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ABSTRACT 
Windows Error Reporting (WER) is a distributed system 

that automates the processing of error reports coming from 

an installed base of a billion machines. WER has collected 

billions of error reports in ten years of operation. It collects 

error data automatically and classifies errors into buckets, 

which are used to prioritize developer effort and report 

fixes to users.  WER uses a progressive approach to data 

collection, which minimizes overhead for most reports yet 

allows developers to collect detailed information when 

needed.  WER takes advantage of its scale to use error 

statistics as a tool in debugging; this allows developers to 

isolate bugs that could not be found at smaller scale.  WER 

has been designed for large scale: one pair of database 

servers can record all the errors that occur on all Windows 

computers worldwide. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging – 

debugging aids.  

D.2.9 [Software Engineering]: Management – life cycle, 

software quality assurance.  

D.4.5 [Operating Systems]: Reliability. 

General Terms 

Management, Measurement, Reliability. 

Keywords 

Bucketing, Classifying, Error Reports, Labeling, 

Minidump, Statistics-based Debugging. 

1. INTRODUCTION 
Debugging a single program run by a single user on a 

single computer is a well understood problem. It may be 

arduous, but follows general principles: when a user 

reproduces and reports an error, the programmer attaches a 

debugger to the running process or a core dump and 

examines program state to deduce where algorithms or state 

deviated from desired behavior. When tracking particularly 

onerous bugs the programmer can resort to restarting and 

stepping through execution with the user’s data or 

providing the user with a version of the program 

instrumented to provide additional diagnostic information. 

Once the bug has been isolated, the programmer fixes the 

code and provides an updated program.
1
  

Debugging in the large is harder. When the number of 

software components in a single system grows to the 

hundreds and the number of deployed systems grows to the 

millions, strategies that worked in the small, like asking 

programmers to triage individual error reports, fail. With 

hundreds of components, it becomes much harder to isolate 

the root cause of an error. With millions of systems, the 

sheer volume of error reports for even obscure bugs can 

become overwhelming. Worse still, prioritizing error 

reports from millions of users becomes arbitrary and ad 

hoc. 

As the number of deployed Microsoft Windows and 

Microsoft Office systems scaled to tens of millions in the 

late 1990s, our programming teams struggled to scale with 

the volume and complexity of errors. The Windows team 

devised a tool that could automatically diagnose a core 

dump from a system crash to determine the most likely 

cause of the crash. We planned to deploy this tool as a web 

site where a system administrator could upload a core 

dump and receive a report listing probable resolutions for 

the crash. Separately, the Office team devised a tool that on 

an unhandled exception (that is, a crash) would 

automatically collect a stack trace with a small of subset of 

heap memory and upload this minidump to a service at 

Microsoft that would collect these error reports by faulting 

module.  

We realized we could tie the automatic diagnosis tool from 

the Windows team with the automatic collection tool from 

the Office team to create a new service, Windows Error 

                                                           
1
 We use the following definitions: error (noun): A single event in 

which program behavior differs from that intended by the 

programmer. bug (noun): A root cause, in program code, that 

results in one or more errors. 
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Reporting (WER). WER could automatically generate error 

reports for applications and operating systems, report them 

to Microsoft, and automatically diagnose them to help users 

and programmers.  

WER is a distributed, post-mortem debugging system. 

When an error occurs, client code on the Windows system 

automatically collects information to create an error report. 

With authorization from the user or administrator, the client 

code reports the error to the WER service. If a fix for the 

error already exists, the WER service provides the client 

with a URL to the fix. The WER service aggregates and 

diagnoses error reports. Programmers can access post-

mortem data from one or more error reports to debug code. 

Programmers can also request the collection of additional 

data in future error reports to aid debugging.  

Beyond basic debugging from error reports, WER enables 

statistics-based debugging. WER gathers all error reports to 

a central database. In the large, programmers can mine the 

error report database to prioritize work, spot trends and test 

hypotheses. An early mantra of our team was, ―data not 

decibels.‖ Programmers use data from WER to prioritize 

debugging so that they fix the bugs that affect the most 

users, not just the bugs hit by the loudest customers. WER 

data also aids in correlating failures to co-located 

components. For example, WER data can show when a 

collection of seemingly unrelated crashes all contain the 

same likely culprit—say a device driver—even though it 

isn’t on any thread stack in any of the error reports.  

Three principles account for the widespread adoption of 

WER by every Microsoft product team and by over 700 

third party companies: automated error diagnosis and 

progressive data collection, which enable error processing 

at scale, and statistics-based debugging, which harnesses 

that scale to help programmers more effectively improve 

system quality. 

WER has repeatedly proven its value to Microsoft teams by 

identifying bugs ―in the wild‖. For example, the Windows 

Vista programmers found and fixed over 5,000 bugs 

isolated by WER in beta releases of Vista. These bugs were 

found after programmers had found and fixed over 100,000 

bugs [10] with static analysis and model checking tools [6], 

but before the general release of Vista. Every Microsoft 

application, server, service, and OS team makes a 

significant reduction in WER reports a part of their ship 

criteria for product releases. 

WER is not the first system to automate the collection of 

memory dumps. Post-mortem debugging has existed since 

the dawn of digital computing. In 1951, The Whirlwind I 

system [12] dumped the contents of tube memory to a CRT 

in octal when a program crashed. An automated camera 

took a snapshot of the CRT on microfilm, delivered for 

debugging the following morning [8]. Later systems 

dumped core to disk; used partial core dumps, which 

excluded shared code, to minimize the dump size [32]; and 

eventually used telecommunication networks to deliver 

core dumps to the computer manufacturer [19].  

Though WER is not the first system of its kind, it is the first 

system to use automatic error diagnosis, the first to use 

progressive data collection to reduce overheads, and the 

first to automatically direct users to available fixes based 

on automated error diagnosis. In use since 1999, WER 

remains unique in four aspects: 

1. WER is the largest automated error-reporting system in 

existence. Approximately one billion computers run WER 

client code: every Windows system since Windows XP, 

Windows Mobile, all Microsoft programs on Macintosh, and 

Windows Live JavaScript code in any browser. 

2. WER automates the collection of additional client-side data 

when needed for further debugging. When initial error reports 

provide insufficient data to debug a problem, programmers 

can request that WER collect more data on future error reports 

including: broader memory dumps, environment data, registry 

values, log files, program settings, and/or output from 

management instrumentation. 

3. WER automatically directs users to solutions for corrected 

errors. This automatic direction is helpful as users often 

unknowingly run out-of-date programs. Currently, 47% of 

kernel crash reports result in a direction to a software update. 

4. WER is general purpose. It is used for OSes and applications 

by Microsoft and non-Microsoft programmers. WER collects 

error reports for crashes, non-fatal assertion failures, hangs, 

setup failures, abnormal executions, and device failures.  

Section 2 defines the key challenges and our strategy to 

diagnose error reports from a billion clients. Sections 3 and 

4 describe our algorithms for processing error reports and 

the use of WER for statistics-based debugging. Section 5 

describes the WER implementation. Section 6 evaluates 

WER’s effectiveness over ten years of use. Section 7 

describes changes made to Windows to improve debugging 

with WER. Section 8 discusses related work and Section 9 

concludes. 

 

Figure 1. Typical WER Authorization Dialog. 
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2. PROBLEM, SCALE, AND STRATEGY 

The goal of WER is to allow us to diagnose and correct 

every software error on every Windows system. To achieve 

this goal, WER must produce data that focuses 

programmers on the root cause of errors. It must help 

programmers of every class of software in the system: 

Microsoft and third-party; OS, system, device driver, 

application, and plug-in. It must help programmers 

prioritize and fix all errors, even the most non-

deterministic. An inability to scale must never prevent 

clients from reporting errors; it must admit literally every 

Windows system. Finally, it must address user and 

administrative policy concerns, such as privacy and 

bandwidth usage, so that it may be used anywhere. 

We realized early on that scale presented both the primary 

obstacle and the primary resolution to address the goals of 

WER. If we could remove humans from the critical path 

and scale the error reporting mechanism to admit millions 

of error reports, then we could use the law of large numbers 

to our advantage. For example, we didn’t need to collect all 

error reports, just a statistically significant sample. And we 

didn’t need to collect complete diagnostic samples for all 

occurrences of an error with the same root cause, just 

enough samples to diagnose the problem and suggest 

correlation. Moreover, once we had enough data to allow 

us to fix the most frequently occurring errors, then their 

occurrence would decrease, bringing the remaining errors 

to the forefront. Finally, even if we made some mistakes, 

such as incorrectly diagnosing two errors as having the 

same root cause, once we fixed the first then the 

occurrences of the second would reappear and dominate 

future samples. 

Realizing the value of scale, six strategies emerged as 

necessary components to achieving sufficient scale to 

produce an effective system: bucketing of error reports, 

collecting data progressively, minimizing human 

interaction, preserving user privacy, directing users to 

solutions, and generalizing the system. 

2.1. Bucketing 
WER aggregates error reports likely originating from the 

same bug into a collection called a bucket
2
. Otherwise, if 

naively collected with no filtering or organization WER 

data would absolutely overwhelm programmers. The ideal 

bucketing algorithm should strictly maintain a property of 

orthogonality: one bug per bucket and one bucket per bug. 

WER approaches orthogonality through two phases of 

bucketing. First, errors are labeled, assigned to a first 

bucket based on immediate evidence available at the client 

with the goal that each bucket contains error reports from 

just one bug. Second, errors are classified at the WER 

service; they are assigned to new buckets as additional data 

is analyzed with the goal of minimizing programmer effort 

by placing error reports from just one bug into just one 

final bucket.  

Bucketing enables automatic diagnosis and progressive 

data collection. Good bucketing relieves programmers and 

the system of the burden of processing redundant error 

reports, helps prioritize programmer effort by bucket 

prevalence, and can be used to link users to fixes when the 

underlying cause for a bucket has been corrected. In WER, 

bucketing is progressive. As additional data related to an 

error report is collected, such as symbolic information to 

translate from an offset in a module to a named function, 

the report is associated with a new bucket. Although the 

design of optimal bucketing algorithms remains an open 

problem, Section 6.3 shows that the bucketing algorithms 

currently used by WER are in practice quite effective. 

2.2. Progressive Data Collection 
WER uses a progressive data collection strategy to reduce 

the cost of error reporting so that the system can scale to 

high volume while providing sufficient detail for 

                                                           
2
 bucket (noun): A collection of error reports likely caused by the 

same bug. bucket (verb): To triage error reports into buckets. 

 

Figure 2. Typical Solution Dialog. 
 

Figure 3. The WER Website 

(http://winqual.microsoft.com). 
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debugging. Most error reports consist of no more than a 

simple bucket identifier. If additional data is needed, WER 

will next collect a minidump (an abbreviated stack and 

memory dump, and the configuration of the faulting 

system) into a compressed Windows cabinet archive file 

(the CAB file). If further data beyond the minidump is 

required to diagnose the error, WER can progress to 

collecting full memory dumps then memory dumps from 

related programs, related files, or additional data queried 

from the reporting system into the CAB file. Progressive 

data collection reduces the scale of incoming data enough 

that one pair of SQL servers can record every error on 

every Windows system world-wide. Progressive data 

collection also reduces the user cost in time and bandwidth 

of reporting errors, thus encouraging user participation.  

2.3. Minimizing Human Interaction 
WER removes users from all but the authorization step of 

error reporting and removes programmers from initial error 

examination by automated error diagnosis. User interaction 

is reduced in most cases to a yes/no authorization (see 

Figure 1). To further reduce interaction, users can 

permanently opt in or out of future authorization requests. 

WER servers analyze each error report automatically to 

direct users to existing fixes and, as needed, ask the client 

to collect additional data. Programmers are notified only 

after WER determines that an error report does not match 

any previously resolved bugs. Automated diagnosis allows 

programmers to focus on finding and fixing new bugs 

rather than rehashing stale problems. 

2.4. Preserving User Privacy 
We take considerable care to avoid knowingly collecting 

personal identifying information (PII). This reduces 

regulatory burden and encourages user participation. For 

example, although WER collects hardware configuration 

information, our client code zeros serial numbers and other 

known unique identifiers to avoid transmitting data that 

might identify the sending computer. WER operates on an 

informed consent policy with users. Errors are reported 

only with user consent. All consent requests default to 

negative, thus requiring that the user opt-in before 

transmission. WER reporting can be disabled on a per-

error, per-program, or per-computer basis by individual 

users or by administrators. Because WER does not have 

sufficient metadata to locate and filter possible PII from 

collected stack or heap data, we minimize the collection of 

heap data and apply company data-access policies that 

restrict the use of WER data strictly to debugging and 

improving program quality. 

To allow administrators to apply organizational policies, 

WER includes a feature called Corporate Error Reporting 

(CER). With CER, administrators can configure WER 

clients to report errors to a private server, to disable error 

reporting, to enable error reporting with user opt-in, or to 

force error reporting with no end-user opt-out. Where 

errors are reported locally, administrators can use CER to 

pass some or all error reports on to the WER service. 

2.5. Providing Solutions to Users 
Many errors have known corrections. For example, users 

running out-of-date software should install the latest 

service pack. The WER service maintains a mapping from 

buckets to solutions. A solution is the URL of a web page 

describing steps a user should take to prevent reoccurrence 

of the error (see Figure 2). Solution URLs can link the user 

to a page hosting a patch for a specific problem, to an 

update site where users with out-of-date code can get the 

latest version, or to documentation describing workarounds 

(see Figure 3). Individual solutions can be applied to one or 

more buckets with a simple regular expression matching 

mechanism. For example, all users who hit any problem 

with the original release of Word 2003 are directed to a 

web page hosting the latest Office 2003 service pack.  

2.6. Generalizing the System 
While our original plan was to support error reporting for 

just the Windows kernel and Office applications, we 

realized WER had universal value when other teams started 

asking how to provide a similar service. We considered 

letting each Microsoft product team run its own WER 

service, but decided it was easier to open the service to all 

than to package the server software. Though developed by 

Office and Windows, the first program to ship with WER 

client code was MSN Explorer. We run WER as a global 

service and provide access to WER data to programmers 

inside and outside Microsoft. We operate a free WER 

website (see Figure 3) for third-party software and 

hardware providers to improve their code.  

3. BUCKETING ALGORITHMS 
One of the most important elements of WER is its 

mechanism for assigning error reports to buckets. This is 

carried out using a collection of heuristics. Conceptually 

WER bucketing heuristics can be divided along two axes. 

The first axis describes where the bucketing code runs: 

labeling heuristics are performed on clients (to minimize 

server load) and classifying heuristics are performed on 

servers (to minimize programmer effort). The second axis 

describes the impact of the heuristic on the number of final 

buckets presented to programmers from a set of incoming 

error reports: expanding heuristics increase the number of 

buckets with the goal that no two bugs are assigned to the 

same bucket; condensing heuristics decrease the number of 

buckets with the goal that no two buckets contain error 

reports from the same bug.  

Expanding and condensing heuristics should be 

complimentary, not conflicting. An expanding heuristic 
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should not introduce new buckets for the same bug. A 

condensing heuristic should not put two bugs into one 

bucket. Working properly in concert, expanding and 

condensing heuristics should move WER toward the 

desired goal of one bucket for one bug.  

3.1. Client-Side Bucketing (Labeling) 

The first bucketing heuristics run on the client when an 

error report is generated (see Figure 4). The primary goal of 

these labeling heuristics is to produce a unique bucket label 

based purely on local information that is likely to align with 

other reports caused by the same bug. This labeling step is 

necessary because in most cases, the only data 

communicated to the WER servers will be a bucket label.  

The primary labeling heuristics (L1 through L7) generate a 

bucket label from the faulting program, module, and offset 

of the program counter within the module. Additional 

heuristics are generated under special conditions, such as 

when an error is caused by an unhandled program 

exception (L8). Programs can use custom heuristics for 

bucketing by calling the WER APIs to generate an error 

report. For example, Office’s build process assigns a 

unique permanent tag to each assert statement in the source 

code. When an assert failure is reported as an error, the 

bucket is labeled by the assert tag (L15) rather than the 

module information. Thus all instances of a single assert 

are assigned to a single bucket even as the assert moves in 

the source over time. 

Most of the labeling heuristics are expanding heuristics, 

intended to spread separate bugs into distinct buckets. For 

example, the hang_wait_chain (L10) heuristic uses the 

GetThreadWaitChain API to walk the chain of threads 

waiting on synchronization objects held by threads, starting 

from the program’s user-input thread. If a root thread is 

found, the error is reported as a hang originating with the 

root thread. Windows XP lacked GetThreadWaitChain, 

so all hangs for a single version of a single program are 

bucketed together. The few condensing heuristics (L12, 

L13, and L14) were derived empirically for common cases 

where a single bug produced many buckets. For example, 

the unloaded_module (L13) heuristic condenses all 

errors where a module has been unloaded prematurely due 

to a reference counting bug.  

3.2. Server-Side Bucketing (Classifying) 

The heuristics for server-side bucketing attempt to classify 

error reports to maximize programmer effectiveness. They 

are codified in !analyze (―bang analyze‖), an extension to 

the Windows Debugger [22]. The heuristics for bucketing 

in WER were derived empirically and continue to evolve. 

!analyze is roughly 100,000 lines of code implementing 

some 500 bucketing heuristics (see Figure 5), with roughly 

one heuristic added per week. 

The most important classifying heuristics (C1 through C5) 

are part of an algorithm that analyzes the memory dump to 

determine which thread context and stack frame most likely 

caused the error. The algorithm works by first finding any 

 Heuristic Impact Description 

L1 program_name Expanding Include program name in bucket label. 

L2 program_version Expanding Include program version. 

L3 program_timestamp Expanding Include program binary timestamp. 

L4 module_name Expanding Include faulting module name in label. 

L5 module_version Expanding Include faulting module version. 

L6 module_timestamp Expanding Include faulting module binary timestamp. 

L7 module_offset Expanding Include offset of crashing instruction in fault module. 

L8 exception_code Expanding Cause of unhandled exception. 

L9 bugcheck_code Expanding Cause of system crash (kernel only) 

L10 hang_wait_chain Expanding On hang, walk chain of threads waiting on synchronization objects to find root. 

L11 setup_product_name Expanding For ―setup.exe‖, include product name from version information resource. 

L12 pc_on_stack Condensing Code was running on stack, remove module offset. 

L13 unloaded_module Condensing Call or return into memory where a previously loaded module has unloaded.  

L14 custom_parameters Expanding Additional parameters generated by application-specific client code. 

L15 assert_tags* Condensing Replace module information with unique in-code assert ID. 

L16 timer_asserts* Expanding Create a non-crashing error report by in-code ID if user scenario takes too long. 

L17 shipping_assert* Expanding Create a non-crashing error report if non-fatal invariant is violated 

L18 installer_failure Expanding Include target application, version, and reason for Windows installer failure. 

Figure 4. Top Heuristics for Labeling (run on client).  

*Asserts require custom code and/or metadata in each program. 
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thread context records in the memory dump (heuristic C1). 

The algorithm walks each stack starting at the most recent 

frame, f0, backward. Each frame, fn, is assigned a priority, 

pn, of 0 to 5 based on its increasing likelihood of being a 

root cause (heuristics C2 through C5). Frame fn is selected 

only if pn > pi for all 0 ≤ i < n. For core OS components, 

like the kernel, pn = 1; for core drivers pn = 2; for other OS 

code, like the shell, pn = 3; and for most other frames pn = 

4. For frames known to have cause an error, such as any fn 

where fn-1 is assert, pn = 5. Priority pn = 0 is reserved for 

functions known never to be the root cause of an error, such 

as memcpy, memset, and strcpy.  

!analyze contains a number of heuristics to filter out 

error reports unlikely to be debugged (C8 through C15). 

For example, since we have copies of all Microsoft binaries 

(and some third-party binaries), !analyze compares the 

(few, and small) code sections in the memory dump against 

the archived copies. If there’s a difference, then the client 

computer was executing corrupt code—not much reason to 

debug any further. !analyze categorizes these as one-bit-

errors (likely bad memory), multi-word errors (likely a 

misdirected DMA), and stride-pattern errors (likely a DMA 

from a faulty device). As another example, kernel dumps 

are tagged if they contain evidence of known root kits 

(C11), out-of-date drivers (C12), drivers known to corrupt 

the kernel heap (C13), or hardware known to cause 

memory or computation errors (C14 and C15). 

4. STATISTICS-BASED DEBUGGING  
Perhaps the most important feature enabled by WER is 

statistics-based debugging. WER records data about a large 

percentage of all errors that occur on Windows systems 

into a single database. Programmers can mine the WER 

database to improve debugging more than would be 

possible with a simple, unstructured stream of error reports. 

Strategies which use the database to improve the 

effectiveness of debugging can be broken into five 

categories: prioritizing debugging effort, finding hidden 

causes, testing root cause hypotheses, measuring 

deployment of solutions, and watching for regressions.  

We built WER to improve the effectiveness of debugging. 

The primary reason to collect large numbers of error 

reports is to help programmers know which errors are most 

prevalent. Programmers sort their buckets and start 

debugging with the bucket with largest volume of error 

reports. A more sophisticated strategy is to aggregate error 

counts for all buckets for the same function, select the 

function with the highest count, and then work through the 

buckets for the function in order of decreasing bucket 

count. This strategy tends to be effective as errors at 

different locations in the same function often have the same 

root cause. Or at the very least, a programmer ought to be 

aware of all known errors in a function when fixing it. 

The WER database can be used to find root causes which 

are not immediately obvious from the memory dumps. For 

example, when bucketing points the blame at reputable 

code we search error reports to look for alternative 

explanations. One effective strategy is to search for 

correlations between the error and a seemingly innocent 

third party. In many cases we find a third party device 

driver or other plug-in that has a higher frequency of 

 Heuristic Impact Description 
C1 find_correct_stack Expanding Walk data structures for known routines to find trap frames, etc. to stack. 

C2 skip_core_modules Expanding De-prioritize kernel code or core OS user-mode code. 

C3 skip_core_drivers Expanding De-prioritize first-party drivers for other causes. 

C4 skip_library_funcs Expanding Skip stack frames containing common functions like memcpy, printf, etc. 

C5 third_party Condensing Identify third-party code on stack. 

C6 function_name Condensing Replace module offset with function name. 

C7 function_offset Expanding Include PC offset in function. 

C8 one_bit_corrupt Condensing Single-bit errors in code from dump compared to archive copy. 

C9 image_corrupt Condensing Multi-word errors in code from dump compared to archive copy. 

C10 pc_misaligned Condensing PC isn’t aligned to an instruction. 

C11 malware_identified Condensing Contains known malware. 

C12 old_image Condensing Known out-of-date program. 

C13 pool_corruptor Condensing Known program that severely corrupts heap. 

C14 bad_device Condensing Identify known faulty devices. 

C15 over_clocked_cpu Condensing Identify over-clocked CPU. 

C16 heap_corruption Condensing Heap function failed with corrupt heap. 

C17 exception_subcodes Expanding Separate invalid-pointer read from write, etc. 

C18 custom_extensions Expanding Output of registered third-party WER plug-in invoked based target program 

Figure 5. Top Heuristics for Classifying (run on server). 
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occurrence in the error reports than in the general 

population. For example, we recently began receiving a 

large number of error reports with invalid pointer usage in 

the Windows event tracing infrastructure. An analysis of 

the error reports revealed that 96% of the faulting 

computers were running a specific third-party device 

driver. With well below 96% market share (based on all 

other error reports), we approached the third party and they 

ultimately found the bug in their code. By comparing 

expected versus occurring frequency distributions, we 

similarly have found hidden causes from specific 

combinations of modules from multiple third-parties and 

from buggy hardware (in one case a specific hard disk 

model). A similar strategy is ―stack sampling‖ in which 

error reports for similar buckets are sampled to determine 

which functions, other than the obvious targets, occur 

frequently on the thread stacks. 

The WER database can be used to test programmer 

hypotheses about the root causes of errors. The basic 

strategy is to construct a debugger test function that can 

evaluate a hypothesis on a memory dump, and then apply it 

to thousands of memory dumps to verify that the 

hypothesis is not violated. For example, one of the 

Windows programmers was recently debugging an issue 

related to the plug-and-play lock in the Windows I/O 

subsystem. We constructed an expression to extract the 

current holder of the lock from a memory dump and then 

ran the expression across 10,000 memory dumps to see 

how many of the reports had the same lock holder. One 

outcome of the analysis was a bug fix; another was the 

creation of a new heuristic for !analyze. 

A recent use of the WER database is to determine how 

widely a software update has been deployed. Deployment 

can be measured by absence, measuring the decrease in 

error reports fixed by the software update. Deployment can 

also be measured by an increase presence of the new 

program or module version in error reports for other issues. 

Finally, both Microsoft and a number of third parties use 

the WER database to check for regressions. Similar to the 

strategies for measuring deployment, we look at error 

report volumes over time to determine if a software fix had 

the desired effect of reducing errors. We also look at error 

report volumes around major software releases to quickly 

identify and resolve new errors that may appear with the 

new release. 

5. SYSTEM DESIGN 

WER is a distributed system. Client-side software detects 

an error condition, generates an error report, labels the 

bucket, and reports the error to the WER service. The WER 

service records the error occurrence and then, depending on 

information known about the particular error, might request 

additional data from the client, or direct the client to a 

solution. Programmers access the WER service to retrieve 

data for specific error reports and for statistics-based 

debugging. 

5.1. Generating an Error Report 
Error reports are created in response to OS-visible events 

such as crashes, hangs, and installation failures (see Figure 

6), or directly by applications calling a set of APIs for 

creating and submitting error reports (see Figure 7). For 

example, the default user-mode unhandled exception filter 

triggers an error report on program failure, the kernel 

triggers a report if a process runs out of stack, and the shell 

triggers a report if a program fails to respond for 5 seconds 

to user input. Once a report is triggered, the 

werfault.exe service is responsible for securing user 

authorization and submitting the error report to the WER 

servers. Reports are submitted immediately or queued for 

later if the computer is not connected to the Internet. 

An important element of WER’s progressive data 

collection strategy is the minidump, an abbreviated memory 

dump [21]. Minidumps are submitted for all kernel crashes 

when requested for program errors. Minidumps contain 

registers from each processor, the stack of each thread (or 

Error Reporting Trigger 

Kernel Crash Crash dump found in page file on boot.  

Application Crash Unhandled process exception. 

Application Hang Failure to process user input for 5 seconds. 

Service Hang Service thread times out. 

Install Failure OS or application installation fails. 

AppCompat Issue Program calls deprecated API. 

Custom Error Program calls WER APIs. 

Timer Assert* User scenario takes longer than expected. 

Ship Assert* Invariant violated in program code. 

Figure 6. Errors reported by WER.  
*Asserts require custom code in each program 

API Description 

WerReportCreate(type) Initiate an error report. 

WerReportAddDump(r,p,opts) Include a minidump. 

WerReportAddFile(r,f,opts) Include a file. 

WerReportSubmit(r,opts) Submit report to service. 

WerRegisterFile(f,opts) 

WerRegisterMemoryBlock(p,c) 

 

Register a file or 
memory region for 
inclusion in future error 
reports for this process. 

KeRegisterBugCheckReason-

Callback(f) 

Registers kernel-mode 
call-back to provide data 
for future crash reports. 

Figure 7. Key WER Client APIs. 
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processor for kernel dumps), the list of loaded modules, 

selected data sections from each loaded module, small 

areas of dynamically allocated memory that have been 

registered specifically for minidump collection, and 256 

bytes of code immediately surrounding the program 

counter for each thread. A minidump does not include 

entire code sections; these are located by WER out of band 

using the information in the list of loaded modules.  

5.2. Communication Protocol 

WER clients communicate with the WER service through a 

four stage protocol that minimizes the load on the WER 

servers and the number of clients submitting complete error 

reports. In the first stage, the WER client issues an 

unencrypted HTTP/GET to report the bucket label for the 

error and to determine if the WER service wants additional 

data. In the second stage, the client issues an encrypted 

HTTPS/GET to determine the data desired by the WER 

service. In the third stage, the client pushes the data 

requested, in a CAB file, to the service with an encrypted 

HTTPS/PUT. Finally, in the fourth stage the client issues an 

encrypted HTTPS/GET to signal completion, and request 

any known solutions to the error. 

WER is optimized based on the insight that most errors are 

common to many clients. The division between stages 

eliminates the need for per-connection state on incoming 

servers. Separating Stage 1 allows the protocol to terminate 

at the conclusion of Stage 1 if WER has already collected 

enough data about an error (the case in over 90% of error 

reports). Stage 1, being static HTML, is very low cost to 

reduce the load on WER servers and achieve scale. Stage 1 

does not transmit customer data so we can use unencrypted 

HTTP/GET as it is the cheapest operation on stock web 

servers. Error reports from Stage 1 are counted daily by 

offline processing of the HTTP server logs, and recorded 

with a single database update per server per day. Finally, 

separating Stage 2 from Stage 1 reduces the number of read 

requests on a shared database because the Stage 1 response 

files can be cached on each front-end IIS server. 

5.3. Service 

Errors collected by WER clients are sent to the WER 

service. The WER service employs approximately 60 

servers connected to a 65TB storage area network that 

stores the error report database and a 120TB storage area 

network that stores up to 6 months of raw CAB files (see 

Figure 8). The service is provisioned to receive and process 

well over 100 million error reports per day, which is 

sufficient to survive correlated global events such as 

Internet worms. 

Requests enter through twenty Front-End IIS servers 

operating behind a TCP load balancer. The IIS servers 

handle all stages of the WER protocol. Stage 1 requests are 

resolved with the stock HTTP/GET implementation on 

static pages. Other stages execute ASP.NET code. The IIS 

servers store bucket parameters and bucket counts in the 

Primary SQL servers. The IIS servers save CAB files for 

incoming reports directly to the SAN. Data from the 

Primary servers are replicated through a pair of Distributor 

SQL servers to six Query SQL servers, which are used for 

data mining on the error reports. This three-tiered SQL 

design separates data mining on the Query servers from 

data collection on the Primary servers, maximizing overall 

system throughput. 

Error reports are processed by seven Online Job servers 

and sixteen Offline Job servers. Online Job servers help 

clients label kernel crashes (blue screens) from minidumps. 

Offline Job servers classify error reports with !analyze as 

additional data become available. Offline Job servers also 

perform tasks such as aggregating hit counts from the IIS 

server logs.  

While not strictly a component of WER, the Microsoft 

Symbol Server [24] service helps immensely by giving 

!analyze access to OS and application debugging 

symbols. Symbol Server contains an index of debugging 

symbols (PDB files) for every release (including betas, 

updates and service packs) of every Microsoft program by 

module name, version, and binary hash value. As a best 

practice, Microsoft teams index symbols for every daily 

build into the Symbol Server. Internal copies of the debug 

symbols are annotated with URLs to the exact sources used 

to create each program module. Code built-into the 

debugger [22] hosting !analyze retrieves the debugging 

 

Figure 8. WER Servers. 
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symbols from Symbol Server and source files from the 

source repositories on demand.  

5.4. Acquiring Additional Data 

While many errors can be debugged with simple memory 

dumps, others cannot. Using the WER portal, a 

programmer can create a ―data wanted‖ request. The 

request for data is noted in the Primary SQL servers and the 

Stage 1 static page is deleted. On subsequent error reports 

the WER service will ask clients to collect the desired data 

in a CAB and submit it. The set of additional data 

collectable by WER has evolved significantly over time. 

Additional data the programmer can request include: 

 complete process memory dumps (including all 

dynamically allocated memory) 

 live dumps of kernel memory (including kernel thread 

stacks) related to a process 

 minidumps of other processes in a wait chain 

 minidumps of other processes mapping a shared 

module 

 named files (such as log files) 

 named registry keys (such as program settings) 

 output from a Windows Management Instrumentation 

(WMI) query (such as data from the system event log).  

Beyond gathering additional data, the Stage 2 server 

response can ask the WER client to enable extended 

diagnostics for the next run of a program or driver. One 

extended diagnostic is leak detection, which enables two 

changes in execution. First, during execution of the 

process, a call stack is recorded for each heap allocation. 

Second, when the process exits, the OS performs a 

conservative garbage collection to find allocations in the 

heap unreachable from program data sections; these 

allocations are leaks. Error reports are submitted for leaked 

allocations using the recorded call stack. 

A recent sample showed that the WER servers had 1,503 

buckets with one-off requests for additional full memory 

dumps, 3 for additional files, 349 for WMI queries, and 18 

requests to enable extended driver diagnostics for the next 

boot cycle. By default, WER attempts to collect 3 memory 

dumps every 30 days for each bucket, but needs can vary 

dramatically. On the extreme, one team collected 100,000 

dumps for a single bucket to debug a set of hangs in their 

program. Teams can also establish blanket data request 

policies for a range of buckets. 

6. EVALUATION AND MEASUREMENTS 

We evaluate WER’s scalability, its effectiveness at helping 

programmers find bugs, and the effectiveness of its core 

bucketing heuristics. Our evaluation of WER concludes 

with a summary of additional data learned through WER. 

6.1. Scalability 

WER collected its first million error reports within 8 

months of its deployment in 1999. Since then, WER has 

collected billions more. From January 2003 to January 

2009, the number of error reports processed by WER grew 

by a factor of 30. By comparison, the number of clients 

connecting to Windows Update (WU) [15] in the same 

period grew by a factor of 13 (see Figure 9).  

The growth in reports has been uneven. The adoption of 

Windows XP SP2 (starting in August 2004) pushed down 

the number of errors experienced per user—due to bugs 

corrected with WER—while the likelihood that any error 

was reported did not increase. With Windows Vista, we 

 
Figure 9. Growth of Report Load over  6 Years.  

 

Figure 10. Renos Malware: Number of error  

reports per day. Black bar shows when the fix was 

released through WU. 

 
Figure 11. Daily Report Load as % of Average  

for Feb. 2008. 

Black bars show weekends. 
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made a concerted effort to increase the likelihood that any 

error was reported and to increase the classes of errors 

reported. Our efforts there paid off. The adoption of Vista 

(starting in October 2006) dramatically pushed up both the 

likelihood of any error being reported and the classes of 

application errors reported, while the number of errors 

experienced per user continued to drop. Vista added 

detailed reporting for previously un-reported events such as 

hangs in daemons, application installation failures, and 

non-fatal behaviors such as application memory leaks. The 

opt-in rate for submission of reports almost doubled with a 

new feature that allowed one-time opt-in for all reports. 

From instrumentation on over 100,000 end-user computers, 

we believe that 40% to 50% (of fewer classes) of error 

reports on XP are submitted versus 70% to 80% (of more 

classes) of error reports on Vista.  

To accommodate globally correlated events, the WER 

service is over-provisioned to process at least 100 million 

error reports per day. For example, in February 2007, users 

of Windows Vista were attacked by the Renos malware. If 

installed on a client, Renos caused the Windows GUI shell, 

explorer.exe, to crash when it tried to draw the desktop. 

The user’s experience of a Renos infection was a 

continuous loop in which the shell started, crashed, and 

restarted. While a Renos-infected system was useless to a 

user, the system booted far enough to allow reporting the 

error to WER—on computers where automatic error 

reporting was enabled—and to receive updates from WU. 

As Figure 10 shows, the number of error reports from 

systems infected with Renos rapidly climbed from zero to 

almost 1.2 million per day. On February 27, shown in black 

in the graph, Microsoft released a Windows Defender 

signature for the Renos infection via WU. Within three 

days enough systems had received the new signature to 

drop reports to under 100,000 per day. Reports for the 

original Renos variant became insignificant by the end of 

March. The number of computers reporting errors was 

relatively small: a single computer reported 27,000 errors, 

but stopped after automatically updated.  

Like many large Internet services, WER experiences daily, 

weekly, and monthly load cycles (see Figure 11). The 

variances are relatively small, typically in the range of 

±10% from average. 

6.2. Finding Bugs 

WER augments, but does not replace, other methods for 

improving software quality. We continue to apply static 

analysis and model-checking tools to find errors early in 

the development process [2, 3]. These tools are followed by 

extensive testing regimes before releasing software to 

users. WER helps to us rank all bugs and to find bugs not 

exposed through other techniques. The Windows Vista 

programmers fixed 5,000 bugs found by WER in beta 

deployments after extensive static analysis.  

Compared to errors reported directly by humans, WER 

reports are more useful to programmers. Analyzing data 

sets from Windows, SQL, Excel, Outlook, PowerPoint, 

Word, and Internet Explorer, we found that a bug reported 

by WER is 4.5 to 5.1 times more likely to be fixed than a 

bug reported directly by a human. Error reports from WER 

document internal computation state whereas error reports 

from humans document external symptoms. 

Our experience across many application and OS releases is 

that error reports follow a Pareto distribution with a small 

number of bugs accounting for most error reports. As an 

example, the graphs in Figure 12 plot the relative 

occurrence and cumulative distribution functions (CDFs) 

 

 

 

 
Figure 12. Relative Number of Reports per Bucket and 

CDF for Top 20 Buckets from Office 2010 ITP.  

Black bars are buckets for bugs fixed in 3 week sample 

period. 

Program 1st  2nd  3rd  4th 

Excel 0.227% 1.690% 9.80% 88.4% 

Outlook 0.058% 0.519% 6.31% 93.1% 

PowerPoint 0.106% 0.493% 7.99% 91.4% 

Word 0.057% 0.268% 7.95% 91.7% 

Figure 13. Percentage of Buckets per  

Quartile of Reports. 

A small number of buckets receive most error reports. 
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for the top 20 buckets of programs from the Microsoft 

Office 2010 internal technical preview (ITP). The goal of 

the ITP was to find and fix as many bugs as possible using 

WER before releasing a technical preview to customers. 

These graphs capture the team’s progress just 3 weeks into 

the ITP.  The ITP had been installed by 9,000 internal 

users, error reports had been collected, and the 

programmers had already fixed bugs responsible for over 

22% of the error reports. The team would work for another 

three weeks collecting error reports and fixing bugs, before 

releasing a technical preview to customers. 

The distributions of error reports across buckets found in 

the Office 2010 ITP (see Figure 13) is common to the WER 

experience. Ranking buckets by number of error reports, 

the first quartile of error reports occupy significantly less 

than 1% of the buckets. The distribution has a very long 

tail; the last quartile of error reports account for 88% to 

93% of the buckets. Given finite programmer resources, 

WER helps focus effort on the bugs that have the biggest 

impact on the most users. 

Over successive service packs, the distribution of error 

reports to buckets for any program flattens out as a 

programming team ―climbs down‖ its error curve—finding 

and fixing the most frequently encountered bugs. Figure 14 

plots the cumulative distribution of error reports for the top 

500 buckets, by error report volume, for Windows Vista 

and Vista Service Pack 1. The top 500 buckets account for 

65% of all error reports for Vista and for 58% of all error 

reports for Vista SP1.  

With WER’s scale, even obscure Heisenbugs [17] can 

generate enough error reports for isolation. Early in its use 

WER helped programmers find bugs in Windows NT and 

Office that had existed for over five years. These failures 

were hit so infrequently to be impossible to isolate in the 

lab, but were automatically isolated by WER. A calibrating 

experiment using a pre-release of MSN Explorer to 3.6 

million users found that less than 0.18% of users see two or 

more failures in a 30 day period.  

An informal historical analysis indicates that WER has 

helped improved improve the quality of many classes of 

third-party kernel code for Windows. Figure 15 plots the 

frequency of system crashes for various classes of kernel 

drivers for systems running Windows XP in March 2004, 

March 2005, and March 2006, normalized against system 

crashes caused by hardware failures in the same period. 

Assuming that the expected frequency of hardware failures 

remained roughly constant over that time period 

(something we cannot prove with WER data), the number 

of system crashes for kernel drivers has gone down every 

year except for two classes of drivers: anti-virus and 

storage.  

While we have no explanation for the rise in failures caused 

by storage drivers from March 2005 to March 2006, the 

anti-virus results are not unexpected. Unlike the typical 

device driver, which gets released with a device and then 

improves as updates are needed to resolve errors, anti-virus 

providers are under constant pressure to add new features, 

to improve, and to rewrite their software. The resulting 

churn in anti-virus driver code results in periodic outbursts 

of new errors leading to the divergence from the general 

improvement trend.  

As software providers have begun to use WER more 

proactively, their error report incidence has reduced 

dramatically. For example, in May 2007, one kernel-mode 

provider began to use WER for the first time. Within 30 

days the provider had addressed the top 20 reported issues 

for their code. Within five months, as WER directed users 

 
Figure 14. CDFs of Error Reports for the Top  

500 Buckets for Windows Vista and Vista SP1. 

CDF curves flatten as buckets with the most  

error reports are fixed. 

 
Figure 15. Crashes by Driver Class Normalized  

to Hardware Failures for Same Period. 
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to pick up fixes, the percentage of all kernel crashes 

attributed to the provider dropped from 7.6% to 3.8%. 

6.3. Bucketing Effectiveness 

The ideal bucketing algorithm would map all error reports 

caused by the one bug into one unique bucket with no other 

bugs in that bucket. We know of no such algorithm. Instead 

WER employs a set of bucketing heuristics for labeling and 

classifying. Here we evaluate how far WER’s heuristics are 

from the ideal and the relative merits of the key bucketing 

heuristics. 

We know of two forms of weakness in the WER bucketing 

heuristics: weaknesses in the condensing heuristics, which 

result in mapping reports from a bug into too many 

buckets, and weaknesses in the expanding heuristics, which 

result in mapping more than one bug into the same bucket. 

Figure 16 estimates an upper bound on the weakness in our 

condensing heuristics looking at error reports from 

Microsoft Office 2010 ITP. The first column lists the 

percentage of error reports placed into some bucket other 

than the primary bucket for a bug. These error reports were 

identified when a second bucket was triaged by 

programmers and found to be caused by the same bug as 

the first bucket. The second column lists the percentage of 

error reports in buckets containing exactly one error 

report—we call these ―one-hit wonders‖. While some of 

these may be legitimate one-time events, ten years of 

experience with large sample sets has taught us that real 

bugs are always encountered more than once. We therefore 

assume that all one-hit wonders were inaccurately 

bucketed. For PowerPoint, as many as 37% of all errors 

reports may be incorrectly bucketed due to poor condensing 

heuristics. 

To a much smaller degree, bucketing heuristics err by over-

condensing, placing error reports from multiple bugs into a 

single bucket. All our improvements to !analyze over the 

last few years have reduced the number of these bucket 

collisions from classification. Figure 17 plots the 

percentage of kernel crash error reports from each month 

from January 2009 to June 2009 that were re-bucketed as 

we improved the bucketing heuristics. Because we retain 

minidumps for all kernel crashes for six months, whenever 

we update classifying heuristics we run !analyze on the 

affected portion of the minidump archive to re-bucket 

reports. Examples of recent changes to the heuristics 

include identifying system calls that returned with a thread 

interrupt priority level set too high and identifying if a 

crash during a system hibernate resulted from a cross-driver 

deadlock or from a single-driver fault. 

Figure 18 ranks the relative importance of a number of key 

bucket labeling heuristics. For each heuristic, we measured 

the percentage of buckets receiving error reports because of 

the heuristic. The sample set had 300 million error reports 

Contribution  Heuristic 

67.95% L7 module_offset 

9.10% L4 module_name 

5.62% L1 program_name 

4.22% L2 program_version 

1.90% L3 program_timestamp 

1.02% L8 exception_code 

0.89% L6 module_timestamp 

0.34% L5 module_version 

8.96%  All other labeling heuristics. 

Figure 18. Ranking of Labeling Heuristics  

by % of Buckets. 

 
Figure 19. Crashes/Day for a Firmware Bug.  

Patch was released via WU on day 10. 
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resulting in 25 million buckets. By far the most important 

labeling heuristic is module_offset (L7). 

While not ideal, WER’s bucketing heuristics are in practice 

effective in identifying and quantifying the occurrence of 

errors caused by bugs in both software and hardware. In 

2007, WER began receiving crash reports from computers 

with a particular processor. The error reports were easily 

bucketed based on an increase in system machine checks 

and processor type. When Microsoft approached the 

processor vendor, the vendor had already discovered and 

documented externally the processor issue, but had no idea 

it could occur so frequently until presented with WER data. 

The vendor immediately released a microcode fix via 

WU—on day ten, the black bar in Figure 19—and within 

two days, the number of error reports had dropped to just 

20% of peak.  

6.4. Measurements 
Figure 20 summarizes participation by hardware and 

software providers in the WER third-party program. Most 

providers register their programs and modules so that they 

may receive error reports. A smaller number of providers 

also register solutions to direct users to fixes for bugs.  

Figure 21 summarizes size and churn within the Windows 

deployed base.  As part of each kernel-mode error report, 

WER catalogs the devices and drivers on the computer. The 

list contains the manufacturer part number for each device, 

identified by PNP ID
3
. This list is used to isolate errors 

related to specific hardware combinations, such as when 

one device fails only in the presence of a specific second 

device. Each minidump also contains a list of modules 

loaded into the process or kernel. We can use the devices 

and loaded modules lists to calibrate the Windows 

deployed base. For example, driver identifiers collected in 

2005 show that on average 25 new drivers and 100 revised 

drivers are released every day. To date, WER has 

encountered over two million unique device PNP IDs and 

over 17.5 million unique module names. 

7. DISCUSSION 

7.1. OS Changes to Improve Debugging 
Each release of Windows has incorporated changes based 

on our experience with WER. We’ve already mentioned 

some of these changes: the addition of the WerReport 

APIs, particularly WerRegisterMemoryBlock and 

WerRegisterFile, to enable program tuning of error-

report content; the addition of kernel support for identifying 

thread wait chains and the GetThreadWaitChain API to 

                                                           
3
 PNP IDs are model numbers, not serial numbers. All machines 

with the same hardware configuration will have the same set of 

PNP IDs. 

debug hung programs; and support for process-specific 

dumps of live kernel memory.  

Other changes to improve post-mortem debugging with 

dumps have included disabling frame-pointer omission 

when compiling Windows; rewriting the kernel exception 

handler to invoke werfault.exe when structured 

exception handling fails so errors are reported even on 

stack overflows; checking zeroed pages for non-zero bits; 

and collecting hardware model numbers and configuration 

during boot to a registered area of memory for collection in 

kernel dumps.  

The decision to disable frame-pointer omission (FPO), in 

Windows XP SP2, was originally quite controversial within 

Microsoft. FPO suppresses the creation of frame pointers 

on the stack, instead using offsets from the ESP register to 

access local variables. FPO speeds function calls as frame 

pointers need not be created on the stack and the EBP 

register is free for local use. Programmers believed FPO 

was crucial to performance. However, extensive internal 

testing across a wide range of both desktop and server 

benchmarks showed that FPO provided no statistically 

provable benefit but significantly impaired post-mortem 

debugging of unexpected call stacks. Ultimately it was 

decided that the benefit of improving post-mortem 

debugging outweighed the cost of disabling FPO. 

The kernel maintains a list of free pages, zeroed when the 

CPU is idle. On every sixteenth page allocation, the Vista 

kernel examines the page content and asynchronously 

creates an error report if any zero has changed to a one. 

Analysis of these corrupt ―zero‖ pages has located errors in 

hardware—like a DMA engine that only supported 31-bit 

addresses—and errors in firmware—like a brand of laptop 

with a bad resume-from-sleep firmware. 

7.2. Improvements in Kernel Minidumps  
Section 5.1 outlined the current contents of a WER 

minidump, which contains registers, stacks, a list of loaded 

Providers using WER > 700 

Programs registered by providers with WER 6,956 

Modules registered by providers with WER 299,134 

Providers with registered Solutions 175 

Registered Solutions 1,498 

Figure 20. Third-Party use of WER. 

Average # of  new drivers released per day 25 

Average # of revised drivers released per day 100 

Unique device PNP IDs identified > 2,000,000 

Unique program binaries identified > 17,500,000 

Figure 21. Drivers and Hardware Encountered by 

WER. 
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modules, selected data sections, areas of registered 

memory, and 256 bytes of code immediately surrounding 

the program counter for each thread.  

Kernel minidumps were introduced with Windows XP and 

extend the lower limit of WER’s progressive data 

collection strategy. Before XP, Windows supported two 

types of OS core dump: kernel dumps contained only 

kernel-mode pages and full dumps contained all memory 

pages. XP minidumps were designed to create a much 

smaller dump that would still provide decent problem 

characterization. In addition to the minidump, XP crash 

reports also include a sysdata.xml file which provides 

the PNP ID of the hardware devices, and device driver 

vendor names as extracted from driver resources. Kernel 

minidumps allowed us to count and characterize kernel-

mode crashes in the general population for the first time. In 

some cases, a crash could be debugged directly from the 

minidump. But in most cases, the minidumps helped 

prioritize which issues to pursue via complete kernel crash 

dumps. By default XP creates a minidump on system crash, 

but can be reconfigured to collect kernel or full dumps. 

Three improvements were made in Windows XP Service 

Pack 2. First, in crashes due to pool corruption, the 

previous minidump didn’t contain the corrupted page, so 

corruption patterns could not be characterized or counted. 

For SP2, the minidump generation code was changed to 

explicitly add this page. Second, SP2 added most of the 

system management BIOS table to the minidump, including 

the OEM model name and BIOS version. Third, SP2 added 

information to help identify if the crash report was from a 

system with an over-clocked CPU including a measurement 

of the running CPU frequency along with the processor 

brand string, e.g. ―Intel(R) Core(TM)2 Duo CPU T5450 @ 

1.66GHz‖, in the CAB file. Over-clocking is detected by 

comparing the frequencies. Initially, we were surprised to 

learn that nearly 5% of the crash reports received during 

SP2 beta were from over-clocked CPUs. After SP2 was 

released, that rate fell to around 1%. This pattern has 

repeated: over-clocking is more prevalent among beta users 

than in the overall population. Today the rate for the 

general population bounces between 1-2%, except for 64-

bit Windows systems, where the rate is around 12%.  

Windows Vista made two more enhancements to kernel 

crash reports. First, Vista creates a complete kernel dump 

on crash and after reboot extracts and reports a minidump 

from the kernel dump. If more data is needed, WER will 

ask for the complete kernel dump. This application of 

progressive data collection avoids a worse case in XP, 

where we would change the default from minidump to 

kernel dump, but the computer might never again 

experience the same crash. Second, XP minidumps proved 

deficient for crashes attributed to graphics drivers. The XP 

minidump design allocated up to 32KB of secondary data 

that could be filled in by drivers that registered to add data 

when assembling the crash dump. This 32KB allowed basic 

GPU information to be included in the minidump, but in 

practice the limit was too small, especially as GPUs 

increased their video RAM. Vista increased the size limit of 

the secondary data to 128KB, and again to 1MB in SP2. 

The size has remained the same for Windows 7. 

8. RELATED WORK 
Following WER’s lead, several systems implement one-

click error reporting via the Internet. Crash Reporter [1], 

BugBuddy [4], Talkback [25], and Breakpad [16] collect 

compressed memory dumps and report to central error 

repositories. Talkback provides limited error report 

correlation. WER predates these systems, vastly exceeds 

their scale, and remains unique in its use of automated 

diagnosis, progressive data collection, and directing users 

to existing fixes. 

To improve user anonymity, Castro et al. [7] use symbolic 

execution to systematically replace memory dumps with 

the condition variables that trigger an error. While their 

system reduces the size of error reports and may improve 

anonymity, it requires extensive computation on the client. 

Scrash [5] is an ad hoc mechanism that lets programs 

exclude sensitive memory regions from collection. WER 

protects user privacy by avoiding the explicit collection of 

identifying information, minimizing the memory collected 

in dumps, and avoiding the transfer of user data when 

reporting 90% of all errors through client-side labeling. 

The use of run-time instrumentation to diagnose or 

suppress errors has been discussed broadly in the literature. 

Systems have resorted to statistical sampling, delayed 

triggering, or hoped-for hardware changes to minimize 

instrumentation costs. Liblit et al. [20] addresses the error 

diagnosis problem by remotely collecting data of all 

executions of a program, through statistical sampling. They 

show samples can be combined using logistic regression to 

find the root cause of an error and that samples can be 

collected with runtime overheads of a few percent. Triage 

[31] uses checkpointing and re-execution to identify causes 

of bugs on the client at program failure, to cut debugging 

time and reduce the transfer of non-anonymized data. By 

default, Triage is enabled only after a failed run because it 

imposes a runtime overhead. Vigilante [9] and Argos [27] 

suppress failures on some computers by detecting security 

exploits on other computers and generating filters to block 

bad input or executions. Failure-oblivious computing [29] 

and Rx [28] hide failures by either altering the execution 

environment or fabricating data. Dimmunix [18] suppresses 

deadlocks by altering lock acquisition ordering based on 

locking signatures resulted in deadlocks previously on the 

same computer. The runtime overheads of these systems 



15 

 

and other engineering challenges have prevented their 

widespread deployment; however, we see great potential 

for combining these technologies with WER. For example, 

WER could enable failure-oblivious computing or Triage 

when correlating data suggests a computer is likely to hit 

the same error again.  

WER avoids runtime instrumentation, except in limited 

cases where explicitly requesting extended diagnostics on a 

small number of clients. Data from a 30-day study of an 

MSN Explorer deployment reinforces this decision to avoid 

run-time instrumentation. In the study, less than 1% of 

users encountered any error. Of those, less than a quarter 

encountered a second error of any kind. Any system using 

run-time instrumentation will likely pay a high aggregate 

cost for any bugs found. 

The best techniques for isolating bugs are systems based on 

static analysis and model checking [2, 3, 6, 11]. These 

systems have the distinct advantage that they can be used as 

part of the development cycle to detect bugs before they are 

encountered by users or testers. Results from the 

development of Windows Vista, mentioned in Section 1, 

suggest that present static analysis and model checking 

tools will find at least 20 bugs for every one bug found by 

WER. However, the bugs found by WER are crucial as 

they are the bugs which have slipped past tools in the 

development cycle. 

As a widely deployed system, WER has been 

acknowledged and described narrowly by researchers 

outside our team. Murphy [26] summarized the history and 

motivation for automated crash reporting using WER as an 

example. Ganapathi and Patterson [14] used the Corporate 

Error Reporting (CER) feature of WER, including 

!analyze, to collect and classify roughly 2,000 crash 

reports, mostly from applications, across 200 computers at 

UC Berkeley. In a later report, Ganapathi et al. [13] 

classified the failing component in system crashes to find 

that over 75% of system failures are caused by poorly 

written device drivers. 

Finally, the use of post-mortem core dumps to diagnose 

computer malware dates to the original Internet Worm, as 

documented by Rochlis and Eichin [30]. WER’s benefit is 

that the collection and diagnosis of these error reports 

occurs with little human effort, making it feasible to 

quickly identify and respond to new attacks. 

9. CONCLUSION 
WER has changed the process of software development at 

Microsoft. Development has become more empirical, more 

immediate, and more user-focused. Microsoft teams use 

WER to catch bugs after release, but perhaps as 

importantly, they use WER during pre-release deployments 

to internal and beta testers. While it doesn’t make 

debugging in the small significantly easier (other than 

perhaps providing programmers with better analysis of core 

dumps), WER has enabled a new class of debugging in the 

large. The statistics collected by WER help us to prioritize 

valued programmer resources, understand error trends, and 

find correlated errors. WER’s progressive data collection 

strategy means that programmers get the data they need to 

debug issues, in the large and in the small, while 

minimizing the cost of data collection to users. Automated 

error analysis means programmers are not distracted with 

previously diagnosed errors and that users are made aware 

of fixes that can immediately improve their computing 

experience. 

Our experience with the law of large numbers as applied to 

WER is that we will eventually collect sufficient data to 

diagnose even rare Heisenbugs [17]; WER has already 

helped identify such bugs dating back to the original 

Windows kernel. We have also used WER as an early 

warning system to detect malware attacks, looking at error 

reports from data execution exceptions and buffer overruns. 

Over the last five years, a team at Microsoft has analyzed 

error reports from WER to identify security attacks on 

previously unknown vulnerabilities and other security 

issues.  

WER is the first system to provide users with an end-to-end 

solution for reporting and recovering from errors. WER 

provides programmers with real-time data about errors 

actually experienced by users and provides them with an 

incomparable billion-computer feedback loop to improve 

software quality. 
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