
Detecting	Problems	in	the	Database	
Access	Code	of	Large	Scale	Systems

An	industrial	Experience	Report

1



Existing	static	analysis	tools	focus	on	
language-related	problems

2

Coverity PMD Google	error-prone

Facebook	InferFindBugs

However,	many	problems	are	related	to	
how	developers	use	different	frameworks



Over	67%	of	Java	developers	use	
Object-Relational	Mapping	

(Hibernate)	to	access	databases

3

Existing	static	analysis	tools	provide	
mostly	rudimentary	support	for	JDBC!

22%67%



Over	40%	of	Java	web	application	
developers	use	Spring

4

Developers	use	Spring	to	manage	database	
transactions	in	web	applications

None	of	the	static	analysis	tools	support	
Spring!



There	is	a	huge	need	for	framework-
specific	tools

5

Developers	leverage	MANY	frameworks,	
but	existing	tools	only	support	detecting	
language-related	problems.



An	example	class	with	Java	ORM	code

6

@Entity
@Table(name	=	“user”)
@DynamicUpdate
public	class	User{

@Column(name=“id”)
private	int id;

@Column(name=“name”)
String	userName;

@OneToMany(fetch=FetchType.EAGER)
List<Team>	teams;
public	void	setName(String	n){

userName =	n;
}

…	other	getter	and	setter	methods

User.java
User	class	is	

mapped	to	“user”
table	in	DB

id	is	mapped	to	the	
column	“id”	in	the	

user	table

A	user	can	belong	
to	multiple	teams

Eagerly	retrieve	
associated	teams	
when	retrieving	a	

user	object

Performance-
related	configs



Accessing	the	database	using	ORM

7

User	u	=	findUserByID(1);

ORM
database

select	u	from	user
where u.id =	1;

u.setName(“Peter”);

update	user set	
name=“Peter”	
where user.id =	1;

Objects SQLs



Transaction	management	using	Spring

8

@Transaction(Propogation.REQUIRED)
getUser(){

…
updateUserGroup(u)
…

}

By	using	ORM	and	Spring,	developers	
can	focus	more	on	the	business	logic	

and	functionality

Create	a	DB	
transaction

Entire	business	logic	will	
be	executed	with	the	
same	DB	transaction



Implementing	DBChecker

9

Source	
code

• DBChecker looks	for	both	functional
and	performance bug	patterns

• DBChecker is	integrated	in	industrial	
practice



Overview	of	the	presentation

10

Bug	patterns Lessons	learned	when	
adopting	the	tool	in	practice



Overview	of	the	presentation

11

Bug	patterns Lessons	learned	when	
adopting	the	tool	in	practice

More	patterns	and	learned	
lessons	in	the	paper



ORM	excessive	data	bug	pattern
Class	User{

@EAGER
List<Team>	teams;

}

User	u	=	findUserById(1);
u.getName();
EOF

12

Objects

SQL

Eagerly	retrieve	
teams	from	DB

User	Table Team	Table

join Team	data	is	never	
used!



Detecting	excessive	data
using	static	analysis

13

First	find	all	the	objects	that	
eagerly	retrieve	data	from	DB

Class	User{
@EAGER
List<Team>	teams;

}

Identify	all	the	data	usages	of	
ORM-managed	objects	

User	user	=	findUserByID(1);

Check	if	the	eagerly	retrieved	
data	is	ever	used

user.getName();

user team

user team



Nested	transaction	bug pattern

14

@Transaction(Propogation.
REQUIRED)
getUser(){

updateUserGroup(u)
…

}

Create	a	DB	
transaction

@Transaction(Propogation.
REQUIRES_NEW)

Create	a	child	transaction,	and	suspend	
parent	transaction	until	child	is	finished

Misconfigurations	can	cause	unexpected	
transaction	timeout,	deadlock,	or	other	

performance-related	problems



Detecting	nested	transaction	bug	
pattern

15

@Transaction(Propogation.
REQUIRED)
getUser(){
…
updateUserGroup(u)
…

}

Parse	all	transaction	
configurations

Identify	all	methods	with	the	
annotation

Propogation.REQUIRED

Propogation.REQUIRS_NEW
calls

Traverse	the	call	graph	to	identify	
potential	misconfigurations



Limitation	of	current	static	analysis	
tools

16

Annotations	are	lost	
when	converting	source	
code	to	byte	code

Do	not	consider	how	
developers	configure	
frameworks

@Transaction(Propo
gation.REQUIRED)
@EAGER

Many	problems	
are	related	to	
framework	

configurations

Many	
configurations	are	

set	through	
annotations



Overview	of	the	presentation

17

Bug	patterns
Lessons	learned	when	

adopting	the	tool	in	practice

Most	discussed	bug	
patterns	are	related	to	
incorrect	usage	of	

frameworks



Overview	of	the	presentation

18

Bug	patterns
Lessons	learned	when	

adopting	the	tool	in	practice

Most	discussed	bug	
patterns	are	related	to	
incorrect	usage	of	

frameworks



Handling	a	large	number	of	detection	
results

19

• Developers	have	limited	time	to	fix	detected	problems

• Most	existing	static	analysis	frameworks	do	not	prioritize	
the	detected	instances	for	the	same	bug	pattern



20

Prioritizing	based	on	DB	tables
User

Time	zone

• Problems	related	to	large or	
frequently-accessed tables	are	
ranked	higher	(more	likely	to	be	
performance	bottlenecks)

• Problems	related	to	highly	
dependable	tables	are	ranked	
higher



Developers	have	different	
backgrounds

21

• Not	all	developers	are	familiar	with	these	frameworks	and	
databases

• Developers	may	not	take	the	problems	seriously	if	they	
don’t	understand	the	impact



Educating	developers	about	
the	detected	problems

22

• We	hosted	several	workshops	
to	educate	developers	about	
the	impact	and	cause	of	the	
problems

• Walk	developers	through	
examples	of	detected	
problems

• May	learn	new	bug	patterns	
from	developers



Overview	of	the	presentation

23

Bug	patterns
Lessons	learned	when	

adopting	the	tool	in	practice

Most	discussed	bug	
patterns	are	related	to	
incorrect	usage	of	

frameworks

We	prioritize	problems	
based	on	DB	tables,	and	
educate	developers	about	

the	problems	



24



25



26



27



28



29



30



31


