
1

Debugging in the (Very) Large:
Ten Years of Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,
Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

ABSTRACT
Windows Error Reporting (WER) is a distributed system

that automates the processing of error reports coming from

an installed base of a billion machines. WER has collected

billions of error reports in ten years of operation. It collects

error data automatically and classifies errors into buckets,

which are used to prioritize developer effort and report

fixes to users. WER uses a progressive approach to data

collection, which minimizes overhead for most reports yet

allows developers to collect detailed information when

needed. WER takes advantage of its scale to use error

statistics as a tool in debugging; this allows developers to

isolate bugs that could not be found at smaller scale. WER

has been designed for large scale: one pair of database

servers can record all the errors that occur on all Windows

computers worldwide.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging –

debugging aids.

D.2.9 [Software Engineering]: Management – life cycle,

software quality assurance.

D.4.5 [Operating Systems]: Reliability.

General Terms

Management, Measurement, Reliability.

Keywords

Bucketing, Classifying, Error Reports, Labeling,

Minidump, Statistics-based Debugging.

1. INTRODUCTION
Debugging a single program run by a single user on a

single computer is a well understood problem. It may be

arduous, but follows general principles: when a user

reproduces and reports an error, the programmer attaches a

debugger to the running process or a core dump and

examines program state to deduce where algorithms or state

deviated from desired behavior. When tracking particularly

onerous bugs the programmer can resort to restarting and

stepping through execution with the user’s data or

providing the user with a version of the program

instrumented to provide additional diagnostic information.

Once the bug has been isolated, the programmer fixes the

code and provides an updated program.
1

Debugging in the large is harder. When the number of

software components in a single system grows to the

hundreds and the number of deployed systems grows to the

millions, strategies that worked in the small, like asking

programmers to triage individual error reports, fail. With

hundreds of components, it becomes much harder to isolate

the root cause of an error. With millions of systems, the

sheer volume of error reports for even obscure bugs can

become overwhelming. Worse still, prioritizing error

reports from millions of users becomes arbitrary and ad

hoc.

As the number of deployed Microsoft Windows and

Microsoft Office systems scaled to tens of millions in the

late 1990s, our programming teams struggled to scale with

the volume and complexity of errors. The Windows team

devised a tool that could automatically diagnose a core

dump from a system crash to determine the most likely

cause of the crash. We planned to deploy this tool as a web

site where a system administrator could upload a core

dump and receive a report listing probable resolutions for

the crash. Separately, the Office team devised a tool that on

an unhandled exception (that is, a crash) would

automatically collect a stack trace with a small of subset of

heap memory and upload this minidump to a service at

Microsoft that would collect these error reports by faulting

module.

We realized we could tie the automatic diagnosis tool from

the Windows team with the automatic collection tool from

the Office team to create a new service, Windows Error

1
 We use the following definitions: error (noun): A single event in

which program behavior differs from that intended by the

programmer. bug (noun): A root cause, in program code, that

results in one or more errors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.

Copyright 2009 ACM 978-1-60558-752-3/09/10...$10.00.

2

Reporting (WER). WER could automatically generate error

reports for applications and operating systems, report them

to Microsoft, and automatically diagnose them to help users

and programmers.

WER is a distributed, post-mortem debugging system.

When an error occurs, client code on the Windows system

automatically collects information to create an error report.

With authorization from the user or administrator, the client

code reports the error to the WER service. If a fix for the

error already exists, the WER service provides the client

with a URL to the fix. The WER service aggregates and

diagnoses error reports. Programmers can access post-

mortem data from one or more error reports to debug code.

Programmers can also request the collection of additional

data in future error reports to aid debugging.

Beyond basic debugging from error reports, WER enables

statistics-based debugging. WER gathers all error reports to

a central database. In the large, programmers can mine the

error report database to prioritize work, spot trends and test

hypotheses. An early mantra of our team was, ―data not

decibels.‖ Programmers use data from WER to prioritize

debugging so that they fix the bugs that affect the most

users, not just the bugs hit by the loudest customers. WER

data also aids in correlating failures to co-located

components. For example, WER data can show when a

collection of seemingly unrelated crashes all contain the

same likely culprit—say a device driver—even though it

isn’t on any thread stack in any of the error reports.

Three principles account for the widespread adoption of

WER by every Microsoft product team and by over 700

third party companies: automated error diagnosis and

progressive data collection, which enable error processing

at scale, and statistics-based debugging, which harnesses

that scale to help programmers more effectively improve

system quality.

WER has repeatedly proven its value to Microsoft teams by

identifying bugs ―in the wild‖. For example, the Windows

Vista programmers found and fixed over 5,000 bugs

isolated by WER in beta releases of Vista. These bugs were

found after programmers had found and fixed over 100,000

bugs [10] with static analysis and model checking tools [6],

but before the general release of Vista. Every Microsoft

application, server, service, and OS team makes a

significant reduction in WER reports a part of their ship

criteria for product releases.

WER is not the first system to automate the collection of

memory dumps. Post-mortem debugging has existed since

the dawn of digital computing. In 1951, The Whirlwind I

system [12] dumped the contents of tube memory to a CRT

in octal when a program crashed. An automated camera

took a snapshot of the CRT on microfilm, delivered for

debugging the following morning [8]. Later systems

dumped core to disk; used partial core dumps, which

excluded shared code, to minimize the dump size [32]; and

eventually used telecommunication networks to deliver

core dumps to the computer manufacturer [19].

Though WER is not the first system of its kind, it is the first

system to use automatic error diagnosis, the first to use

progressive data collection to reduce overheads, and the

first to automatically direct users to available fixes based

on automated error diagnosis. In use since 1999, WER

remains unique in four aspects:

1. WER is the largest automated error-reporting system in

existence. Approximately one billion computers run WER

client code: every Windows system since Windows XP,

Windows Mobile, all Microsoft programs on Macintosh, and

Windows Live JavaScript code in any browser.

2. WER automates the collection of additional client-side data

when needed for further debugging. When initial error reports

provide insufficient data to debug a problem, programmers

can request that WER collect more data on future error reports

including: broader memory dumps, environment data, registry

values, log files, program settings, and/or output from

management instrumentation.

3. WER automatically directs users to solutions for corrected

errors. This automatic direction is helpful as users often

unknowingly run out-of-date programs. Currently, 47% of

kernel crash reports result in a direction to a software update.

4. WER is general purpose. It is used for OSes and applications

by Microsoft and non-Microsoft programmers. WER collects

error reports for crashes, non-fatal assertion failures, hangs,

setup failures, abnormal executions, and device failures.

Section 2 defines the key challenges and our strategy to

diagnose error reports from a billion clients. Sections 3 and

4 describe our algorithms for processing error reports and

the use of WER for statistics-based debugging. Section 5

describes the WER implementation. Section 6 evaluates

WER’s effectiveness over ten years of use. Section 7

describes changes made to Windows to improve debugging

with WER. Section 8 discusses related work and Section 9

concludes.

Figure 1. Typical WER Authorization Dialog.

3

2. PROBLEM, SCALE, AND STRATEGY

The goal of WER is to allow us to diagnose and correct

every software error on every Windows system. To achieve

this goal, WER must produce data that focuses

programmers on the root cause of errors. It must help

programmers of every class of software in the system:

Microsoft and third-party; OS, system, device driver,

application, and plug-in. It must help programmers

prioritize and fix all errors, even the most non-

deterministic. An inability to scale must never prevent

clients from reporting errors; it must admit literally every

Windows system. Finally, it must address user and

administrative policy concerns, such as privacy and

bandwidth usage, so that it may be used anywhere.

We realized early on that scale presented both the primary

obstacle and the primary resolution to address the goals of

WER. If we could remove humans from the critical path

and scale the error reporting mechanism to admit millions

of error reports, then we could use the law of large numbers

to our advantage. For example, we didn’t need to collect all

error reports, just a statistically significant sample. And we

didn’t need to collect complete diagnostic samples for all

occurrences of an error with the same root cause, just

enough samples to diagnose the problem and suggest

correlation. Moreover, once we had enough data to allow

us to fix the most frequently occurring errors, then their

occurrence would decrease, bringing the remaining errors

to the forefront. Finally, even if we made some mistakes,

such as incorrectly diagnosing two errors as having the

same root cause, once we fixed the first then the

occurrences of the second would reappear and dominate

future samples.

Realizing the value of scale, six strategies emerged as

necessary components to achieving sufficient scale to

produce an effective system: bucketing of error reports,

collecting data progressively, minimizing human

interaction, preserving user privacy, directing users to

solutions, and generalizing the system.

2.1. Bucketing
WER aggregates error reports likely originating from the

same bug into a collection called a bucket
2
. Otherwise, if

naively collected with no filtering or organization WER

data would absolutely overwhelm programmers. The ideal

bucketing algorithm should strictly maintain a property of

orthogonality: one bug per bucket and one bucket per bug.

WER approaches orthogonality through two phases of

bucketing. First, errors are labeled, assigned to a first

bucket based on immediate evidence available at the client

with the goal that each bucket contains error reports from

just one bug. Second, errors are classified at the WER

service; they are assigned to new buckets as additional data

is analyzed with the goal of minimizing programmer effort

by placing error reports from just one bug into just one

final bucket.

Bucketing enables automatic diagnosis and progressive

data collection. Good bucketing relieves programmers and

the system of the burden of processing redundant error

reports, helps prioritize programmer effort by bucket

prevalence, and can be used to link users to fixes when the

underlying cause for a bucket has been corrected. In WER,

bucketing is progressive. As additional data related to an

error report is collected, such as symbolic information to

translate from an offset in a module to a named function,

the report is associated with a new bucket. Although the

design of optimal bucketing algorithms remains an open

problem, Section 6.3 shows that the bucketing algorithms

currently used by WER are in practice quite effective.

2.2. Progressive Data Collection
WER uses a progressive data collection strategy to reduce

the cost of error reporting so that the system can scale to

high volume while providing sufficient detail for

2
 bucket (noun): A collection of error reports likely caused by the

same bug. bucket (verb): To triage error reports into buckets.

Figure 2. Typical Solution Dialog.

Figure 3. The WER Website

(http://winqual.microsoft.com).

4

debugging. Most error reports consist of no more than a

simple bucket identifier. If additional data is needed, WER

will next collect a minidump (an abbreviated stack and

memory dump, and the configuration of the faulting

system) into a compressed Windows cabinet archive file

(the CAB file). If further data beyond the minidump is

required to diagnose the error, WER can progress to

collecting full memory dumps then memory dumps from

related programs, related files, or additional data queried

from the reporting system into the CAB file. Progressive

data collection reduces the scale of incoming data enough

that one pair of SQL servers can record every error on

every Windows system world-wide. Progressive data

collection also reduces the user cost in time and bandwidth

of reporting errors, thus encouraging user participation.

2.3. Minimizing Human Interaction
WER removes users from all but the authorization step of

error reporting and removes programmers from initial error

examination by automated error diagnosis. User interaction

is reduced in most cases to a yes/no authorization (see

Figure 1). To further reduce interaction, users can

permanently opt in or out of future authorization requests.

WER servers analyze each error report automatically to

direct users to existing fixes and, as needed, ask the client

to collect additional data. Programmers are notified only

after WER determines that an error report does not match

any previously resolved bugs. Automated diagnosis allows

programmers to focus on finding and fixing new bugs

rather than rehashing stale problems.

2.4. Preserving User Privacy
We take considerable care to avoid knowingly collecting

personal identifying information (PII). This reduces

regulatory burden and encourages user participation. For

example, although WER collects hardware configuration

information, our client code zeros serial numbers and other

known unique identifiers to avoid transmitting data that

might identify the sending computer. WER operates on an

informed consent policy with users. Errors are reported

only with user consent. All consent requests default to

negative, thus requiring that the user opt-in before

transmission. WER reporting can be disabled on a per-

error, per-program, or per-computer basis by individual

users or by administrators. Because WER does not have

sufficient metadata to locate and filter possible PII from

collected stack or heap data, we minimize the collection of

heap data and apply company data-access policies that

restrict the use of WER data strictly to debugging and

improving program quality.

To allow administrators to apply organizational policies,

WER includes a feature called Corporate Error Reporting

(CER). With CER, administrators can configure WER

clients to report errors to a private server, to disable error

reporting, to enable error reporting with user opt-in, or to

force error reporting with no end-user opt-out. Where

errors are reported locally, administrators can use CER to

pass some or all error reports on to the WER service.

2.5. Providing Solutions to Users
Many errors have known corrections. For example, users

running out-of-date software should install the latest

service pack. The WER service maintains a mapping from

buckets to solutions. A solution is the URL of a web page

describing steps a user should take to prevent reoccurrence

of the error (see Figure 2). Solution URLs can link the user

to a page hosting a patch for a specific problem, to an

update site where users with out-of-date code can get the

latest version, or to documentation describing workarounds

(see Figure 3). Individual solutions can be applied to one or

more buckets with a simple regular expression matching

mechanism. For example, all users who hit any problem

with the original release of Word 2003 are directed to a

web page hosting the latest Office 2003 service pack.

2.6. Generalizing the System
While our original plan was to support error reporting for

just the Windows kernel and Office applications, we

realized WER had universal value when other teams started

asking how to provide a similar service. We considered

letting each Microsoft product team run its own WER

service, but decided it was easier to open the service to all

than to package the server software. Though developed by

Office and Windows, the first program to ship with WER

client code was MSN Explorer. We run WER as a global

service and provide access to WER data to programmers

inside and outside Microsoft. We operate a free WER

website (see Figure 3) for third-party software and

hardware providers to improve their code.

3. BUCKETING ALGORITHMS
One of the most important elements of WER is its

mechanism for assigning error reports to buckets. This is

carried out using a collection of heuristics. Conceptually

WER bucketing heuristics can be divided along two axes.

The first axis describes where the bucketing code runs:

labeling heuristics are performed on clients (to minimize

server load) and classifying heuristics are performed on

servers (to minimize programmer effort). The second axis

describes the impact of the heuristic on the number of final

buckets presented to programmers from a set of incoming

error reports: expanding heuristics increase the number of

buckets with the goal that no two bugs are assigned to the

same bucket; condensing heuristics decrease the number of

buckets with the goal that no two buckets contain error

reports from the same bug.

Expanding and condensing heuristics should be

complimentary, not conflicting. An expanding heuristic

5

should not introduce new buckets for the same bug. A

condensing heuristic should not put two bugs into one

bucket. Working properly in concert, expanding and

condensing heuristics should move WER toward the

desired goal of one bucket for one bug.

3.1. Client-Side Bucketing (Labeling)

The first bucketing heuristics run on the client when an

error report is generated (see Figure 4). The primary goal of

these labeling heuristics is to produce a unique bucket label

based purely on local information that is likely to align with

other reports caused by the same bug. This labeling step is

necessary because in most cases, the only data

communicated to the WER servers will be a bucket label.

The primary labeling heuristics (L1 through L7) generate a

bucket label from the faulting program, module, and offset

of the program counter within the module. Additional

heuristics are generated under special conditions, such as

when an error is caused by an unhandled program

exception (L8). Programs can use custom heuristics for

bucketing by calling the WER APIs to generate an error

report. For example, Office’s build process assigns a

unique permanent tag to each assert statement in the source

code. When an assert failure is reported as an error, the

bucket is labeled by the assert tag (L15) rather than the

module information. Thus all instances of a single assert

are assigned to a single bucket even as the assert moves in

the source over time.

Most of the labeling heuristics are expanding heuristics,

intended to spread separate bugs into distinct buckets. For

example, the hang_wait_chain (L10) heuristic uses the

GetThreadWaitChain API to walk the chain of threads

waiting on synchronization objects held by threads, starting

from the program’s user-input thread. If a root thread is

found, the error is reported as a hang originating with the

root thread. Windows XP lacked GetThreadWaitChain,

so all hangs for a single version of a single program are

bucketed together. The few condensing heuristics (L12,

L13, and L14) were derived empirically for common cases

where a single bug produced many buckets. For example,

the unloaded_module (L13) heuristic condenses all

errors where a module has been unloaded prematurely due

to a reference counting bug.

3.2. Server-Side Bucketing (Classifying)

The heuristics for server-side bucketing attempt to classify

error reports to maximize programmer effectiveness. They

are codified in !analyze (―bang analyze‖), an extension to

the Windows Debugger [22]. The heuristics for bucketing

in WER were derived empirically and continue to evolve.

!analyze is roughly 100,000 lines of code implementing

some 500 bucketing heuristics (see Figure 5), with roughly

one heuristic added per week.

The most important classifying heuristics (C1 through C5)

are part of an algorithm that analyzes the memory dump to

determine which thread context and stack frame most likely

caused the error. The algorithm works by first finding any

 Heuristic Impact Description

L1 program_name Expanding Include program name in bucket label.

L2 program_version Expanding Include program version.

L3 program_timestamp Expanding Include program binary timestamp.

L4 module_name Expanding Include faulting module name in label.

L5 module_version Expanding Include faulting module version.

L6 module_timestamp Expanding Include faulting module binary timestamp.

L7 module_offset Expanding Include offset of crashing instruction in fault module.

L8 exception_code Expanding Cause of unhandled exception.

L9 bugcheck_code Expanding Cause of system crash (kernel only)

L10 hang_wait_chain Expanding On hang, walk chain of threads waiting on synchronization objects to find root.

L11 setup_product_name Expanding For ―setup.exe‖, include product name from version information resource.

L12 pc_on_stack Condensing Code was running on stack, remove module offset.

L13 unloaded_module Condensing Call or return into memory where a previously loaded module has unloaded.

L14 custom_parameters Expanding Additional parameters generated by application-specific client code.

L15 assert_tags* Condensing Replace module information with unique in-code assert ID.

L16 timer_asserts* Expanding Create a non-crashing error report by in-code ID if user scenario takes too long.

L17 shipping_assert* Expanding Create a non-crashing error report if non-fatal invariant is violated

L18 installer_failure Expanding Include target application, version, and reason for Windows installer failure.

Figure 4. Top Heuristics for Labeling (run on client).

*Asserts require custom code and/or metadata in each program.

6

thread context records in the memory dump (heuristic C1).

The algorithm walks each stack starting at the most recent

frame, f0, backward. Each frame, fn, is assigned a priority,

pn, of 0 to 5 based on its increasing likelihood of being a

root cause (heuristics C2 through C5). Frame fn is selected

only if pn > pi for all 0 ≤ i < n. For core OS components,

like the kernel, pn = 1; for core drivers pn = 2; for other OS

code, like the shell, pn = 3; and for most other frames pn =

4. For frames known to have cause an error, such as any fn

where fn-1 is assert, pn = 5. Priority pn = 0 is reserved for

functions known never to be the root cause of an error, such

as memcpy, memset, and strcpy.

!analyze contains a number of heuristics to filter out

error reports unlikely to be debugged (C8 through C15).

For example, since we have copies of all Microsoft binaries

(and some third-party binaries), !analyze compares the

(few, and small) code sections in the memory dump against

the archived copies. If there’s a difference, then the client

computer was executing corrupt code—not much reason to

debug any further. !analyze categorizes these as one-bit-

errors (likely bad memory), multi-word errors (likely a

misdirected DMA), and stride-pattern errors (likely a DMA

from a faulty device). As another example, kernel dumps

are tagged if they contain evidence of known root kits

(C11), out-of-date drivers (C12), drivers known to corrupt

the kernel heap (C13), or hardware known to cause

memory or computation errors (C14 and C15).

4. STATISTICS-BASED DEBUGGING
Perhaps the most important feature enabled by WER is

statistics-based debugging. WER records data about a large

percentage of all errors that occur on Windows systems

into a single database. Programmers can mine the WER

database to improve debugging more than would be

possible with a simple, unstructured stream of error reports.

Strategies which use the database to improve the

effectiveness of debugging can be broken into five

categories: prioritizing debugging effort, finding hidden

causes, testing root cause hypotheses, measuring

deployment of solutions, and watching for regressions.

We built WER to improve the effectiveness of debugging.

The primary reason to collect large numbers of error

reports is to help programmers know which errors are most

prevalent. Programmers sort their buckets and start

debugging with the bucket with largest volume of error

reports. A more sophisticated strategy is to aggregate error

counts for all buckets for the same function, select the

function with the highest count, and then work through the

buckets for the function in order of decreasing bucket

count. This strategy tends to be effective as errors at

different locations in the same function often have the same

root cause. Or at the very least, a programmer ought to be

aware of all known errors in a function when fixing it.

The WER database can be used to find root causes which

are not immediately obvious from the memory dumps. For

example, when bucketing points the blame at reputable

code we search error reports to look for alternative

explanations. One effective strategy is to search for

correlations between the error and a seemingly innocent

third party. In many cases we find a third party device

driver or other plug-in that has a higher frequency of

 Heuristic Impact Description
C1 find_correct_stack Expanding Walk data structures for known routines to find trap frames, etc. to stack.

C2 skip_core_modules Expanding De-prioritize kernel code or core OS user-mode code.

C3 skip_core_drivers Expanding De-prioritize first-party drivers for other causes.

C4 skip_library_funcs Expanding Skip stack frames containing common functions like memcpy, printf, etc.

C5 third_party Condensing Identify third-party code on stack.

C6 function_name Condensing Replace module offset with function name.

C7 function_offset Expanding Include PC offset in function.

C8 one_bit_corrupt Condensing Single-bit errors in code from dump compared to archive copy.

C9 image_corrupt Condensing Multi-word errors in code from dump compared to archive copy.

C10 pc_misaligned Condensing PC isn’t aligned to an instruction.

C11 malware_identified Condensing Contains known malware.

C12 old_image Condensing Known out-of-date program.

C13 pool_corruptor Condensing Known program that severely corrupts heap.

C14 bad_device Condensing Identify known faulty devices.

C15 over_clocked_cpu Condensing Identify over-clocked CPU.

C16 heap_corruption Condensing Heap function failed with corrupt heap.

C17 exception_subcodes Expanding Separate invalid-pointer read from write, etc.

C18 custom_extensions Expanding Output of registered third-party WER plug-in invoked based target program

Figure 5. Top Heuristics for Classifying (run on server).

7

occurrence in the error reports than in the general

population. For example, we recently began receiving a

large number of error reports with invalid pointer usage in

the Windows event tracing infrastructure. An analysis of

the error reports revealed that 96% of the faulting

computers were running a specific third-party device

driver. With well below 96% market share (based on all

other error reports), we approached the third party and they

ultimately found the bug in their code. By comparing

expected versus occurring frequency distributions, we

similarly have found hidden causes from specific

combinations of modules from multiple third-parties and

from buggy hardware (in one case a specific hard disk

model). A similar strategy is ―stack sampling‖ in which

error reports for similar buckets are sampled to determine

which functions, other than the obvious targets, occur

frequently on the thread stacks.

The WER database can be used to test programmer

hypotheses about the root causes of errors. The basic

strategy is to construct a debugger test function that can

evaluate a hypothesis on a memory dump, and then apply it

to thousands of memory dumps to verify that the

hypothesis is not violated. For example, one of the

Windows programmers was recently debugging an issue

related to the plug-and-play lock in the Windows I/O

subsystem. We constructed an expression to extract the

current holder of the lock from a memory dump and then

ran the expression across 10,000 memory dumps to see

how many of the reports had the same lock holder. One

outcome of the analysis was a bug fix; another was the

creation of a new heuristic for !analyze.

A recent use of the WER database is to determine how

widely a software update has been deployed. Deployment

can be measured by absence, measuring the decrease in

error reports fixed by the software update. Deployment can

also be measured by an increase presence of the new

program or module version in error reports for other issues.

Finally, both Microsoft and a number of third parties use

the WER database to check for regressions. Similar to the

strategies for measuring deployment, we look at error

report volumes over time to determine if a software fix had

the desired effect of reducing errors. We also look at error

report volumes around major software releases to quickly

identify and resolve new errors that may appear with the

new release.

5. SYSTEM DESIGN

WER is a distributed system. Client-side software detects

an error condition, generates an error report, labels the

bucket, and reports the error to the WER service. The WER

service records the error occurrence and then, depending on

information known about the particular error, might request

additional data from the client, or direct the client to a

solution. Programmers access the WER service to retrieve

data for specific error reports and for statistics-based

debugging.

5.1. Generating an Error Report
Error reports are created in response to OS-visible events

such as crashes, hangs, and installation failures (see Figure

6), or directly by applications calling a set of APIs for

creating and submitting error reports (see Figure 7). For

example, the default user-mode unhandled exception filter

triggers an error report on program failure, the kernel

triggers a report if a process runs out of stack, and the shell

triggers a report if a program fails to respond for 5 seconds

to user input. Once a report is triggered, the

werfault.exe service is responsible for securing user

authorization and submitting the error report to the WER

servers. Reports are submitted immediately or queued for

later if the computer is not connected to the Internet.

An important element of WER’s progressive data

collection strategy is the minidump, an abbreviated memory

dump [21]. Minidumps are submitted for all kernel crashes

when requested for program errors. Minidumps contain

registers from each processor, the stack of each thread (or

Error Reporting Trigger

Kernel Crash Crash dump found in page file on boot.

Application Crash Unhandled process exception.

Application Hang Failure to process user input for 5 seconds.

Service Hang Service thread times out.

Install Failure OS or application installation fails.

AppCompat Issue Program calls deprecated API.

Custom Error Program calls WER APIs.

Timer Assert* User scenario takes longer than expected.

Ship Assert* Invariant violated in program code.

Figure 6. Errors reported by WER.
*Asserts require custom code in each program

API Description

WerReportCreate(type) Initiate an error report.

WerReportAddDump(r,p,opts) Include a minidump.

WerReportAddFile(r,f,opts) Include a file.

WerReportSubmit(r,opts) Submit report to service.

WerRegisterFile(f,opts)

WerRegisterMemoryBlock(p,c)

Register a file or
memory region for
inclusion in future error
reports for this process.

KeRegisterBugCheckReason-

Callback(f)

Registers kernel-mode
call-back to provide data
for future crash reports.

Figure 7. Key WER Client APIs.

8

processor for kernel dumps), the list of loaded modules,

selected data sections from each loaded module, small

areas of dynamically allocated memory that have been

registered specifically for minidump collection, and 256

bytes of code immediately surrounding the program

counter for each thread. A minidump does not include

entire code sections; these are located by WER out of band

using the information in the list of loaded modules.

5.2. Communication Protocol

WER clients communicate with the WER service through a

four stage protocol that minimizes the load on the WER

servers and the number of clients submitting complete error

reports. In the first stage, the WER client issues an

unencrypted HTTP/GET to report the bucket label for the

error and to determine if the WER service wants additional

data. In the second stage, the client issues an encrypted

HTTPS/GET to determine the data desired by the WER

service. In the third stage, the client pushes the data

requested, in a CAB file, to the service with an encrypted

HTTPS/PUT. Finally, in the fourth stage the client issues an

encrypted HTTPS/GET to signal completion, and request

any known solutions to the error.

WER is optimized based on the insight that most errors are

common to many clients. The division between stages

eliminates the need for per-connection state on incoming

servers. Separating Stage 1 allows the protocol to terminate

at the conclusion of Stage 1 if WER has already collected

enough data about an error (the case in over 90% of error

reports). Stage 1, being static HTML, is very low cost to

reduce the load on WER servers and achieve scale. Stage 1

does not transmit customer data so we can use unencrypted

HTTP/GET as it is the cheapest operation on stock web

servers. Error reports from Stage 1 are counted daily by

offline processing of the HTTP server logs, and recorded

with a single database update per server per day. Finally,

separating Stage 2 from Stage 1 reduces the number of read

requests on a shared database because the Stage 1 response

files can be cached on each front-end IIS server.

5.3. Service

Errors collected by WER clients are sent to the WER

service. The WER service employs approximately 60

servers connected to a 65TB storage area network that

stores the error report database and a 120TB storage area

network that stores up to 6 months of raw CAB files (see

Figure 8). The service is provisioned to receive and process

well over 100 million error reports per day, which is

sufficient to survive correlated global events such as

Internet worms.

Requests enter through twenty Front-End IIS servers

operating behind a TCP load balancer. The IIS servers

handle all stages of the WER protocol. Stage 1 requests are

resolved with the stock HTTP/GET implementation on

static pages. Other stages execute ASP.NET code. The IIS

servers store bucket parameters and bucket counts in the

Primary SQL servers. The IIS servers save CAB files for

incoming reports directly to the SAN. Data from the

Primary servers are replicated through a pair of Distributor

SQL servers to six Query SQL servers, which are used for

data mining on the error reports. This three-tiered SQL

design separates data mining on the Query servers from

data collection on the Primary servers, maximizing overall

system throughput.

Error reports are processed by seven Online Job servers

and sixteen Offline Job servers. Online Job servers help

clients label kernel crashes (blue screens) from minidumps.

Offline Job servers classify error reports with !analyze as

additional data become available. Offline Job servers also

perform tasks such as aggregating hit counts from the IIS

server logs.

While not strictly a component of WER, the Microsoft

Symbol Server [24] service helps immensely by giving

!analyze access to OS and application debugging

symbols. Symbol Server contains an index of debugging

symbols (PDB files) for every release (including betas,

updates and service packs) of every Microsoft program by

module name, version, and binary hash value. As a best

practice, Microsoft teams index symbols for every daily

build into the Symbol Server. Internal copies of the debug

symbols are annotated with URLs to the exact sources used

to create each program module. Code built-into the

debugger [22] hosting !analyze retrieves the debugging

Figure 8. WER Servers.

9

symbols from Symbol Server and source files from the

source repositories on demand.

5.4. Acquiring Additional Data

While many errors can be debugged with simple memory

dumps, others cannot. Using the WER portal, a

programmer can create a ―data wanted‖ request. The

request for data is noted in the Primary SQL servers and the

Stage 1 static page is deleted. On subsequent error reports

the WER service will ask clients to collect the desired data

in a CAB and submit it. The set of additional data

collectable by WER has evolved significantly over time.

Additional data the programmer can request include:

 complete process memory dumps (including all

dynamically allocated memory)

 live dumps of kernel memory (including kernel thread

stacks) related to a process

 minidumps of other processes in a wait chain

 minidumps of other processes mapping a shared

module

 named files (such as log files)

 named registry keys (such as program settings)

 output from a Windows Management Instrumentation

(WMI) query (such as data from the system event log).

Beyond gathering additional data, the Stage 2 server

response can ask the WER client to enable extended

diagnostics for the next run of a program or driver. One

extended diagnostic is leak detection, which enables two

changes in execution. First, during execution of the

process, a call stack is recorded for each heap allocation.

Second, when the process exits, the OS performs a

conservative garbage collection to find allocations in the

heap unreachable from program data sections; these

allocations are leaks. Error reports are submitted for leaked

allocations using the recorded call stack.

A recent sample showed that the WER servers had 1,503

buckets with one-off requests for additional full memory

dumps, 3 for additional files, 349 for WMI queries, and 18

requests to enable extended driver diagnostics for the next

boot cycle. By default, WER attempts to collect 3 memory

dumps every 30 days for each bucket, but needs can vary

dramatically. On the extreme, one team collected 100,000

dumps for a single bucket to debug a set of hangs in their

program. Teams can also establish blanket data request

policies for a range of buckets.

6. EVALUATION AND MEASUREMENTS

We evaluate WER’s scalability, its effectiveness at helping

programmers find bugs, and the effectiveness of its core

bucketing heuristics. Our evaluation of WER concludes

with a summary of additional data learned through WER.

6.1. Scalability

WER collected its first million error reports within 8

months of its deployment in 1999. Since then, WER has

collected billions more. From January 2003 to January

2009, the number of error reports processed by WER grew

by a factor of 30. By comparison, the number of clients

connecting to Windows Update (WU) [15] in the same

period grew by a factor of 13 (see Figure 9).

The growth in reports has been uneven. The adoption of

Windows XP SP2 (starting in August 2004) pushed down

the number of errors experienced per user—due to bugs

corrected with WER—while the likelihood that any error

was reported did not increase. With Windows Vista, we

Figure 9. Growth of Report Load over 6 Years.

Figure 10. Renos Malware: Number of error

reports per day. Black bar shows when the fix was

released through WU.

Figure 11. Daily Report Load as % of Average

for Feb. 2008.

Black bars show weekends.

0

5

10

15

20

25

30

35

Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

R
at

io
 o

ve
r

Ja
n

. 2
0

0
3 WER Reports

WU Clients

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1-Feb-07 15-Feb-07 1-Mar-07 15-Mar-07 29-Mar-07
R

e
p

o
rt

s
p

e
r

D
ay

60%

70%

80%

90%

100%

110%

120%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

%
 o

f
D

ai
ly

 A
ve

ra
ge

10

made a concerted effort to increase the likelihood that any

error was reported and to increase the classes of errors

reported. Our efforts there paid off. The adoption of Vista

(starting in October 2006) dramatically pushed up both the

likelihood of any error being reported and the classes of

application errors reported, while the number of errors

experienced per user continued to drop. Vista added

detailed reporting for previously un-reported events such as

hangs in daemons, application installation failures, and

non-fatal behaviors such as application memory leaks. The

opt-in rate for submission of reports almost doubled with a

new feature that allowed one-time opt-in for all reports.

From instrumentation on over 100,000 end-user computers,

we believe that 40% to 50% (of fewer classes) of error

reports on XP are submitted versus 70% to 80% (of more

classes) of error reports on Vista.

To accommodate globally correlated events, the WER

service is over-provisioned to process at least 100 million

error reports per day. For example, in February 2007, users

of Windows Vista were attacked by the Renos malware. If

installed on a client, Renos caused the Windows GUI shell,

explorer.exe, to crash when it tried to draw the desktop.

The user’s experience of a Renos infection was a

continuous loop in which the shell started, crashed, and

restarted. While a Renos-infected system was useless to a

user, the system booted far enough to allow reporting the

error to WER—on computers where automatic error

reporting was enabled—and to receive updates from WU.

As Figure 10 shows, the number of error reports from

systems infected with Renos rapidly climbed from zero to

almost 1.2 million per day. On February 27, shown in black

in the graph, Microsoft released a Windows Defender

signature for the Renos infection via WU. Within three

days enough systems had received the new signature to

drop reports to under 100,000 per day. Reports for the

original Renos variant became insignificant by the end of

March. The number of computers reporting errors was

relatively small: a single computer reported 27,000 errors,

but stopped after automatically updated.

Like many large Internet services, WER experiences daily,

weekly, and monthly load cycles (see Figure 11). The

variances are relatively small, typically in the range of

±10% from average.

6.2. Finding Bugs

WER augments, but does not replace, other methods for

improving software quality. We continue to apply static

analysis and model-checking tools to find errors early in

the development process [2, 3]. These tools are followed by

extensive testing regimes before releasing software to

users. WER helps to us rank all bugs and to find bugs not

exposed through other techniques. The Windows Vista

programmers fixed 5,000 bugs found by WER in beta

deployments after extensive static analysis.

Compared to errors reported directly by humans, WER

reports are more useful to programmers. Analyzing data

sets from Windows, SQL, Excel, Outlook, PowerPoint,

Word, and Internet Explorer, we found that a bug reported

by WER is 4.5 to 5.1 times more likely to be fixed than a

bug reported directly by a human. Error reports from WER

document internal computation state whereas error reports

from humans document external symptoms.

Our experience across many application and OS releases is

that error reports follow a Pareto distribution with a small

number of bugs accounting for most error reports. As an

example, the graphs in Figure 12 plot the relative

occurrence and cumulative distribution functions (CDFs)

Figure 12. Relative Number of Reports per Bucket and

CDF for Top 20 Buckets from Office 2010 ITP.

Black bars are buckets for bugs fixed in 3 week sample

period.

Program 1st 2nd 3rd 4th

Excel 0.227% 1.690% 9.80% 88.4%

Outlook 0.058% 0.519% 6.31% 93.1%

PowerPoint 0.106% 0.493% 7.99% 91.4%

Word 0.057% 0.268% 7.95% 91.7%

Figure 13. Percentage of Buckets per

Quartile of Reports.

A small number of buckets receive most error reports.

0%

50%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920

R
e

la
ti

ve
 #

o
f

R
e

p
o

rt
s Excel

0%

50%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920

R
e

la
ti

ve
 #

o
f

R
e

p
o

rt
s Outlook

0%

50%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920

R
e

la
ti

ve
 #

o
f

R
e

p
o

rt
s PowerPoint

0%

50%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920
R

e
la

ti
ve

 #

o
f

R
e

p
o

rt
s Word

11

for the top 20 buckets of programs from the Microsoft

Office 2010 internal technical preview (ITP). The goal of

the ITP was to find and fix as many bugs as possible using

WER before releasing a technical preview to customers.

These graphs capture the team’s progress just 3 weeks into

the ITP. The ITP had been installed by 9,000 internal

users, error reports had been collected, and the

programmers had already fixed bugs responsible for over

22% of the error reports. The team would work for another

three weeks collecting error reports and fixing bugs, before

releasing a technical preview to customers.

The distributions of error reports across buckets found in

the Office 2010 ITP (see Figure 13) is common to the WER

experience. Ranking buckets by number of error reports,

the first quartile of error reports occupy significantly less

than 1% of the buckets. The distribution has a very long

tail; the last quartile of error reports account for 88% to

93% of the buckets. Given finite programmer resources,

WER helps focus effort on the bugs that have the biggest

impact on the most users.

Over successive service packs, the distribution of error

reports to buckets for any program flattens out as a

programming team ―climbs down‖ its error curve—finding

and fixing the most frequently encountered bugs. Figure 14

plots the cumulative distribution of error reports for the top

500 buckets, by error report volume, for Windows Vista

and Vista Service Pack 1. The top 500 buckets account for

65% of all error reports for Vista and for 58% of all error

reports for Vista SP1.

With WER’s scale, even obscure Heisenbugs [17] can

generate enough error reports for isolation. Early in its use

WER helped programmers find bugs in Windows NT and

Office that had existed for over five years. These failures

were hit so infrequently to be impossible to isolate in the

lab, but were automatically isolated by WER. A calibrating

experiment using a pre-release of MSN Explorer to 3.6

million users found that less than 0.18% of users see two or

more failures in a 30 day period.

An informal historical analysis indicates that WER has

helped improved improve the quality of many classes of

third-party kernel code for Windows. Figure 15 plots the

frequency of system crashes for various classes of kernel

drivers for systems running Windows XP in March 2004,

March 2005, and March 2006, normalized against system

crashes caused by hardware failures in the same period.

Assuming that the expected frequency of hardware failures

remained roughly constant over that time period

(something we cannot prove with WER data), the number

of system crashes for kernel drivers has gone down every

year except for two classes of drivers: anti-virus and

storage.

While we have no explanation for the rise in failures caused

by storage drivers from March 2005 to March 2006, the

anti-virus results are not unexpected. Unlike the typical

device driver, which gets released with a device and then

improves as updates are needed to resolve errors, anti-virus

providers are under constant pressure to add new features,

to improve, and to rewrite their software. The resulting

churn in anti-virus driver code results in periodic outbursts

of new errors leading to the divergence from the general

improvement trend.

As software providers have begun to use WER more

proactively, their error report incidence has reduced

dramatically. For example, in May 2007, one kernel-mode

provider began to use WER for the first time. Within 30

days the provider had addressed the top 20 reported issues

for their code. Within five months, as WER directed users

Figure 14. CDFs of Error Reports for the Top

500 Buckets for Windows Vista and Vista SP1.

CDF curves flatten as buckets with the most

error reports are fixed.

Figure 15. Crashes by Driver Class Normalized

to Hardware Failures for Same Period.

0%

10%

20%

30%

40%

50%

60%

70%

0 100 200 300 400 500

%
 o

f
al

l R
e

p
o

rt
s

fo
r

R
e

le
as

e

Bucket

Vista

Vista SP1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2004
2005
2006

12

to pick up fixes, the percentage of all kernel crashes

attributed to the provider dropped from 7.6% to 3.8%.

6.3. Bucketing Effectiveness

The ideal bucketing algorithm would map all error reports

caused by the one bug into one unique bucket with no other

bugs in that bucket. We know of no such algorithm. Instead

WER employs a set of bucketing heuristics for labeling and

classifying. Here we evaluate how far WER’s heuristics are

from the ideal and the relative merits of the key bucketing

heuristics.

We know of two forms of weakness in the WER bucketing

heuristics: weaknesses in the condensing heuristics, which

result in mapping reports from a bug into too many

buckets, and weaknesses in the expanding heuristics, which

result in mapping more than one bug into the same bucket.

Figure 16 estimates an upper bound on the weakness in our

condensing heuristics looking at error reports from

Microsoft Office 2010 ITP. The first column lists the

percentage of error reports placed into some bucket other

than the primary bucket for a bug. These error reports were

identified when a second bucket was triaged by

programmers and found to be caused by the same bug as

the first bucket. The second column lists the percentage of

error reports in buckets containing exactly one error

report—we call these ―one-hit wonders‖. While some of

these may be legitimate one-time events, ten years of

experience with large sample sets has taught us that real

bugs are always encountered more than once. We therefore

assume that all one-hit wonders were inaccurately

bucketed. For PowerPoint, as many as 37% of all errors

reports may be incorrectly bucketed due to poor condensing

heuristics.

To a much smaller degree, bucketing heuristics err by over-

condensing, placing error reports from multiple bugs into a

single bucket. All our improvements to !analyze over the

last few years have reduced the number of these bucket

collisions from classification. Figure 17 plots the

percentage of kernel crash error reports from each month

from January 2009 to June 2009 that were re-bucketed as

we improved the bucketing heuristics. Because we retain

minidumps for all kernel crashes for six months, whenever

we update classifying heuristics we run !analyze on the

affected portion of the minidump archive to re-bucket

reports. Examples of recent changes to the heuristics

include identifying system calls that returned with a thread

interrupt priority level set too high and identifying if a

crash during a system hibernate resulted from a cross-driver

deadlock or from a single-driver fault.

Figure 18 ranks the relative importance of a number of key

bucket labeling heuristics. For each heuristic, we measured

the percentage of buckets receiving error reports because of

the heuristic. The sample set had 300 million error reports

Contribution Heuristic

67.95% L7 module_offset

9.10% L4 module_name

5.62% L1 program_name

4.22% L2 program_version

1.90% L3 program_timestamp

1.02% L8 exception_code

0.89% L6 module_timestamp

0.34% L5 module_version

8.96% All other labeling heuristics.

Figure 18. Ranking of Labeling Heuristics

by % of Buckets.

Figure 19. Crashes/Day for a Firmware Bug.

Patch was released via WU on day 10.

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22 25 28

R
e

p
o

rt
s

as
 %

 o
f

P
e

ak

Program

In Second

Bucket

In One-Hit

Bucket Combined

Excel 17.2% 4.4% 21.6%

Outlook 7.7% 10.0% 17.7%

PowerPoint 30.6% 6.2% 36.8%

Word 19.3% 8.8% 28.1%

Figure 16. Percentage of all Reports for Office 2010 ITP

in Second or One-Hit Buckets.

Figure 17. Percentage of Kernel Crashes

later Re-bucketed.

1
.6

1
%

3
.6

6
%

1
.4

3
%

0
.7

3
%

0
.9

0
%

0
.6

9
%

0
.2

5
%

1
.8

3
%

1
.9

9
%

1
.1

9
%

0
.0

1
%

0
.0

6
%

0
.0

7
%

0
.0

6
% 0
.5

7
%

0
.9

8
%

0
.4

3
%

0
.1

4
%

0%

1%

2%

3%

4%

Jan-08 Apr-08 Jul-08 Oct-08 Jan-09 Apr-09

B
u

ck
e

ts
 f

ro
m

 M
o

n
th

R

e
-B

u
ck

e
te

d

13

resulting in 25 million buckets. By far the most important

labeling heuristic is module_offset (L7).

While not ideal, WER’s bucketing heuristics are in practice

effective in identifying and quantifying the occurrence of

errors caused by bugs in both software and hardware. In

2007, WER began receiving crash reports from computers

with a particular processor. The error reports were easily

bucketed based on an increase in system machine checks

and processor type. When Microsoft approached the

processor vendor, the vendor had already discovered and

documented externally the processor issue, but had no idea

it could occur so frequently until presented with WER data.

The vendor immediately released a microcode fix via

WU—on day ten, the black bar in Figure 19—and within

two days, the number of error reports had dropped to just

20% of peak.

6.4. Measurements
Figure 20 summarizes participation by hardware and

software providers in the WER third-party program. Most

providers register their programs and modules so that they

may receive error reports. A smaller number of providers

also register solutions to direct users to fixes for bugs.

Figure 21 summarizes size and churn within the Windows

deployed base. As part of each kernel-mode error report,

WER catalogs the devices and drivers on the computer. The

list contains the manufacturer part number for each device,

identified by PNP ID
3
. This list is used to isolate errors

related to specific hardware combinations, such as when

one device fails only in the presence of a specific second

device. Each minidump also contains a list of modules

loaded into the process or kernel. We can use the devices

and loaded modules lists to calibrate the Windows

deployed base. For example, driver identifiers collected in

2005 show that on average 25 new drivers and 100 revised

drivers are released every day. To date, WER has

encountered over two million unique device PNP IDs and

over 17.5 million unique module names.

7. DISCUSSION

7.1. OS Changes to Improve Debugging
Each release of Windows has incorporated changes based

on our experience with WER. We’ve already mentioned

some of these changes: the addition of the WerReport

APIs, particularly WerRegisterMemoryBlock and

WerRegisterFile, to enable program tuning of error-

report content; the addition of kernel support for identifying

thread wait chains and the GetThreadWaitChain API to

3
 PNP IDs are model numbers, not serial numbers. All machines

with the same hardware configuration will have the same set of

PNP IDs.

debug hung programs; and support for process-specific

dumps of live kernel memory.

Other changes to improve post-mortem debugging with

dumps have included disabling frame-pointer omission

when compiling Windows; rewriting the kernel exception

handler to invoke werfault.exe when structured

exception handling fails so errors are reported even on

stack overflows; checking zeroed pages for non-zero bits;

and collecting hardware model numbers and configuration

during boot to a registered area of memory for collection in

kernel dumps.

The decision to disable frame-pointer omission (FPO), in

Windows XP SP2, was originally quite controversial within

Microsoft. FPO suppresses the creation of frame pointers

on the stack, instead using offsets from the ESP register to

access local variables. FPO speeds function calls as frame

pointers need not be created on the stack and the EBP

register is free for local use. Programmers believed FPO

was crucial to performance. However, extensive internal

testing across a wide range of both desktop and server

benchmarks showed that FPO provided no statistically

provable benefit but significantly impaired post-mortem

debugging of unexpected call stacks. Ultimately it was

decided that the benefit of improving post-mortem

debugging outweighed the cost of disabling FPO.

The kernel maintains a list of free pages, zeroed when the

CPU is idle. On every sixteenth page allocation, the Vista

kernel examines the page content and asynchronously

creates an error report if any zero has changed to a one.

Analysis of these corrupt ―zero‖ pages has located errors in

hardware—like a DMA engine that only supported 31-bit

addresses—and errors in firmware—like a brand of laptop

with a bad resume-from-sleep firmware.

7.2. Improvements in Kernel Minidumps
Section 5.1 outlined the current contents of a WER

minidump, which contains registers, stacks, a list of loaded

Providers using WER > 700

Programs registered by providers with WER 6,956

Modules registered by providers with WER 299,134

Providers with registered Solutions 175

Registered Solutions 1,498

Figure 20. Third-Party use of WER.

Average # of new drivers released per day 25

Average # of revised drivers released per day 100

Unique device PNP IDs identified > 2,000,000

Unique program binaries identified > 17,500,000

Figure 21. Drivers and Hardware Encountered by

WER.

14

modules, selected data sections, areas of registered

memory, and 256 bytes of code immediately surrounding

the program counter for each thread.

Kernel minidumps were introduced with Windows XP and

extend the lower limit of WER’s progressive data

collection strategy. Before XP, Windows supported two

types of OS core dump: kernel dumps contained only

kernel-mode pages and full dumps contained all memory

pages. XP minidumps were designed to create a much

smaller dump that would still provide decent problem

characterization. In addition to the minidump, XP crash

reports also include a sysdata.xml file which provides

the PNP ID of the hardware devices, and device driver

vendor names as extracted from driver resources. Kernel

minidumps allowed us to count and characterize kernel-

mode crashes in the general population for the first time. In

some cases, a crash could be debugged directly from the

minidump. But in most cases, the minidumps helped

prioritize which issues to pursue via complete kernel crash

dumps. By default XP creates a minidump on system crash,

but can be reconfigured to collect kernel or full dumps.

Three improvements were made in Windows XP Service

Pack 2. First, in crashes due to pool corruption, the

previous minidump didn’t contain the corrupted page, so

corruption patterns could not be characterized or counted.

For SP2, the minidump generation code was changed to

explicitly add this page. Second, SP2 added most of the

system management BIOS table to the minidump, including

the OEM model name and BIOS version. Third, SP2 added

information to help identify if the crash report was from a

system with an over-clocked CPU including a measurement

of the running CPU frequency along with the processor

brand string, e.g. ―Intel(R) Core(TM)2 Duo CPU T5450 @

1.66GHz‖, in the CAB file. Over-clocking is detected by

comparing the frequencies. Initially, we were surprised to

learn that nearly 5% of the crash reports received during

SP2 beta were from over-clocked CPUs. After SP2 was

released, that rate fell to around 1%. This pattern has

repeated: over-clocking is more prevalent among beta users

than in the overall population. Today the rate for the

general population bounces between 1-2%, except for 64-

bit Windows systems, where the rate is around 12%.

Windows Vista made two more enhancements to kernel

crash reports. First, Vista creates a complete kernel dump

on crash and after reboot extracts and reports a minidump

from the kernel dump. If more data is needed, WER will

ask for the complete kernel dump. This application of

progressive data collection avoids a worse case in XP,

where we would change the default from minidump to

kernel dump, but the computer might never again

experience the same crash. Second, XP minidumps proved

deficient for crashes attributed to graphics drivers. The XP

minidump design allocated up to 32KB of secondary data

that could be filled in by drivers that registered to add data

when assembling the crash dump. This 32KB allowed basic

GPU information to be included in the minidump, but in

practice the limit was too small, especially as GPUs

increased their video RAM. Vista increased the size limit of

the secondary data to 128KB, and again to 1MB in SP2.

The size has remained the same for Windows 7.

8. RELATED WORK
Following WER’s lead, several systems implement one-

click error reporting via the Internet. Crash Reporter [1],

BugBuddy [4], Talkback [25], and Breakpad [16] collect

compressed memory dumps and report to central error

repositories. Talkback provides limited error report

correlation. WER predates these systems, vastly exceeds

their scale, and remains unique in its use of automated

diagnosis, progressive data collection, and directing users

to existing fixes.

To improve user anonymity, Castro et al. [7] use symbolic

execution to systematically replace memory dumps with

the condition variables that trigger an error. While their

system reduces the size of error reports and may improve

anonymity, it requires extensive computation on the client.

Scrash [5] is an ad hoc mechanism that lets programs

exclude sensitive memory regions from collection. WER

protects user privacy by avoiding the explicit collection of

identifying information, minimizing the memory collected

in dumps, and avoiding the transfer of user data when

reporting 90% of all errors through client-side labeling.

The use of run-time instrumentation to diagnose or

suppress errors has been discussed broadly in the literature.

Systems have resorted to statistical sampling, delayed

triggering, or hoped-for hardware changes to minimize

instrumentation costs. Liblit et al. [20] addresses the error

diagnosis problem by remotely collecting data of all

executions of a program, through statistical sampling. They

show samples can be combined using logistic regression to

find the root cause of an error and that samples can be

collected with runtime overheads of a few percent. Triage

[31] uses checkpointing and re-execution to identify causes

of bugs on the client at program failure, to cut debugging

time and reduce the transfer of non-anonymized data. By

default, Triage is enabled only after a failed run because it

imposes a runtime overhead. Vigilante [9] and Argos [27]

suppress failures on some computers by detecting security

exploits on other computers and generating filters to block

bad input or executions. Failure-oblivious computing [29]

and Rx [28] hide failures by either altering the execution

environment or fabricating data. Dimmunix [18] suppresses

deadlocks by altering lock acquisition ordering based on

locking signatures resulted in deadlocks previously on the

same computer. The runtime overheads of these systems

15

and other engineering challenges have prevented their

widespread deployment; however, we see great potential

for combining these technologies with WER. For example,

WER could enable failure-oblivious computing or Triage

when correlating data suggests a computer is likely to hit

the same error again.

WER avoids runtime instrumentation, except in limited

cases where explicitly requesting extended diagnostics on a

small number of clients. Data from a 30-day study of an

MSN Explorer deployment reinforces this decision to avoid

run-time instrumentation. In the study, less than 1% of

users encountered any error. Of those, less than a quarter

encountered a second error of any kind. Any system using

run-time instrumentation will likely pay a high aggregate

cost for any bugs found.

The best techniques for isolating bugs are systems based on

static analysis and model checking [2, 3, 6, 11]. These

systems have the distinct advantage that they can be used as

part of the development cycle to detect bugs before they are

encountered by users or testers. Results from the

development of Windows Vista, mentioned in Section 1,

suggest that present static analysis and model checking

tools will find at least 20 bugs for every one bug found by

WER. However, the bugs found by WER are crucial as

they are the bugs which have slipped past tools in the

development cycle.

As a widely deployed system, WER has been

acknowledged and described narrowly by researchers

outside our team. Murphy [26] summarized the history and

motivation for automated crash reporting using WER as an

example. Ganapathi and Patterson [14] used the Corporate

Error Reporting (CER) feature of WER, including

!analyze, to collect and classify roughly 2,000 crash

reports, mostly from applications, across 200 computers at

UC Berkeley. In a later report, Ganapathi et al. [13]

classified the failing component in system crashes to find

that over 75% of system failures are caused by poorly

written device drivers.

Finally, the use of post-mortem core dumps to diagnose

computer malware dates to the original Internet Worm, as

documented by Rochlis and Eichin [30]. WER’s benefit is

that the collection and diagnosis of these error reports

occurs with little human effort, making it feasible to

quickly identify and respond to new attacks.

9. CONCLUSION
WER has changed the process of software development at

Microsoft. Development has become more empirical, more

immediate, and more user-focused. Microsoft teams use

WER to catch bugs after release, but perhaps as

importantly, they use WER during pre-release deployments

to internal and beta testers. While it doesn’t make

debugging in the small significantly easier (other than

perhaps providing programmers with better analysis of core

dumps), WER has enabled a new class of debugging in the

large. The statistics collected by WER help us to prioritize

valued programmer resources, understand error trends, and

find correlated errors. WER’s progressive data collection

strategy means that programmers get the data they need to

debug issues, in the large and in the small, while

minimizing the cost of data collection to users. Automated

error analysis means programmers are not distracted with

previously diagnosed errors and that users are made aware

of fixes that can immediately improve their computing

experience.

Our experience with the law of large numbers as applied to

WER is that we will eventually collect sufficient data to

diagnose even rare Heisenbugs [17]; WER has already

helped identify such bugs dating back to the original

Windows kernel. We have also used WER as an early

warning system to detect malware attacks, looking at error

reports from data execution exceptions and buffer overruns.

Over the last five years, a team at Microsoft has analyzed

error reports from WER to identify security attacks on

previously unknown vulnerabilities and other security

issues.

WER is the first system to provide users with an end-to-end

solution for reporting and recovering from errors. WER

provides programmers with real-time data about errors

actually experienced by users and provides them with an

incomparable billion-computer feedback loop to improve

software quality.

10. ACKNOWLEDGEMENTS
Many talented programmers have contributed to WER as it

has evolved over the last decade. Ben Canning, Ahmed

Charles, Tom Coon, Kevin Fisher, Matthew Hendel, Brian

T. Hill, Mike Hollinshead, Jeff Larsson, Eric Levine, Mike

Marcelais, Meredith McClurg, Jeff Mitchell, Matt Ruhlen,

Vikas Taskar, and Steven Wort made significant

contributions to the WER client and service. Alan

Auerbach, Steven Beerbroer, Jerel Frauenheim, Salinah

Janmohamed, Jonathan Keller, Nir Mashkowski, Stephen

Olson, Kshitiz K. Sharma, Jason Shay, Andre Vachon,

Alexander (Sandy) Weil, and Hua Zhong contributed to the

kernel crash portion of WER and the solution response

subsystem. Hunter Hudson and Ryan Kivett made

significant contributions to !analyze. Siamak Ahari,

Drew Bliss, Ather Haleem, Michael Krause, Trevor Kurtz,

Cornel Lupu, Fernando Prado, and Haseeb Abdul Qadir

provided support across the Windows product teams.

Our thanks to the anonymous reviewers and to our

shepherd, John Ousterhout, whose comments significantly

improved the presentation of our work.

16

11. REFERENCES
[1] Apple Inc., CrashReporter. Technical Report TN2123,

Cupertino, CA, 2004.

[2] Ball, T., Bounimova, E., Cook, B., Levin, V.,

Lichtenberg, J., McGarvey, C., Ondrusek, B.,

Rajamani, S.K. and Ustuner, A. Thorough Static

Analysis of Device Drivers. In Proc.of the EuroSys

2006 Conference, Leuven, Belgium, 2006.

[3] Ball, T. and Rajamani, S.K. The SLAM Project:

Debugging System Software via Static Analysis. In

Proc.of the 29th ACM Symposium on Principles of

Programming Languages, pp. 1-3, Portland, OR, 2002.

[4] Berkman, J. Bug Buddy. Pittsburgh, PA, 1999,

http://directory.fsf.org/project/bugbuddy/.

[5] Broadwell, P., Harren, M. and Sastry, N. Scrash: A

System for Generating Secure Crash Information. In

Proc.of the 12th USENIX Security Symposium, pp.

273-284, Washington, DC, 2003.

[6] Bush, W.R., Pincus, J.D. and Sielaff, D.J. A Static

Analyzer for Finding Dynamic Programming Errors.

Software-Practice and Experience, 30 (5), pp. 775-802,

2000.

[7] Castro, M., Costa, M. and Martin, J.-P. Better Bug

Reporting With Better Privacy. In Proc.of the 13th Intl.

Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 319-328,

Seattle, WA, 2008.

[8] Corbató, F.J. and Saltzer, J.H. Personal

Correspondence. 2008.

[9] Costa, M., Crowcroft, J., Castro, M., Rowstron, A.,

Zhou, L., Zhang, L. and Barham, P. Vigilante: End-to-

End Containment of Internet Worms. In Proc.of the

20th ACM Symposium on Operating System

Principles, pp. 133-147, Brighton, UK, 2005.

[10] Das, M. Formal Specifications on Industrial-Strength

Code - From Myth to Reality. Invited Talk, Computer-

Aided Verification, Seattle, WA, 2006.

[11] Engler, D., Chen, D.Y., Hallem, S., Chou, A. and

Chelf, B. Bugs as Deviant Behavior: A General

Approach to Inferring Errors in Systems Code. In

Proc.of the 18th ACM Symposium on Operating

Systems Principles, pp. 57-72, Alberta, Canada, 2001.

[12] Everett, R.R. The Whirlwind I Computer. In Proc.of

the 1951 Joint AIEE-IRE Computer Conference, pp.

70-74, Philadelphia, PA, 1951.

[13] Ganapathi, A., Ganapathi, V. and Patterson, D.,

Windows XP Kernel Crash Analysis. In Proc.of the

20th Large Installation System Administration

Conference, pp. 149-159, Washington, DC, 2006.

[14] Ganapathi, A. and Patterson, D., Crash Data

Collection: A Windows Case Study. In Proc.of the

2005 Intl. Conference on Dependable Systems and

Networks, pp. 280-285, Yokohama, Japan, 2005.

[15] Gkantsidis, C., Karagiannis, T., Rodrigeuz, P. and

Vojnovic, M. Planet Scale Software Updates. In

Proc.of ACM SIGCOMM 2006, Pisa, Italy, 2006.

[16] Google Inc. Breakpad. Mountain View, CA, 2007,

http://code.google.com/p/google-breakpad/.

[17] Gray, J. Why Do Computers Stop and What Can We

Do About It. In Proc.of the 6th Intl. Conference on

Reliability and Distributed Databases, pp. 3-12, 1986.

[18] Jula, H., Tralamazza, D., Zamfir, C. and Candea, G.,

Deadlock Immunity: Enabling Systems to Defend

Against Deadlocks. In Proc.of the 8th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI 2008), pp. 295-308, San Diego,

CA, 2008.

[19] Lee, I. and Iyer, R.K., Faults, Symptoms, and Software

Fault Tolerance in the Tandem GUARDIAN90

Operating System. In Digest of Paers of the Twenty-

Third Intl. Symposium on Fault-Tolerant Computing

(FTCS-23), Toulouse, France, 1993, IEEE.

[20] Liblit, B., Aiken, A., Zheng, A.X. and Jordan, M.I.

Bug Isolation via Remote Program Sampling. In

Proc.of the 2003 Conference on Programming

Language Design and Implementation, pp. 141-154,

San Diego, CA, 2003.

[21] Microsoft Corporation. DbgHelp Structures. In

Microsoft Developer Network, Redmond, WA, 2001.

[22] Microsoft Corporation. Debugging Tools for

Windows. Redmond, WA, 2008,

http://www.microsoft.com/whdc/devtools/debugging.

[23] Microsoft Corporation. Plug and Play: Architecture

and Driver Support. In Windows Hardware Developer

Central, Redmond, WA, 2008.

[24] Microsoft Corporation. Use The Microsoft Symbol

Server to Obtain Debug Symbol Files. Knowledge

Base Article 311503, Redmond, WA, 2006.

[25] Mozilla Foundation. Talkback. Mountain View, CA,

2003, http://talkback.mozilla.org.

[26] Murphy, B. Automating Software Failure Recovery.

ACM Queue, 2 (8), pp. 42-48, 2004.

[27] Portokalidis, G., Slowinska, A. and Bos, H. Argos: An

Emulator for Fingerprinting Zero-day Attacks for

Advertised Honeypots with Automatic Signature

Generation. In Proc.of the EuroSys 2006 Conference,

pp. 15-27, Leuven, Belgium, 2006.

[28] Qin, F., Tucek, J., Sundaresan, J. and Zhou, Y. Rx:

Treating Bugs as Allergies—A Safe Method to Survive

Software Failure. In Proc.of the 20th ACM

Symposium on Operating System Principles, Brighton,

UK, 2005.

17

[29] Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu,

T. and Beebee, W.S., Jr. . Enhancing Server

Availability and Security Through Failure-Oblivious

Computing. In Proc.of the 6th Symposium on

Operating Systems Design and Implementation San

Francisco, CA, 2004.

[30] Rochlis, J.A. and Eichin, M.W. With Microscope and

Tweezers: The Worm from MIT's Perspective.

Communications of the ACM, 32 (6), pp. 689-698,

1989.

[31] Tucek, J., Lu, S., Huang, C., Xanthos, S. and Zhou, Y.

Triage: Diagnosing Production Run Failures at the

User's Site In Proc.of the 21st ACM SIGOPS

Symposium on Operating Systems Principles, pp. 131-

144, Stevenson, WA, 2007.

[32] Walter, E.S. and Wallace, V.L. Further Analysis of a

Computing Center Environment. Communications of

the ACM, 10 (5), pp. 266-272, 1967.

	Debugging in the (Very) Large: Ten Years of Implementation and Experience
	Abstract
	Introduction
	Problem, Scale, and Strategy
	Bucketing
	Progressive Data Collection
	Minimizing Human Interaction
	Preserving User Privacy
	Providing Solutions to Users
	Generalizing the System

	Bucketing Algorithms
	Client-Side Bucketing (Labeling)
	Server-Side Bucketing (Classifying)

	statistics-Based debugging
	System Design
	Generating an Error Report
	Communication Protocol
	Service
	Acquiring Additional Data

	Evaluation and Measurements
	Scalability
	Finding Bugs
	Bucketing Effectiveness
	Measurements

	Discussion
	OS Changes to Improve Debugging
	Improvements in Kernel Minidumps

	Related Work
	Conclusion
	Acknowledgements
	References

