScaleDown()), but forget to update the log message to match

with the new method name “doScaleDown”. However, the
number of common words will remain unchanged (i.e., no
inconsistency) if the logging statement (after being pasted at
a new location) is updated respectively.
Detecting inconsistent log level (IL). DLFinder detects an
instance of IL if duplicate logging statements in one set (i.e.,
have the same static text message) have inconsistent log level.
Furthermore, DLFinder checks whether an instance of IL
belongs to one of the three justifiable cases (IL.1–IL.3). If so,
the instance is marked as justifiable and DLFinder excludes
this instance in the detection result.
Detecting duplicate logs in polymorphism (DP). DLFinder
generates an object inheritance graph when statically analyz-
ing the Java code. For each overridden method, DLFinder
checks if there exist any duplicate logging statements in the
corresponding method of the sibling and the parent class.
If there exist such duplicate logging statements, DLFinder
detects an instance of DP. Note that, based on the feedback that
we received from developers (Section III), we do not expect
developers to fix instances of DP. DP instances can be viewed
more as technical debts [27] and our goal is to propose an
approach to detect DP instances to raise developers’ awareness
regarding this issue.

V. AN EVALUATION OF DLFINDER

We evaluate our tool by answering three research questions.

RQ1: How well can DLFinder detect duplicate logging
code smells in the four manually studied systems?

We applied DLFinder on the same versions of the systems
that we used in our manual study (Section III). Since we obtain
the ground truth (i.e., problematic code smells) in these four
systems from our manual study, the goal of this RQ is to
evaluate the detection accuracy of DLFinder. We calculated
the precision and recall of DLFinder in detecting problematic
duplicate logging code smells. Precision is the percentage
of problematic code smell instances among all the detected
instances, and recall is the percentage of problematic code
smell instances that DLFinder is able to detect.

The first five rows of Table IV show the results of RQ1.
Note that all the numbers in Table IV represent problematic
code smells which require fixes since DLFinder focuses on
detecting problematic ones and excludes the justifiable cases.
For the patterns of IC, IE, and DP, DLFinder detects all the
problematic instances of duplicate logging code smells (100%
in recall) with a precision of 100%. For the IL pattern, since
we do not find any problematic instances (as discussed in
Section III), both of the columns of problematic instances in
ground truth (Pro.) and detected (T.Det.) in Table IV are 0.

For the LM pattern, DLFinder achieves a recall of 83.8%
(i.e., DLFinder detects 31/37 problematic LM instances). We
manually investigate the six instances of LM that DLFinder
cannot detect. We find that the problem is related to ty-
pos in the log message. For example, developers may write
“mlockall” instead of “mLockAll”. Hence, the text in the log
message cannot be matched with the method name when we
split the word using camel cases. The precision of detecting

TABLE IV
THE RESULTS OF DLFINDER IN RQ1 AND RQ2. IN EACH PATTERN, Pro. IS THE NUMBER OF PROBLEMATIC INSTANCES AS THE GROUND-TRUTH, Det. IS

THE NUMBER OF INSTANCES DETECTED BY DLFINDER, AND T.Det. IS THE NUMBER OF true PROBLEMATIC INSTANCES DETECTED BY DLFINDER.
Research IC IE LM IL DP
questions Pro. T.Det. Det. Pro. T.Det. Det. Pro. T.Det. Det. Pro. T.Det. Det. Pro. T.Det. Det.

RQ1: applying DLFinder
on the same software ver-
sions as the manual study

Hadoop 5 5 5 0 0 0 9 7 44 0 0 1 27 27 27
CloudStack 8 8 8 4 4 4 27 24 186 0 0 12 107 107 107

ElasticSearch 1 1 1 0 0 0 1 0 15 0 0 0 3 3 3
Cassandra 1 1 1 0 0 0 0 0 4 0 0 2 2 2 2

Precision / Recall 100% / 100% 100% / 100% 12.4% / 83.8% N/A 100% / 100%

RQ2: applying DLFinder
on new systems

Camel 1 1 1 0 0 0 14 10 95 0 0 3 29 29 29
Wicket 1 1 1 0 0 0 1 1 4 0 0 0 1 1 1

Precision / Recall 100% / 100% - / - 11.1% / 73.3% N/A 100% / 100%

Total 17 17 17 4 4 4 52 42 348 0 0 18 169 169 169

problematic LM instances is modest because, in many false
positive cases, the log messages and class-method names are
at different levels of abstraction: The log message describes a
local code block while the class-method name describes the
functionality of the entire method. For example, encodePub-
licKey() and encodePrivateKey() both contain the duplicate
logging statement “Unable to create KeyFactory”. The dupli-
cate logging statement describes a local code block that relates
to usage of the KeyFactory class, which is different from the
major functionalities of the two methods (i.e., as expressed by
their class-method names). Nevertheless, DLFinder detects the
LM instances with a high recall, and developers may quickly
go through the results to identify the true positives (it took the
first two authors less than 10 minutes on average to go through
the LM result of each system to identify true positives). In
the future, we plan to improve the precision of DLFinder by
adopting a ranking mechanism based on estimating whether
the log message and class-method name are at a similar level
of abstraction (e.g., both describe the major functionality of
a method). Moreover, we plan to find a better summarization
of the surrounding code of the logging statements by utilizing
the state-of-the-art research on code summarization [39].

RQ2: How well can DLFinder detect duplicate logging
code smells in the two new systems?

The goal of this RQ is to study whether the uncovered
patterns of duplicate logging code smells are generalizable
to other systems. We applied DLFinder on two new systems
that are not included in the manual study in Section III:
Camel 2.21.1 (released on Apr. 28, 2018) and Wicket 8.0.0
(released on May 16, 2018), which are both large-scale open
source Java systems (1.7M and 380K LOC, respectively) for
message routing and web application development. Similar to
our manual study, the first two authors of this paper manually
collect the problematic duplicate logging code smells in the
two new systems, i.e., the ground-truth used for calculating
the precision and recall of DLFinder. Note that the collected
ground-truth of the two new systems is only used in this
evaluation, but not in designing the patterns in DLFinder.
(There are also no new patterns found in this process.)

The sixth to eighth rows in Table IV show the results of
the two new systems. In total, we found 17 problematic code
smell instances (DLFinder detects 13) in these two systems
and all of them are fixed. Compared to the four systems in
RQ1, DLFinder has similar precision and recall values in

the two new systems. Similar to what we found in RQ1,
DLFinder cannot detect some LM instances due to typos in log
message. DLFinder detected three instances of IL in Camel,
however, with the manual investigation and getting developers’
feedback, these IL instances are not problematic. Similar to
what we discussed in Section III, the differences in the log
level are related to having different semantics in the code.
Different from a prior study [50], we found that all IL instances
are not problematic in the six evaluated systems. Future studies
are needed to investigate the effect of IL. DLFinder detects DP
instances with 100% in recall and precision, however, we do
not report them since developers are reluctant to fix them due
to limited support from logging framework. Nevertheless, the
patterns of duplicate logging code smells that we uncovered
can still be found in other systems.

RQ3: Are new code smell instances introduced over time?
We applied DLFinder on the latest versions of the four

studied systems, i.e., Hadoop, CloudStack, ElasticSearch, and
Cassandra, and compare the results with the ones on previous
versions. The gaps of days between the manually studied
versions and the new versions vary from 77 days to 297 days.
Table V shows that new instances of code smells are intro-
duced during software evolution. These detected code smell
instances are all problematic and are all reported and fixed
except for DP. As mentioned in Section III and IV, our goal of
detecting DP is to show developers the logging technical debt
in their systems. In short, we found that duplicate logging code
smells are introduced over time, and an automated approach
such as DLFinder can help developers avoid duplicate logging
code smells as the system evolves.�

�

�

�

DLFinder is able to detect 72 problematic code smell
instances in the four manually studied systems and two
new systems. The code smell patterns of DLFinder (i.e.,
uncovered from our manual study) also exist in new systems
and DLFinder can detect new code smell instances that are
introduced as systems evolve.

VI. THREATS TO VALIDITY

Internal validity. We define duplicate logging statements as
two or more logging statements that have the same static
text message. We were able to uncover five patterns of
duplicate logging code smells and detect many code smell
instances. However, logging statements with non-identical but

TABLE V
THE RESULT OF RQ3: APPLYING DLFINDER TO THE NEWER VERSIONS OF

THE STUDIED SYSTEMS. GAP. SHOWS THE DURATION OF TIME IN DAYS
BETWEEN THE ORIGINAL (ORG.) AND THE NEWER RELEASE (NEW.)

Releases IC IE LM IL DP
Org., New. Gap.

Hadoop 3.0.0, 3.0.3 208 0 0 2 0 21
CloudStack 4.9.3, 4.11.1 297 5 0 2 0 0

ElasticSearch 6.0.0, 6.1.3 77 0 0 0 0 0
Cassandra 3.11.1, 3.11.3 294 0 0 0 0 1

Total - - 5 0 4 0 22

similar static texts may also cause problems to developers.
Future studies should consider different types of duplicate
logging statements (e.g., logs with similar text messages).
We conducted manual studies to uncover the patterns of code
smells and study their potential impact. To avoid biases, two
of the authors examine the data independently. For most of the
cases the two authors reach an agreement. Any disagreement
is discussed until a consensus is reached. In order to reduce
the subjective bias from the authors, we have contacted the
developers to confirm the uncovered patterns and their impact.
External validity. We conducted our study on four large-
scale open source systems in different domains. We found
that our uncovered patterns and the corresponding problematic
and justifiable cases are common among the studied systems.
However, our finding may not be generalizable to other
systems. Hence, we studied whether the uncovered patterns
exist in two other systems. We found that the patterns of code
smells also exist in these two systems and we did not find
any new code smell patterns in our manual verification. Our
studied systems are all implemented in Java, so the results
may not be generalizable to systems in other programming
languages. Future studies should validate the generalizability
of our findings in systems in other programming languages.

VII. RELATED WORK

Empirical studies on logging practices. There are several
studies on characterizing the logging practices in software
systems [11], [18], [50]. Yuan et al. [50] conducted a quan-
titative characteristics study on log messages for large-scale
open source C/C++ systems. Chen et al. [11] replicated the
study by Yuan et al. [50] on Java open-source projects. Both
of their studies found that log message is crucial for system
understanding and maintenance. Fu et al. [18] studied where
developers in Microsoft add logging statements in the code
and summarized several typical logging strategies. They found
that developers often add logs to check the returned value of
a method. Different from prior studies, in this paper, we focus
on manually understanding duplicate logging code smells. We
also discuss potential approaches to detect and fix these code
smells based on different contexts (i.e., surrounding code).
Improving logging practices. Zhao et al. [53] proposed a
tool that determines how to optimally place logging statements
given a performance overhead threshold. Zhu et al. [54]
provided a tool for suggesting log placement using machine
learning techniques. Yuan et al. [51] proposed an approach
that can automatically insert additional variables into logging

statements to enhance the error diagnostic information. Chen
et al. [12] concluded five categories of logging anti-patterns
from code changes, and implemented a tool to detect the anti-
patterns. Hassani et al. [20] identified seven root-causes of the
log-related issues from log-related bug reports. Compared to
prior studies, we study logging code smells that may be caused
by duplicate logs, with a goal to help developers improve
logging code. The logging problems that we uncovered in this
study are not discovered by prior work. We conducted an ex-
tensive manual study through obtaining a deep understanding
on not only the logging statements but also the surrounding
code, whereas prior studies usually only look at the problems
that are related to the logging statement itself.
Code smells. Code smells can be indications of bad design and
implementation choices, which may affect software systems’
maintainability [5], [30], [43], [44], understandability [4], [10],
and performance [45]. To mitigate the impact of code smells,
studies have been proposed to detect code smells [21], [32]–
[34], [40]. Duplicate code (or code clones) is a kind of
code smells which may be caused by developers copying
and pasting a piece of code from one place to another [38],
[52]. Such code clones may indicate quality problems. There
are many studies that focus on studying and detecting code
clones [25], [26]. In this paper, we study duplicate logging
code smells, which are not studied in prior duplicate code
studies. In fact, in our manual study, we found that many
duplicate logging statements may not be related to code clones.
Future studies may further investigate the relationship between
duplicate code and duplicate logging statements.

VIII. CONCLUSION

Duplicate logging statements may affect developers’ un-
derstanding of the system execution. In this paper, we study
over 3K duplicate logging code statements in four large-scale
open source systems (Hadoop, CloudStack, ElasticSearch, and
Cassandra). We uncover five patterns of duplicate logging
code smells. Further, we assess the impact of each code smell
and find not all are problematic and need fixes. In particular,
we find six justifiable cases where the uncovered patterns of
duplicate logging code smells may not be problematic. We
received confirmation from developers on both the problematic
and justifiable cases. Combining our manual analysis and
developers’ feedback, we developed a static analysis tool,
DLFinder, which automatically detects problematic duplicate
logging code smells. We applied DLFinder on the four man-
ually studied systems and two new systems. In total, we
reported 82 problematic code smell instances in the six studied
systems to developers and all of them are fixed. DLFinder
successfully detects 72 out of the 82 instances. Our study
highlights the importance of the context of the logging code,
i.e., the nature of logging code is highly associated with
both the structure and the functionality of the surrounding
code. Future studies should consider the code context when
providing guidance to logging practices. In addition, more
advanced logging libraries are needed to help developers
improve logging practice and to avoid logging code smells.

REFERENCES

[1] “Changes to JobHistory makes it backward incompatible,” https://issues.
apache.org/jira/browse/HADOOP-4190, last checked April 4th 2018.

[2] “Log4j,” http://logging.apache.org/log4j/2.x/.
[3] “Simple logging facade for Java (SLF4J),” http://www.slf4j.org, last

checked Feb. 2018.
[4] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of

lexicon bad smells on concept location in source code,” in 2011 IEEE
11th International Working Conference on Source Code Analysis and
Manipulation, Sept 2011, pp. 125–134.

[5] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code smells and
merge conflicts,” in Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’17, 2017, pp. 58–67.

[6] H. Barringer, A. Groce, K. Havelund, and M. H. Smith, “Formal analysis
of log files,” JACIC, vol. 7, no. 11, pp. 365–390, 2010.

[7] S. Boslaugh and P. Watters, Statistics in a Nutshell: A Desktop Quick
Reference, ser. In a Nutshell (O’Reilly). O’Reilly Media, 2008.

[8] D. Budgen, Software Design. Addison-Wesley, 2003.
[9] N. Busany and S. Maoz, “Behavioral log analysis with statistical

guarantees,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16, 2016, pp. 877–887.

[10] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Oct 2017, pp. 405–416.

[11] B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices in
java-based open source software projects – a replication study in apache
software foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, Feb 2017.

[12] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering, ser. ICSE ’17, 2017, pp. 71–81.

[13] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,” in
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, 2018, pp. 305–316.

[14] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Cacheop-
timizer: Helping developers configure caching frameworks for hibernate-
based database-centric web applications,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016, 2016, pp. 666–677.

[15] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Analytics-driven load testing: An industrial
experience report on load testing of large-scale systems,” in Proceedings
of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track, ser. ICSE-SEIP ’17, 2017, pp. 243–252.

[16] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[17] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code, ser. Addison-Wesley object technology series, 1999.

[18] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices
in industry,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE-SEIP ’14, 2014, pp. 24–33.

[19] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz,
“An Industrial Case Study of Customizing Operational Profiles Using
Log Compression,” in ICSE ’08: Proceedings of the 30th international
conference on Software engineering. Leipzig, Germany: ACM, 2008,
pp. 713–723.

[20] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Studying and
detecting log-related issues,” Empirical Software Engineering, 2018.

[21] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
vol. 20, no. 2, pp. 549–575, 2015.

[22] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic identi-
fication of load testing problems,” in Proceedings of 24th International
Conference on Software Maintenance (ICSM), 2008, pp. 307–316.

[23] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-

ings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13, 2013, pp. 672–681.

[24] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the apache software foundation
projects,” in Proceedings of the 13th International Conference on Mining
Software Repositories, ser. MSR ’16, 2016, pp. 154–164.

[25] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[26] C. Kapser and M. W. Godfrey, “Cloning considered harmful,” Reverse
Engineering, Working Conference on, vol. 0, pp. 19–28, 2006.

[27] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, 2012.

[28] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying software
logging using topic models,” Empirical Software Engineering, Jan 2018.

[29] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684–1716, Aug 2017.

[30] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,
“Understanding code smells in android applications,” in Proceedings
of the International Conference on Mobile Software Engineering and
Systems, 2016, pp. 225–234.

[31] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
Medica, vol. 22, no. 3, pp. 276–282, 2012.

[32] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen, “Detection of embedded code smells in dynamic web applica-
tions,” in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012, 2012, pp. 282–285.

[33] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Nov 2013, pp. 268–278.

[34] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight visu-
alizations to support code smell inspection,” in Proceedings of the 4th
ACM Symposium on Software Visualization, ser. SoftVis ’08, 2008, pp.
77–86.

[35] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-
tices and event logging: Assessment of a critical software development
process,” in Proceedings of th 37th International Conference on Software
Engineering, ser. ICSE ’15, 2015, pp. 169–178.

[36] H. Pinjia, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd IEEE international conference on Automated software
engineering, 2018, pp. 1–11.

[37] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[38] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), May 2010, pp. 72–81.

[39] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), Oct 2017, pp. 112–122.

[40] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’10, 2010, pp. 8:1–
8:10.

[41] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding
log lines using development knowledge,” in Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution,
ser. ICSME ’14, 2014, pp. 21–30.

[42] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE ’16, 2016, pp. 858–870.

[43] D. I. K. Sjberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyb,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
Aug 2013.

[44] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D. Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, May 2015, pp. 403–414.

https://issues.apache.org/jira/browse/HADOOP-4190
https://issues.apache.org/jira/browse/HADOOP-4190
http://www.slf4j.org

[45] X. Xiao, S. Han, C. Zhang, and D. Zhang, “Uncovering javascript
performance code smells relevant to type mutations,” in Programming
Languages and Systems, X. Feng and S. Park, Eds., 2015, pp. 335–355.

[46] J. Yang and L. Tan, “SWordNet: Inferring semantically related words
from software context,” Empirical Software Engineering, vol. 19, no. 6,
pp. 1856–1886, 2014.

[47] K. Yao, G. B. d. Pdua, W. Shang, S. Sporea, A. Toma, and S. Sajedi,
“Log4perf: Suggesting logging locations for web-based systems perfor-
mance monitoring,” in Proceedings of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering, ser. ICPE ’18, 2018,
pp. 21–30.

[48] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple testing can prevent most critical failures:
An analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’14, 2014, pp. 249–265.

[49] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2010, pp. 143–154.

[50] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in ICSE 2012: Proceedings of the 2012
International Conference on Software Engineering. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 102–112.

[51] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” in ASPLOS ’11: Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems. Newport Beach,
California, USA: ACM, 2011, pp. 3–14.

[52] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of
current knowledge,” Journal of Software Maintenance, vol. 23, no. 3,
pp. 179–202, 2011.

[53] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, ser. SOSP ’17, 2017, pp. 565–
581.

[54] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” in Proceed-
ings of the 37th International Conference on Software Engineering, ser.
ICSE ’15, 2015, pp. 415–425.

	Introduction
	Identifying Duplicate Logging Statements for Manual Study
	Patterns of Duplicate Logging Code Smells
	DLFinder: Automatically Detecting Problematic Duplicate Logging Code Smells
	An Evaluation of DLFinder
	Threats to Validity
	Related Work
	Conclusion
	References

