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ABSTRACT
AutoBash is a set of interactive tools that helps users and
system administrators manage configurations. AutoBash
leverages causal tracking support implemented within our
modified Linux kernel to understand the inputs (causal de-
pendencies) and outputs (causal effects) of configuration ac-
tions. It uses OS-level speculative execution to try possible
actions, examine their effects, and roll them back when nec-
essary. AutoBash automates many of the tedious parts of
trying to fix a misconfiguration, including searching through
possible solutions, testing whether a particular solution fixes
a problem, and undoing changes to persistent and transient
state when a solution fails. Our results show that AutoBash
correctly identifies the solution to several CVS, gcc cross-
compiler, and Apache configuration errors. We also show
that causal analysis reduces AutoBash’s search time by an
average of 35% and solution verification time by an average
of 70%.

General Terms
Management, Reliability

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software
configuration management ; D.4.7 [Operating Systems]:
Organization and Design

Keywords
Configuration management, causality, speculative execution

1. INTRODUCTION
Users spend too much time configuring their comput-

ers [6]. Configuration management is often an isolated pro-
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cess, in which each user discovers on her own the particular
incantations that are required to transform her particular
computer system from a misconfigured state to a correct
one. Configuration management can be especially frustrat-
ing because, in the process of trying to reach a more desir-
able system state, the user may take some action that leaves
the system in a state worse than the one that existed before.

While autonomic systems that can configure themselves
are an admirable goal [10], experience to date suggests that
it is very hard to completely hide the complexity of modern
computer systems. Thus, a less ambitious goal may be in or-
der. Rather than try to eliminate configuration entirely, we
adopt the more pragmatic approach of providing users and
system administrators with a set of interactive tools, which
we call AutoBash, that helps them manage configurations.

For instance, consider the actions of a typical user faced
with a configuration problem. She might search the Web
and query colleagues to find others who have encountered
and solved a similar problem. She might then try the most
likely solution and test her system to see if the problem has
been fixed. If the system still does not operate correctly, she
will carefully try to undo any changes that she has made and
then try the next possible solution. AutoBash can help this
user by automating many of the most tedious and frustrat-
ing steps in the above process. It uses causal dependency
tracking and analysis implemented within the operating sys-
tem kernel to speed the search for solutions to configuration
problems, and it uses speculative execution to transparently
apply and test possible solutions while retaining the ability
to undo incorrect actions.

AutoBash has three modes: observation, replay, and
health monitoring. In all three modes, AutoBash expresses
system health as the results of executing a set of predicates.
In observation mode, AutoBash records the actions of users
as they adjust their systems to fix a particular problem.
AutoBash logs input and output as the user probes the sys-
tem, makes state changes, and tests the new state. In replay
mode, AutoBash tries to fix the same problem on different
systems by applying actions that fixed the problem previ-
ously. AutoBash lets users learn from each others’ experi-
ences: as AutoBash sees more correct solutions to a problem,
it has a greater database of potential solutions to draw upon.
In health monitoring mode, AutoBash periodically tests the
correctness of a computer system in the background to di-
agnose configuration bugs before they become critical.
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Configuration management is a thorny problem that re-
quires contributions from many disciplines, including ma-
chine learning, user interface design, and distributed infor-
mation systems. This paper focuses on how the operating
system can contribute to a complete solution by tracking
and analyzing causal dependencies as they propagate be-
tween processes, files, and other entities. AutoBash lever-
ages causality support within the Linux kernel to understand
the outputs (causal effects) and inputs (causal dependen-
cies) of executing configuration actions. This leads to the
following benefits:

• Causal tracking reduces the amount of testing that
must be performed to determine whether a particular
action fixed a problem or caused a new problem. When
AutoBash performs a configuration action, it tracks
the set of entities modified as a result of the action.
If none of the entities serves as an input to a pred-
icate, then the evaluation of that predicate will not
change as a result of the configuration action. Thus,
the predicate need not be retested.

• Causal tracking provides a compact representation of
interactive user activity. When a user interacts with
an editor or GUI application, AutoBash could poten-
tially record their actions by logging inputs (keystrokes
and mouse events) or outputs (system calls). Unfortu-
nately, both approaches often produce a large amount
of data that is difficult to understand or replay deter-
ministically. In contrast, AutoBash uses causal track-
ing to represent interactive activity as a minimal set of
changes made to persistent state during the activity.

• Causal tracking helps explain to users how a prob-
lem was fixed. When a user fixes the problem inter-
actively, AutoBash shows him which actions possibly
contributed to the solution and which did not con-
tribute. Further, it shows the changes to intermediate
entities (e.g., diffs of configuration files) that possibly
led to the solution. When AutoBash autonomously
searches for a solution to a configuration problem, it
shows a similar report to the user before committing
any solution it finds. This allows the user to under-
stand and confirm any change to configuration state
suggested by AutoBash.

• AutoBash transparently recovers from incorrect ac-
tions by tracking all causal effects of each action. We
use Nightingale et al.’s Speculator [15] to roll back all
effects of incorrect actions. While tools exist for check-
point and rollback of persistent registry or file system
state, such systems are incomplete unless they also roll
back transient state such as process memory. For in-
stance, a corrupted application can cause a problem
to remain until the system is rebooted. Even worse,
a corrupted application may subsequently write incor-
rect data to the file system, making the effects of an
incorrect action durable.

• Causal tracking, when combined with speculative ex-
ecution, provides isolation for configuration activities.
If a configuration action is found to be incorrect and
is rolled back, AutoBash guarantees that any other
activity that observed the incorrect state will also be
rolled back. This strategy provides optimistic concur-
rency for speculative configuration actions — an ap-
proach that lets AutoBash perform potentially time-

consuming configuration actions in the background
while the user continues to use the computer system
for normal activities.

Our current AutoBash prototype assists in solving con-
figuration bugs that are confined to a single computer sys-
tem, such as a home computer, personal workstation, or
stand-alone server. Our results show that AutoBash dra-
matically decreases the amount of user interaction required
to fix bugs in CVS, the gcc cross-compiler, and the Apache
HTTP server by automating many of the most tedious activ-
ities. Our results also show that operating system causality
analysis decreases the amount of time needed by AutoBash
to automatically find solutions by an average of 35% and
the time spent on predicate testing by an average of 70%.

2. SPECULATOR BACKGROUND
Speculator is a system within the kernel that supports

process-level speculative execution through causal depen-
dency tracking and lightweight checkpoint and rollback. A
process invokes Speculator to checkpoint its state and con-
tinues execution. Later, if the speculation is found to be
incorrect, Speculator rolls back the process execution and
the process is restarted using the checkpoint state. If the
speculation is found to be correct, Speculator discards the
checkpoint, marks the process as non-speculative, and con-
tinues the process execution. Speculator supports specu-
lative execution throughout the operating system, tracking
causal dependencies as a speculative process interacts with
the kernel, file system, and other processes. Thus, a specula-
tive process can safely change system state; all modifications
can later be undone should the speculation prove wrong.

Speculator ensures that speculative state is never exter-
nalized, i.e. visible to a user (terminal output) or any ex-
ternal device (network, disk, etc.). If a speculative process
attempts to externalize state, Speculator buffers its output
in the kernel until the outcome of the speculation it depends
on is decided. If a speculative process performs a system call
that Speculator cannot handle by either propagating causal
dependencies or buffering output, Speculator blocks the pro-
cess until it becomes non-speculative.

3. DESIGN AND IMPLEMENTATION

3.1 Overview
The goal of AutoBash is to help users find solutions to

the configuration problems they are facing. AutoBash di-
vides configuration activities into actions that modify sys-
tem state and predicates that test system correctness. We
define a solution to be a sequence of actions that transforms
a system from an incorrect state, in which one or more pred-
icates evaluate to false, to a correct state, in which all pred-
icates evaluate to true.

Predicates are guaranteed to have no side effects; that is,
they are not allowed to visibly modify system state such as
files and processes. AutoBash ensures the absence of side
effects by speculatively executing each predicate and rolling
it back on completion. Predicate execution, return codes,
and causal inputs are visible to AutoBash but not to any
other process running on the system. (More precisely, any
entity that observes predicate execution is rolled back to its
state prior to the observation once the predicate completes,
and external effects are not visible to the user or other com-
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puters.) There are several ways we can obtain predicates.
Predicates are similar to test cases and may be provided
as part of the software (similar to Windows configuration
wizards or test suites for program testing). Alternatively,
they may be created by a community of users. Users can
also add predicates that demonstrate symptoms that they
would like to fix. Since a predicate is simply a Unix pro-
cess, the normal actions that users take to verify whether
a solution is working (e.g., loading a Web server test page)
can be transformed into predicates with minimal effort. A
predicate can be written as a shell script or can be a binary
executable with a return value indicating true or false.

AutoBash maintains a predicate database that contains
the tests associated with all applications under its purview.
It organizes predicates with the following schema: name,
application, predicate file location, last execution result, the
time it was last executed, input record file location, and
average execution time. The application field refers to the
application a predicate is designed to test. Input record file
location is the location of the file containing the inputs a
predicate is dependent upon. AutoBash stores the average
execution time so that it can warn a user if predicate execu-
tion takes much longer than usual. Based on our evaluation
of three applications in Section 5, five to ten predicates seem
to cover most of the configuration bugs we encountered. In
our future work, we would like to deploy AutoBash in a real
environment to gain more experience on what the predicate
space would look like.

AutoBash has three modes of operation: observation, re-
play, and health monitoring. In its observation mode, Auto-
Bash helps a user manually resolve a configuration problem.
The AutoBash shell is a version of the standard Linux bash

shell that we have modified to support speculative execution
and causality tracking. Each command given to the shell is
considered an action that may contribute to an eventual so-
lution. AutoBash executes each action speculatively, which
allows its user to roll back an action’s effects if the action
later proves to be incorrect. AutoBash automatically tests
for system correctness by executing predicates after each
action completes. It also tracks causality to explain how a
problem was fixed and what actions are related once a so-
lution is found. The solutions found during observation are
canonicalized and saved so that they can be used later to fix
similar configuration bugs.

In its replay mode, AutoBash automatically searches for
solutions to a configuration problem. Its search space is the
set of solutions that were previously found for similar prob-
lems. Similar to predicates, potential solutions can come
from many sources: the user’s prior experience, solutions
developed by vendors or a community of users. While Auto-
Bash does not currently provide a distributed system for lo-
cating potential solutions, other projects, such as the Friends
Troubleshooting Network [7], have shared configuration in-
formation through peer-to-peer networks. These projects
have also addressed security and privacy concerns related
to sharing configuration information. AutoBash stores solu-
tions and their metadata in a local repository similar to how
it stores predicates. For each solution, AutoBash keeps track
of the solution location and the application the solution is
associated with.

AutoBash speculatively executes a solution followed by
predicate testing. If any predicate evaluates to false, Auto-
Bash decides that the solution does not fix the configuration

bug and rolls back that solution. AutoBash then tries the
next solution in its solution database until all predicates
evaluate to true. Speculative execution isolates AutoBash’s
replay activity from other non-configuration tasks — a user
may continue to use her computer while AutoBash searches
for the solution in the background without worrying that
results will be corrupted by observing state that is in the
process of being reconfigured. After AutoBash finds a solu-
tion, it explains the actions it took, their causal effects, and
how they relate to the configuration predicates. Its user can
examine this information before committing the configura-
tion changes; if the user disagrees with AutoBash’s solution,
AutoBash will roll back the candidate solution and continue
searching for another fix.

In its health monitoring mode, AutoBash periodically
tests all predicates in its predicate database. If any pred-
icate fails the check, AutoBash can be set to enter replay
mode to find and suggest a potential solution to the user.

When a solution is found but before it is committed, Au-
toBash verifies that all predicates that previously succeeded
still do; this checks for “solutions” that fix one problem but
cause another. AutoBash tracks causality to record and
store the system state observed by each predicate. Thus,
if a solution does not affect the state observed by a pred-
icate, AutoBash recognizes the predicate need not be run.
This limits the number of predicates that must be tested for
each solution.

3.2 Usage scenario
This section describes a sample scenario in which we used

AutoBash to solve a configuration problem. Our research
team set up a CVS repository to store our source code
and publications. We created a CVS group that owned the
repository and added all team members to the CVS group.
When we used the CVS repository, we found that other team
members would get a “permission denied” error when they
attempted to check out any project they had not checked
in.

We manually fixed this problem by first analyzing the er-
ror message and examining the current system state. We
then tried various actions to modify the system settings.
After each action, we tried to check out the project to test if
the modification solved the problem. After a few trials, we
realized that the file permission error was due to an incorrect
file ownership – the default group for a user is his original
user group and hence any files added to the repository would
be owned by the user and inaccessible to other users despite
the repository being accessible to all. We finally applied the
correct action: chmod the bit that sets group id on execu-
tion. This action causes CVS to set the group of a newly
added file or directory to the same as the parent directory
instead of the current process.

There are several disadvantages to this approach. First,
any system state modification might adversely affect CVS
or other applications running on the machine. If the modi-
fication is incorrect, we have to manually undo our changes
— this could be difficult as we often do not know the ef-
fects of changing system state. Further, if a system change
solves the problem, we do not know if the solution breaks
other features of the application, or even other applications
running on the system. Finally, often times after we have
solved a configuration problem, we still do not know what
actions we took contributed to the solution.
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As an alternative, we can use AutoBash to diagnose and
solve this problem. If CVS is packaged with a set of standard
solutions and predicates, we can run AutoBash in replay
mode to search for a solution. AutoBash first runs all pred-
icates from the standard predicate sets to determine which
predicates exemplify the buggy scenario. In the scenario
above, any predicate that involves checking in a project as
a user and checking out as a different user is sufficient. Au-
toBash then goes through each solution from the standard
solution sets and executes it speculatively. After executing
a potential solution, AutoBash first tests predicates that
demonstrate the problem. If any such predicate fails, Au-
toBash rolls back the solution and tries the next one. If a
solution causes all those predicates to succeed, AutoBash
next tests the remaining predicates for CVS and other ap-
plications. If a solution exists, AutoBash can find it and
ensure that the solution does not break other existing con-
figuration of CVS and other applications. AutoBash replay
mode is a useful tool for users who do not participate much
in system administration work.

However, if CVS does not have standard predicate and so-
lution sets, the user can run AutoBash in observation mode
to manually fix the configuration problem. First, the user
needs to specify one or more predicates that expose faulty
application behavior. The user can also write predicates
to test basic functionality for CVS and other applications.
Next, the user tries different actions in the AutoBash shell;
AutoBash executes each action speculatively and tests pred-
icates after each action to determine if the action and prior
actions fix the problem. If all user-specified predicates suc-
ceed, AutoBash tests against the remaining predicates to
check that the fix does not break the existing configuration
for CVS and other applications. While running AutoBash
in observation mode, the user can roll back any prior action.
If subsequent actions observe the effects of a prior action,
AutoBash informs the user of this dependency and rolls back
those actions. Through this mechanism, AutoBash in obser-
vation mode can be a useful tool for system administrators
to try out different actions safely. After the user fixes a prob-
lem, AutoBash also analyzes causal information tracked by
the kernel to explain which actions contribute to solving the
problem and how they relate to each other.

3.3 Tracking causality
In designing AutoBash, we considered several possible

methods of tracking causality. Our goal was to capture suf-
ficient information to allow us to reason about the causal
effects of configuration actions and how they relate to pred-
icates that test system health, while also minimizing perfor-
mance impact on foreground applications and keeping the
amount of causal state manageable. We want to track causal
effects of actions and causal dependencies of predicates so
that we only re-run those predicates affected by an action,
reducing the time to find a solution.

We define causality in the operating system kernel in
the following way. Processes, files, directory entries, sock-
ets, pipes, and signals are all considered first-class entities.
When a process interacts with other entities by executing
system calls, we use Speculator to track the causal relation-
ships among the entities. Specifically, if a process observes
another entity (e.g., reads a file or receives a signal), we
say that the process becomes causally dependent on the ob-
served entity. If a process modifies another entity, the mod-

ified entity becomes causally dependent on the modifying
process. If a process observes an entity while modifying it
(for instance, when a process writes to a file, it checks access
permissions of a file before writing to it and therefore be-
comes dependent on the file), the process and the modified
entity become mutually dependent.

We track causality for predicates and solutions at the
point we start executing them because we believe that most
of the relevant interactions usually happen within the ex-
ecution interval. We only track causal effects and depen-
dencies for entities that are affected by the initial predicate
or solution process. The process being tracked marks the
start and end of each tracking interval by making ioctls

on a pseudo-device. The first ioctl causes the OS to begin
tracking causality. Subsequently, the set of recorded inputs
or outputs can be queried by issuing another ioctl. Track-
ing is terminated by issuing a final ioctl that releases the
data structures used by the OS to maintain causal infor-
mation. This interface allows user-level AutoBash tools to
ask specific questions about the causal events of processes
that they are tracking, while minimally affecting the per-
formance of other processes that are not being tracked. In
this manner, we can obtain the most relevant causal inter-
actions, and the overhead of causality tracking is only paid
during configuration management and maintenance.

3.3.1 Tracking output sets
We leveraged Speculator to track causal effects. When a

user-level process asks that its causal outputs be tracked,
Speculator assigns a unique id to the request and creates
an output set that contains pointers to entities that depend
on the subsequent execution of the calling process. Initially,
the only member of the output set is the process that made
the ioctl. As the process interacts with other entities by
executing system calls, we add to the output set new entities
that come to depend on an entity already in the output set
(using the definition of “depends on” from Section 3.3). For
instance, when a process that is a member of the output set
modifies a file, that file is added to the output set. If another
process reads the file, the reading process is also added to
the output set.

The implementation of output sets is minimal; each entity
has a list of pointers to the output sets on which it currently
depends. Each output set created by Speculator has a list
of reverse pointers to the entities it contains. Thus, adding
a new entity to an output set requires only that Speculator
add a pointer to two lists. Speculator can track multiple
output sets simultaneously to track dependencies for differ-
ent ranges within the same process or ranges that occur in
different processes.

3.3.2 Tracking input sets
A user-level process may also ask that its causal inputs

be tracked. We have modified Speculator to create an input
set that contains all processes, files (both content and meta-
data) and directory entries that the tracked process comes to
depend on during the execution of subsequent system calls.
For instance, if a process receives a signal from another pro-
cess, the sending process is added to its input set. Similarly,
if it reads a file, the file and the directory entries used to
look up the file within the file system are added to its input
set. We handle IPC entities (signals and sockets) like we
handle other entities (processes and files), but IPC entities
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Figure 1: An input sets tracking example

are not reported in the final input sets because they are not
persistent entities within a computer system.

As defined so far, an input set contains only the causal
inputs observed by a single process. However, user-level
tasks often do not map directly to individual processes; for
instance, a shell may fork a child to perform a task, which in
turn will fork other children or interact with other processes
via IPC to perform subtasks. In such situations, the input
set should capture all the causal inputs of the collection of
processes that are cooperating to perform the task.

We calculate the input set for cooperating processes as
follows. First, any member of the output set of the tracked
process is considered to potentially be cooperating to per-
form a high-level user task — we create an individual input
set for each such entity. When an entity in the output set
comes to depend on another entity in the output set, its
input set becomes the union of the input sets of the two
entities. If an entity that is not a member of the output set
comes to depend on an entity that is a member, it joins the
output set and its input set becomes equal to that of the
entity on which it depends.

When a query is issued, Speculator returns the individual
input set of the calling process. The set returned consists
of not only the entities directly observed by the querying
process but also some entities observed by other processes.
For instance, if the tracked process forks a child process, the
entities observed by the child become part of the parent’s
input set when the child exits and the parent receives its
termination signal. On the other hand, if the child does not
interact further with its parent (e.g., it might be a command
executed in the background), the entities it observed are not
part of its parent’s input set; this reflects the intuition that
the parent cannot depend on the child if it does not observe
its execution in any way. Similarly, if a tracked process
makes an RPC to a server, only the entities observed by
the server after it receives the request but before it replies
to the tracked process will be returned as part of the input
set. A pipe, socket, or localhost packet transfers input sets
between the RPC client and server but is not part of the
input sets.

Figure 1 is an example of how we calculate input sets for
cooperating processes. Processes are shown in ellipses and
files are shown in rectangles.

• At time 0, process PA requests that its input and out-
put sets be tracked. Both PA’s output and input sets
contain only the process itself.

• At time 1, PA forks a child process PB. Since PB is
dependent on PA, PB is added to the output set and
its input set is the union of PA’s input set and itself.

• At time 2, PB reads file F and becomes dependent on F
so F is added to PB ’s input set. Since F is not affected
by any object in the output set, it is not added to the
output set.

• At time 3, PB exits and a signal is sent to its parent
PA; therefore, PA is now dependent on PB. Since PB

is already in the output set, PA’s input set becomes
the union of PA’s and PB’s input sets.

Of course, this definition of the input set is a heuristic —
a precise characterization of the input set would require a
semantic knowledge of application behavior that seems quite
difficult to achieve in an operating system kernel. Neverthe-
less, our results show that this heuristic performs extremely
well in practice for the configuration management tasks in
which we have employed it.

3.4 Observing user actions
In its observation mode, AutoBash assists its user in man-

ually fixing a problem. The user begins configuration man-
agement by launching the AutoBash shell. Next, the user
specifies which predicates are related to the problem he is
attempting to fix. These can be drawn from AutoBash’s
predicate database by specifying the application that is be-
ing configured. Alternatively, the user may use the Auto-
Bash shell to specify new predicates on the fly; this can be
useful when the user is attempting to fix a rare problem that
he has never previously encountered. AutoBash verifies that
at least one of the specified predicates evaluates to false; if
all evaluate to true, the user must specify at least one more
predicate that exemplifies the problem he is trying to solve.

The user then enters configuration actions using the Au-
toBash shell. The shell records the command line input for
each action. For simple actions, the command line informa-
tion is all that is needed to capture the action; for instance,
the adduser and chown utilities can be precisely character-
ized by the command line inputs. However, for actions that
start interactive applications, such as a text editor, the com-
mand line information is woefully inadequate to character-
ize what the user is doing. For such interactive applications,
AutoBash extracts state deltas as described in Section 3.5.

After each action completes, AutoBash automatically
tests to see if the prior actions have corrected the configura-
tion problem. It first runs the predicates initially specified
by the user. AutoBash executes each predicate speculatively
by forking a child process and invoking Speculator to make
the child speculative. After the child exits, the AutoBash
shell reads its return code and input set, then asks Specula-
tor to roll back the child’s speculation.

If the return codes of the initially specified predicates indi-
cate success, AutoBash next runs the remaining predicates
in its database. This checks for solutions that fix one config-
uration problem but cause another. The initially specified
predicates are run first to reduce testing time; since these
predicates exemplify the configuration problem the user is
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Figure 2: Sample causal explanation

trying to fix, they are most likely to fail and eliminate the
need to test the remaining predicates.

Since executing predicates is time consuming, AutoBash
analyzes causality to limit the number of predicates that are
tested. During predicate execution, AutoBash records the
predicate’s input set. It also records the output set of each
action. If an action’s output set does not intersect the input
set of a predicate, AutoBash does not re-run the predicate
because a predicate that depends on the same input set must
return the same answer as from the last execution.

Each action is run as a separate speculative execution.
AutoBash forks a child process to perform the action, then
asks Speculator to execute the child speculatively and track
its output set. When the child exits, Speculator provides
AutoBash with the output sets of which the child is a mem-
ber. If the child is in a prior action’s output set, it has come
to depend on that action by observing some entity that de-
pends on the prior action. From this information, AutoBash
determines which actions depend on which prior actions.

Using the AutoBash shell, the user can roll back any prior
action. While actions can be rolled back individually, the
rollback of an earlier action requires that subsequent actions
that depend on that action also be rolled back (since they
observed incorrect output of that action). AutoBash can use
the action interdependency information it collects to inform
the user which actions will be rolled back. Alternatively, a
user may simply choose to roll back all actions that occurred
after a specified action.

We have often encountered users who have fixed a par-
ticularly nasty configuration problem but are not quite sure
of what actions they performed that contributed to the so-
lution. To help such users, AutoBash can provide a causal
explanation once a solution is found. Figure 2 shows an ex-
ample explanation produced by AutoBash after an Apache
configuration bug was fixed. The symptom of the miscon-
figuration was that a user can wget her own home page but
cannot wget the results of a CGI script in her home direc-
tory. The problem was caused by Apache’s configuration file

not allowing users to execute CGI, and the fix was to add the
appropriate line to the configuration file. The explanation
in Figure 2 lists actions (hexagons) that were performed and
not rolled back. Each action might affect kernel objects (el-
lipses) that causally depend (shown by directed arrows) on
it. Finally, the explanation lists predicates (rectangles) used
to verify that the problem is solved. In Figure 2, the three
predicates, from left to right, are wget the default home
page, wget the result of the CGI script in the user’s direc-
tory and wget the user’s home page. The grayed predicate
evaluates to false before applying any action, while the white
predicates evaluate to true. By examining the explanation,
we can infer that certain actions (ls and grep) modify no
kernel objects that these predicates depend on; from this,
we can conclude that they do not contribute to the solution.
Since patch is the only action that affects kernel objects that
all predicates depend on, we can also conclude that patching
httpd.conf is what fixed the bug.

In addition to the graphical output, AutoBash also pro-
duces a textual explanation that includes file differences and
other more detailed information. After finding a solution,
the user can view the explanation before deciding to commit
his changes and exit the AutoBash shell.

When a solution is found, AutoBash saves it in a form
that can later be used by the replay tool. The saved version
contains only those actions that were executed and not later
rolled back. Like PeerPressure [18], AutoBash canonicalizes
solutions to replace specific identifiers such as userids, home
directories, and IP addresses with generic variables.

By default, Speculator does not allow any output that
depends on speculative actions to be externalized. While
theoretically correct, this policy does not work well with an
interactive debugging tool such as AutoBash. Therefore,
we modified Speculator to allow speculative output to the
screen when the user runs AutoBash in observation mode.
However, predicate testing normally does not externalize
any output to the screen. We only use this capability on
predicates when we are testing and developing them.

3.5 Extracting state deltas
For non-interactive applications, the command line infor-

mation recorded by AutoBash is sufficient to describe how
the action can be replayed later to fix a similar problem.
However, for interactive applications such as editors and
GUI configuration tools, AutoBash must capture how the
tool is used in order to perform similarly during replay.

Potentially, AutoBash could record all inputs to an inter-
active application; e.g., it could record key strokes, mouse
movements, and button presses for a local application, or
network packets for a distributed one. Such an approach
could lead to AutoBash recording a large amount of in-
formation. More problematically, such low-level inputs are
not easily understandable by a user. Further, our previous
work [17] showed that it can be quite hard to determinis-
tically replay graphical input since events such as button
presses must be timed to occur after widgets such as drop-
down menus and screen windows appear.

An alternative approach would be to record outputs, such
as the system calls made by the interactive application. Dur-
ing replay, the recorded system calls could be reissued to try
to duplicate the observed behavior of the interactive appli-
cation. Like the technique of recording user inputs, this ap-
proach can generate a large amount of data that is difficult
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to understand. Further work would be required to abstract
away non-deterministic OS variables such as process identi-
fiers and file handles.

Instead of recording outputs directly, AutoBash captures
a state delta, which is the difference in the state of the sys-
tem caused by the execution of the interactive application.
When the AutoBash shell receives the signal from an exit-
ing child process executing a configuration action, it queries
Speculator to determine if the process has received any in-
put from an interactive source (e.g., from a console, network
interface, or similar external device). If no such input has
been received, the command line information is assumed to
be sufficient to characterize the action. Otherwise, Auto-
Bash generates a state delta.

First, AutoBash queries the output set for the action.
This lists all entities that causally depend on the execu-
tion of the action. Next, AutoBash computes a diff for each
entity. For files, it uses the standard diff tool to gener-
ate a patch file, and supplements the information with the
changes made to the file attributes. For directory entries, it
records entries added and deleted from the directory and the
directory attributes. For processes, it records the sequence
of causal inputs to the process generated by the user action.
For example, it records signals sent to the process and data
communicated via IPC mechanisms such as pipes.

AutoBash uses several optimizations to reduce the size of
state deltas. First, it eliminates temporary entities that are
created and destroyed during the action such as temporary
files and processes that are forked and terminated. Next, it
eliminates all events that precede a deletion. For example,
not all input sent to a process that terminates is saved —
only the final termination event is retained. Finally, events
that cancel each other are eliminated; e.g., two chown op-
erations that change a file’s attributes to a new value and
then back to the original value. This process is not unlike
log optimization in the Coda file system [13], except that we
apply such optimizations to OS kernel entities rather than
just file system objects.

After optimization, the state delta gives a terse repre-
sentation of the causal effects of an interactive action. For
instance, using a GUI tool to change the settings of a server
might produce a state delta that contains only a diff show-
ing changes made to a configuration file and a signal sent to
the server to cause it to re-read the configuration file.

3.6 Finding a good solution
AutoBash’s replay mode searches through a database of

potential solutions to find one that fixes a problem being
encountered on a user’s computer. Such solutions may come
from peers who have encountered similar problems, from
software developers who are supporting their product, or
from the user previously fixing the same problem. Since
solutions can be scripts or binaries, AutoBash handles a
wide variety of replay inputs.

The AutoBash replay mode is designed to execute in the
background; the user can still use her computer while Auto-
Bash reconfigures. Speculative execution of predicates and
potential solutions provides isolation: if any process observes
the causal effects of executing a predicate or configuration
action, that process is transparently rolled back to the point
before the observation and re-executed. Since Speculator
does not externalize speculative state, if a foreground appli-
cation comes to depend on AutoBash’s background task and

tries to externalize output, Speculator buffers the foreground
task’s output until the outcome of the speculation is decided.
Thus, the effects of speculative execution are not visible to
non-AutoBash processes, the user, other computers, or any
entity external to AutoBash and the kernel. Of course, spec-
ulative execution consumes resources on the computer and
some work performed by other processes may need to be
rolled back, so the performance of non-configuration tasks
will be impacted by a background AutoBash execution. The
performance impact will depend on how resource-intensive
the background task is.

When using AutoBash in replay mode, the user first spec-
ifies the predicates that exhibit faulty application behavior.
As described in Section 3.4, these predicates can be drawn
from those used to test the application in the computer’s
existing predicate database, or they can be new predicates
specified by the user. AutoBash first runs all specified predi-
cates and records whether each succeeds or fails. Speculator
is used to roll back each predicate after execution and to
report the input set for each predicate. If no predicates fail,
AutoBash asks the user to specify an additional predicate
that exemplifies the problem being debugged. We call this
process initial predicate testing.

AutoBash next iterates through the solutions in the solu-
tion database to find one that makes all specified predicates
succeed. AutoBash speculatively executes a potential solu-
tion by forking a child process and invoking Speculator to
make it speculative. It then waits for the child process and
queries Speculator for the solution’s output set. If the out-
put set of the solution and the input set of a predicate do
not intersect, AutoBash does not re-run the predicate. As-
suming that the predicate depends on the same input set,
its behavior will not change as a result of executing the so-
lution. Thus, if there is no intersection between the output
set of the solution and the input set of a failed predicate,
AutoBash immediately considers the solution unsuccessful
(it did not fix at least one predicate).

After applying a solution, AutoBash first tests the predi-
cates that failed in the initial predicate testing, and then
tests against the rest of the predicates in the predicate
database. AutoBash only re-runs those predicates whose in-
put sets intersect with the solution’s output set. If all such
predicates succeed, AutoBash declares the solution success-
ful. If any predicate fails, AutoBash declares the solution a
failure, rolls back that solution, and tries the next solution.
AutoBash currently applies only one solution at a time in
replay mode, though it could potentially execute combina-
tions of solutions. We plan to explore the effectiveness of
this idea and the impact of an increasing search space on
AutoBash’s scalability in the future.

Once a solution is found, AutoBash outputs the solution
to the user as a potential fix. AutoBash provides a causal
explanation similar to the one in Figure 2 that shows the
actions executed and all predicates affected. After viewing
this information, the user can confirm the fix, in which case
AutoBash commits the speculation and exits, or decline the
fix, in which case AutoBash rolls back the speculation and
continues searching for a solution.

Figure 3 shows how AutoBash determines what predicates
to run after applying a potential solution for an Apache
configuration bug. The symptom of the misconfiguration is
that a user cannot wget her own home page nor the result
of a CGI script in her home directory. The bug was that
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This figure shows how AutoBash leverages causality analysis
to determine which predicates to run after applying a potential
solution to an Apache configuration bug.

Figure 3: Sample causality analysis

the Apache HTTP server does not have search permission
to access the user’s home directory where the user’s home
page and CGI script are located. The action to fix this
bug is to give search permission to others for this user’s
home directory. The grayed predicates failed in the ini-
tial predicate testing, while the predicate shown in white
succeeded. Figure 3 illustrates that the action chmod o+x

/home/USER/public html is dependent on the action chmod

o+x /home/USER. Also, both chmod actions have causal ef-
fects on the kernel objects which the grayed predicates de-
pend on. From this causality analysis, AutoBash infers that
it only needs to re-run the last two predicates.

We expect that many applications will have a set of stan-
dard predicates that can be used to validate application con-
figuration. As part of initial predicate testing, AutoBash
records whether each standard predicate succeeds or fails.
The results of the initial predicate testing are aggregated
across multiple runs and packaged with each solution.

AutoBash uses its knowledge of which standard predicates
succeed and fail to order the solutions it tries. If the user
does not specify any predicates to test and hence does not
hint at which application might be failing, the first step in
AutoBash’s replay mode is to run the standard predicate
sets for all applications. AutoBash executes all standard
predicates, {P0, P1, ..., Pn}, and aggregates their results as
a binary result vector Rcurrent = {1, 0, ..., 1} (1 = succeed,
0 = fail). AutoBash also maintains a set of solutions Si

from {S0, S1, ..., Sm} from prior replays with their own
standard predicate results Ri. Next, AutoBash compares
the current result vector Rcurrent to the result vectors from
prior replays, Ri, and computes their Hamming distance.
AutoBash uses this Hamming distance to order the set of
solutions it tries, starting with the solution that has an Ri

closest to Rcurrent. The intuition behind this approach is
that solutions that fix a particular problem tend to repair the
same set of failing predicates; thus, by observing the results
of standard predicate execution, AutoBash can guess which
solutions are most likely to succeed.

More sophisticated heuristics could potentially be applied.
For instance, AutoBash could also record and compare input
sets for each standard predicate. The intuition is that simi-
lar bugs will cause predicates to fail in similar ways. Thus,
there might be substantial similarity between the set of ker-
nel objects observed by each predicate on computer systems
that are exhibiting the same buggy behavior. We plan to
investigate such advanced search heuristics in the future.

3.7 Validating system health
Much like a check-up with a family physician, AutoBash’s

final mode of operation validates that a properly configured
system is continuing to behave correctly. AutoBash period-
ically (as a daily cron job) runs all the predicates in a com-
puter’s database. If any of these predicates fail, it produces
a report that alerts the computer’s administrator about the
problem. We have set up one of our authors’ desktop ma-
chines to run AutoBash health monitoring mode at three
o’clock in the morning daily. AutoBash updates the predi-
cate database to reflect the system health after each run.

We configured the AutoBash cron job to run at night so
as to minimally perturb the performance of foreground ap-
plications running on the computer. Speculative predicate
execution assures that there is no causal impact from pe-
riodically running predicates on the rest of the computer
system.

The input set and result of each predicate is collected
after a predicate is run. This information is used during
replay mode to determine which predicates previously failed
prior to attempting a solution, and also to determine which
predicates need not be re-run while testing a potential fix.

4. LIMITATIONS
We assume that a predicate is written to evaluate certain

desired properties of the system correctly; that is, the pred-
icate should deterministically evaluate to true if those prop-
erties hold and false otherwise. If a predicate does not return
the correct answer, AutoBash may miss a correct solution or
falsely identify an incorrect solution. Also, AutoBash cur-
rently does not support debugging non-deterministic errors.
Combining AutoBash with a system such as Rx [16] might
help tease out such non-determinism. Potentially, one could
intentionally vary non-deterministic inputs such as thread
scheduling and the time of day to help explain errors to an
administrator or user.

AutoBash is intended to debug user-level configuration
errors on a single computer. Since AutoBash uses a layer-
above approach implemented inside the operating system to
track causality and roll back modifications, it cannot track
causal effects for or undo kernel-level actions such as the
insertion of a kernel module. Potentially, a multi-level ap-
proach to rollback, for instance, by using a virtual machine
monitor to checkpoint and roll back kernel state [20], could
allow AutoBash to handle such scenarios. AutoBash also
does not support configuration of distributed applications
that span more than one computer. However, if Speculator
could be extended so that the operating systems of multi-
ple computers could share speculative state as in systems
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Bug CVS configuration problem description
1 Repository not properly initialized
2 User not added to CVS group
3 CVS performs unwanted keywords substitution
4 Setgid bit not set on repository, so group for new

files is incorrect
5 $TMPDIR environment variable set incorrectly
6 $CVSROOT misconfigured for a CVS user
7 $CVSROOT not set for a different CVS user
8 $CVSROOT variable set but not exported cor-

rectly
9 Repository permissions allow global access
10 Repository created using wrong group
Bug Gcc cross-compiler problem description
1 Cross-compiler tools not in the default path
2 Cross-compiler setup overwrites default path in-

stead of appending
3 Dangling libcrypt.so symlink does not point to

correct library
4 Archive tool (ar) not in the default location
5 Kernel header module.h contains wrong content
6 Compiler cannot invoke linker due to bad location
7 Cross-compiler specs file does not contain XScale

architecture definitions
8 Cross-compiler not configured to accept -pthread

option
9 C compiler configured correctly, but C++ com-

piler is not
10 Cross-compiler not configured to pass the static

link flag to the linker
Bug Apache HTTP server problem description
1 Apache cannot search a user’s home directory due

to incorrect permissions
2 Apache cannot read CGI scripts due to incorrect

permissions
3 Symlink used to point to CGI scripts in a user’s

home directory, but Apache is not configured to
follow symlinks

4 Apache configuration does not allow CGI execu-
tion in user home directories

5 Misconfiguration treats CGI scripts as regular
Web pages

6 Apache not configured to load PHP module
7 Handler not set for PHP pages
8 Apache not configured to use index.php as default
9 User has insufficient permission to use .htaccess

authorization
10 File .htaccess in a user’s home directory config-

ured incorrectly

Table 1: Description of injected bugs

such as Time Warp [8], AutoBash could tackle distributed
configuration management.

AutoBash is currently only targeting “functional” prob-
lems associated with misconfiguration and does not handle
performance problems. To correctly diagnose performance
problems, we need accurate accounting of shared resources
(CPU, memory, etc.) with the system. Since AutoBash also
consumes these resources for speculation and roll back, it
would interfere with performance debugging.

Finally, AutoBash assumes that all configuration actions
happen under its purview. One can imagine, for instance,
a delayed configuration action such as a process that reads
a configuration file once every 24 hours. AutoBash would
not observe this interaction since it limits causality track-
ing to the time period when AutoBash is employed to fix
a problem. While one could track all causal interactions

Predicate CVS predicate description
1 a user checks in a project and checks it out

again
2 a user checks in a project, and a different user

checks it out
3 same as predicate 1, but assumes a default

repository is defined
4 same as predicate 3, but also checks that unau-

thorized users cannot access repository
5 checks if CVS performs unwanted keyword sub-

stitutions
Predicate gcc cross-compiler predicate description

Note: For all predicates, we check that the com-
pilation succeeds and the compiled executable is
the right file format

1 take a “hello world” .c file, compile it with ex-
plicit path names

2 take a “hello world” .c file, compile it using
default paths

3 take a kernel module .c file, compile it
4 take a .c file, compile it, link it to a shared

cryptography library
5 take several .c files, compile them into object

files, archive the object files into a static library,
compile a program that links in the static li-
brary

6 take a .cc file, compile it with a c++ cross com-
piler

7 take a .c file, compile it, statically link in a
math library, check if the compilation succeeds
and the compiled executable is statically linked
to the math library

8 take a multi-threaded .c file, compile it for the
XScale architecture

Predicate Apache HTTP server predicate description
1 wget Apache’s default home page
2 wget a user’s default home page
3 wget the result of a CGI script from Apache’s

default root directory and diff the output with
the expected output

4 wget the result of a CGI script from a user’s
home directory and diff the output with the
expected output

5 wget the result of a PHP test page
6 wget a PHP test page that is set to be the de-

fault page

Table 2: Description of predicates for each applica-

tion

in the system to capture such activities, it would be quite
difficult to separate out configuration activity from other
causal interactions that have no effect on the problem being
debugged.

5. EVALUATION
Our evaluation answers the following questions:

• How well can AutoBash identify solutions to configu-
ration problems?

• How effective is causal dependency analysis in reducing
predicate testing?

• Can AutoBash identify solutions to configuration
problems involving multiple applications?
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5.1 Setup
All of our experiments were run on a Dell Precision 370

desktop computer with a 3.00 GHz Pentium 4 processor and
2 GB of memory. The computer runs a Red Hat Enterprise
3 Linux kernel version 2.4.21. All trials using AutoBash run
with a modified version of the kernel that includes Specula-
tor — all other trials run with the default 2.4.21 kernel.

5.2 Effectiveness of AutoBash
To validate AutoBash, we injected bugs into our com-

puter system for three applications: the CVS version control
system, the gcc arm-linux cross-compiler, and the Apache
HTTP server. Since we did not have an existing bug
database to draw upon, we identified 10 common bugs for
each application by searching through FAQs, manuals, and
troubleshooting reports on the Web. Most of the bugs are
limited to one application, but some bugs in one applica-
tion also cause another application to fail. AutoBash can
fix inter-application misconfigurations; we demonstrate one
such example in Section 5.3. Table 1 contains a short de-
scription of each bug we tested. We also created 5–8 predi-
cates that test the configuration of each application — these
predicates are shown in Table 2. These predicates are suffi-
cient to cover all the bugs in Table 1; i.e., each bug causes
at least one (and often several) predicates to fail.

For each bug, we created a script that injected the bug,
as well as a solution script that fixed the problem. In these
experiments, we do not assume that there exists a set of
standard predicates for the application as described in Sec-
tion 3.6; thus, AutoBash uses the following heuristic to or-
der the solution search space. As AutoBash has no hint
about which application is misconfigured, it runs all predi-
cates from Table 2 in the initial predicate testing. Based on
the results of this initial predicate testing, AutoBash tries so-
lutions from the application with the most failed predicates.
When verifying the correctness of a solution, AutoBash runs
the failed predicates first and only re-runs those predicates
whose input sets intersect with a solution’s output set.

We evaluated the correctness of AutoBash by injecting
each bug from Table 1 into our test computer system and
using AutoBash in replay mode to fix the bug. In every
case, AutoBash was able to find a solution that corrected
the misconfiguration.

Next, we evaluated the performance impact of speculative
execution and benefit gained by causality analysis to a base-
line AutoBash implementation. We created three versions
of AutoBash:

• No speculative execution: This version uses nei-
ther speculative execution nor causality analysis. We
created scripts to undo each solution and predicate.
Without speculative execution, we found it can some-
times be quite hard to undo the effects of predicate
testing because some applications do not provide an
interface to undo actions. For example, to undo the
effects of a CVS predicate testing, our undo script re-
moves the directory added in predicate testing from
the CVS repository and removes lines from CVS’s his-
tory file.

• No causal analysis: This version uses speculative
execution but not causality analysis. Comparing the
execution time of the first and second bars in each

dataset gives the performance overhead of speculative
execution.

• AutoBash: This version uses both speculative exe-
cution and causality analysis. Thus, comparing the
execution time of the second and third bars in each
dataset shows the amount of time saved by tracking
output sets of solutions and input sets of predicates.

The trouble we had in developing manual undo scripts
for the “No speculative execution” version demonstrated to
us the importance of speculative execution; with AutoBash,
the operating system tracks the causal effects of a predicate
and undoes them after testing the predicate.

We evaluated these three versions as follows. For each
bug in Table 1, we compare the total search time to find the
solution. Our results for each version are shown by the three
bars for each bug in Figures 4, 6, and 8. For each bar, we
break the total search time into three parts: initial predicate
testing (before any solution is tried), solution execution and
undo, and predicate testing (to verify a potential solution).

We also show the number of predicates run in initial pred-
icate testing and solution searching in Figures 5, 7, and 9.
We coalesce the first two versions into “No causal analysis”
because they run the same number of predicates.

5.2.1 CVS
Figure 4 shows the time needed to solve the ten CVS con-

figuration bugs described in Table 1. Comparing the first
two bars in each dataset shows that speculative execution
adds minimal overhead for this benchmark – the maximum
overhead of speculation is 2.7% for bug 9. The initial pred-
icate testing time is unavoidable because we assume that
AutoBash receives no hints from the user and hence runs
through all predicates. We found that solution execution
time is negligible. Hence, the only component of our replay
mode that can be improved is predicate testing. This obser-
vation led us to focus on using causality analysis to reduce
the number of predicates that need to be tested.

Without causality analysis, the number of predicates that
must be tested tends to increase roughly in proportion to the
number of solutions tried. Since AutoBash tries the solution
from the application with the most failed predicates in the
initial predicate testing, AutoBash is able to find the right
solution in an average of 4.5 trials. Also, AutoBash tests
the failed predicates first after trying a solution so it is able
to quickly determine if the solution is incorrect.

An interesting observation from our evaluation is that the
subtlety of the bug impacts execution time — for instance,
bug 9 allows unauthorized access to the repository; there-
fore, even though AutoBash only needs to re-run one pred-
icate to determine a solution does not work, it takes longer
for that predicate to detect a problem. However, bugs 1 and
5 are catastrophic; since all CVS actions fail, any predicate
fails immediately.

Comparing the second and third bar in each dataset shows
the performance benefit of causality analysis. For most bugs,
causality analysis reduces the time to find a solution by 31–
51% and predicate testing time by 67–82%. Figure 5 clarifies
this benefit by comparing the number of predicates run with
and without causality analysis. With causality support, Au-
toBash runs fewer predicates. Thus, the performance of Au-
toBash tends to degrade much more slowly with the number
of solutions tried.
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This figure shows the time to find a solution for the 10 CVS bugs in Table 1. The left bar in each data set shows the time to find
a solution without speculative execution or causality analysis, the middle bar shows the time with only speculative execution, and
the right bar shows the time with both. Each result is the mean of five trials — the error bars show 95% confidence intervals.

Figure 4: AutoBash performance for CVS benchmark
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This figure shows the number of predicates executed by AutoBash while finding a solution for the 10 CVS bugs in Table 1. Five
trials were run for each bug; however, the number of predicates executed was identical in each trial.

Figure 5: Number of predicates executed for CVS benchmark

5.2.2 Cross-compilation
Figures 6 and 7 show results for the ten gcc cross-compiler

bugs in Table 1. The performance impact of speculative
execution, as shown by the difference between the first two
bars in each dataset in Figure 6, is within experimental error
for all bugs. For bug 2, which overwrites the default path
environment variable, AutoBash is able to identify that the
bug affects CVS and re-runs CVS predicates. As with the
CVS experiments, without causality support, the number of
predicates that needed to be tested to find a solution tends
to increase with the number of solutions tried and the total
execution time is affected by the subtlety of the injected bug.
For most bugs, causality analysis improves solution search
time by 34–48.5%.

An interesting observation highlighted by our cross-
compilation evaluation was that predicate testing time for
different applications can vary greatly. For instance, the
cross-compilation predicates run much faster than Apache’s.
With causality analysis we improve predicate testing time
by 67–99% because AutoBash did not re-run any Apache
predicates as they were not causally dependent on any of
the cross-compilation solutions.

5.2.3 Apache
Figures 8 and 9 show results for the ten Apache bugs in

Table 1. The time to find a solution without causality track-

ing scales roughly linearly with the number of bugs because
Apache has a large amount of configuration state. Thus, the
bugs we injected are mostly subtle; a misconfiguration often
affects only a single predicate or two. The solution for bug 1
changes the permission of /home/USER, where all our pred-
icates are located. Therefore, the output set of the solution
for bug 1 intersects with the input sets of all 19 predicates.
So, bug 1 does not benefit from causality analysis as all
19 predicates need to be run. However, bug 10 shows the
largest benefit — its total execution time decreases by 58%
and predicate testing decreased by 95% because causality
analysis reveals that only one predicate needs to be re-run.

5.3 Case study
Configuration problems involving multiple applications

can be more difficult to solve. We investigate the effective-
ness of AutoBash in solving such problems by developing a
misconfiguration scenario involving both CVS and Apache.
In our scenario, the user sets up a CVS repository to manage
the source tree for a website. The configuration bug is that
the user did not turn off CVS’s keyword substitution feature
so that whenever a developer checks in a CGI Perl script,
CVS automatically substitutes keywords such as $Id$ in the
script with the username of the user who checks in the file.
Later, when the user checks out the website and executes the
CGI Perl script, he will encounter an incorrectly formatted
HTML page.
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This figure shows the time to find a solution for the 10 gcc bugs in Table 1. The left bar in each data set shows the time to find a
solution without speculative execution or causality tracking, the middle bar shows the time with only speculative execution, and
the right bar shows the time with both. Each result is the mean of five trials — the error bars show 95% confidence intervals.

Figure 6: AutoBash performance for gcc benchmark
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This figure shows the number of predicates executed by AutoBash while finding a solution for the 10 gcc bugs in Table 1. Five
trials were run for each bug; however, the number of predicates executed was identical in each trial.

Figure 7: Number of predicates executed for gcc benchmark

This bug can be resolved by running AutoBash in replay
mode. We hypothesize an existing predicate in a standard
predicate set shipped with Apache that works as follows: an
Apache user checks in a Perl script to a CVS repository on
the machine. The predicate, which runs as root, checks out
the Perl script into a CGI scripts directory, wgets the results
of executing that CGI Perl script, and diffs the output with
the expected output.

We ran AutoBash in replay mode with the solutions for
bugs described in Table 1 and predicates in Table 2. Dur-
ing initial testing, AutoBash finds that CVS predicate 5 fails
and the remaining predicates succeed. Therefore, AutoBash
tries solutions associated with CVS first and finds the so-
lution that fixed CVS’s bug 3 solves the problem. Even
though the misconfiguration manifests as an Apache prob-
lem, AutoBash is able to identify that it is actually due to
a misconfiguration in CVS.

6. RELATED WORK
To the best of our knowledge, AutoBash is the first

project to leverage operating-system-level causality tracking
and speculative execution to improve configuration manage-
ment.

Chronus [20] also looked at the use of checkpoint and roll-
back for configuration management. Chronus uses a virtual
machine monitor to implement rollback at the granularity

of the entire computer system. The VM implementation al-
lows Chronus to diagnose kernel bugs, but would make it
much harder to extract the causal information used by Au-
toBash to guide its search. Like AutoBash, Chronus uses
user-defined predicates to test the behavior of the system.
Chronus attacks a more limited problem: finding the point
in time where a previously-working system ceased to operate
correctly. AutoBash tries more generally to allow one sys-
tem to learn from others by speculatively applying and test-
ing fixes that have worked elsewhere for similar problems.
Chronus shares our use of rollback to eliminate predicate
effects, as does the work of Joshi et al. [9] in the IntroVirt
project.

We have used Speculator [15] to implement checkpoint
and rollback. Rx [16] and Pulse [12] apply operating sys-
tem speculation to different domains: transparent recovery
from non-deterministic application failure and deadlock de-
tection, respectively.

Brown and Patterson’s Operator Undo [2] uses a form of
checkpoint and rollback to allow administrators to fix mail
configuration errors. However, their approach requires ap-
plication modification, whereas AutoBash functionality re-
quires no application-level support.

PeerPressure [18] and its predecessor, Strider [19], share
the same overarching goal as AutoBash: making configura-
tion management easier. However, AutoBash takes a fun-
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This figure shows the time to find a solution for the 10 Apache bugs in Table 1. The left bar in each data set shows the time to
find a solution without speculative execution or causality tracking, the middle bar shows the time with only speculative execution,
and the right bar shows the time with both. Each result is the mean of five trials — the error bars show 95% confidence intervals.

Figure 8: AutoBash performance for Apache benchmark
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This figure shows the number of predicates executed by AutoBash while finding a solution for the 10 Apache bugs in Table 1.
Five trials were run for each bug; however, the number of predicates executed was identical in each trial.

Figure 9: Number of predicates executed for Apache benchmark

damentally different approach than PeerPressure or Strider;
AutoBash reasons about actions rather than state. Auto-
Bash therefore uses causal tracking and analysis to under-
stand how user actions affect predicates that test system
correctness, while Strider and PeerPressure apply statistical
methods to reason about similarities between configuration
state on different machines. The AutoBash approach works
well in environments such as Linux where configuration state
may be hard to find because it is scattered throughout the
file system, rather than coalesced in a central registry. Like
AutoBash, Strider and PeerPressure observe causality to de-
termine the system state that causally affects buggy applica-
tions. However, unlike AutoBash, these tools do not follow
causal links across processes. So, if one process observes
state and causally affects another process that exhibits a
bug, PeerPressure cannot trace the appropriate causal chain
back to the misconfigured state. Ultimately, the problem of
configuration management seems complex enough that it
may be best to combine multiple approaches such as Auto-
Bash causal analysis and PeerPressure state analysis.

Many prior systems reason about causal interactions. For
instance, King’s BackTracker [11] traces causal interactions
to determine what state has been changed during an intru-
sion. Aguilera et al. [1] use causal tracing of RPCs to debug
performance problems. Causeway [3] allows applications to
inject metadata that follows causal paths for distributed ap-

plications. PASS [14] uses causality to annotate files with
provenance that describes their causal inputs: our input sets
try to capture similar information, but limit the scope of in-
formation collected to specific periods of time.

Clarify [5] improves error reporting by monitoring soft-
ware execution to generate a behavior profile when an error
occurs. It then applies a classifier to match the bug profile to
erroneous execution reports previously submitted by other
users. One can regard Clarify as focusing on causality within
process execution, whereas AutoBash monitors causal inter-
actions external to a process. AutoBash may benefit from
using similar classification and machine learning techniques
to those employed by Clarify.

AutoBash’s replay mode currently uses a simple approach,
Hamming distance calculated over a vector of predicate re-
sults, to determine which solutions to try first. Other ap-
proaches, drawing from machine learning and information
retrieval, could potentially do a better job of identifying bugs
and their corresponding solutions. For example, Cohen et
al. [4] showed that an approach that uses statistical methods
to capture relationships between low-level performance met-
rics and high-level behaviors outperformed an approach that
used only the low-level metrics in tasks such as root-cause
analysis and behavioral clustering.
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7. CONCLUSION
This paper has explored how the operating system can

contribute to reducing the burden of configuration man-
agement. AutoBash is a set of tools that leverages oper-
ating system support for speculative execution and causal-
ity tracking to automate many of the time-consuming tasks
that occur when users deal with the complexity of modern
computer systems. Our results show that OS support can
reduce both the time and user effort needed to fix configu-
ration errors.

At the same time, AutoBash tackles only a piece of the
larger configuration management problem. Advances in
other domains, such as machine learning, distributed infor-
mation systems, and user interfaces will help provide the
other pieces of the puzzle. Our future work therefore lies in
integrating AutoBash with solutions from these domains.
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