
Improving the Quality of Large-Scale
Database-Centric Software Systems by Analyzing

Database Access Code
Tse-Hsun Chen

supervised by Ahmed E. Hassan
Expected graduation date: Summer of 2016

Software Analysis and Intelligence Lab (SAIL), Queens University, Canada
{tsehsun, ahmed}@cs.queensu.ca

Abstract—Due to the emergence of cloud computing and big
data applications, modern software systems are becoming more
dependent on the underlying database management systems
(DBMSs) for data integrity and management. Since DBMSs are
very complex and each technology has some implementation-
specific differences, DBMSs are usually used as black boxes by
software developers, which allow better adaption and abstrac-
tion of different database technologies. For example, Object-
Relational Mapping (ORM) is one of the most popular database
abstraction approaches that developers use. Using ORM, objects
in Object-Oriented languages are mapped to records in the
DBMS, and object manipulations are automatically translated to
SQL queries. Despite ORM’s convenience, there exists impedance
mismatches between the Object-Oriented paradigm and the
relational DBMSs. Such impedance mismatches may result in
developers writing inefficiently and/or incorrectly database access
code. Thus, this thesis proposes several approaches to improve
the quality of database-centric software systems by looking at the
application source code. We focus on troubleshooting and detect-
ing inefficient (i.e., performance problems) and incorrect (i.e.,
functional problems) database accesses in the source code, and
we prioritize the detected problems based on severity. Through
case studies on large commercial and open source systems,
we plan to demonstrate the value of improving the quality
of database-centric software systems from a new perspective
– helping developers access the database more efficiently and
accurately.

I. INTRODUCTION

Due to the emergence of cloud computing and big data
applications (e.g., Amazon, BlackBerry, and Google), mod-
ern software systems are becoming more dependent on the
underlying database management systems (DBMSs) for data
integrity and management. These large-scale database-centric
software systems pose new challenges for the database and
software engineering field, since these systems need to be
responsive while being able to support millions of concurrent
users at the same time.

DBMSs are one of the core components of database-centric
systems. Developers often store all user data in DBMSs to pro-
vide better scalability and maintainability. Although DBMSs
are usually fairly optimized in terms of performance and data
management, how developers control and communicate with

the DBMS has a significant impact on the quality of database-
centric software systems.

Since managing the data consistency between the source
code and the DBMS is a difficult task, especially for complex
large-scale systems, technologies are leveraged to ease the
data access. For example, developers often employ Object-
Relation Mapping (ORM) frameworks to provide a conceptual
abstraction between objects in Object-Oriented Languages and
records in the underlying DBMS. Using ORM, changes on the
object states are automatically propagated to the corresponding
records in the DBMS. These abstraction frameworks signif-
icantly reduce the amount of code that developers need to
write [1], [2]. However, due to the impedance mismatch be-
tween the Object-Oriented paradigm and the relational model,
developers may write code that access the DBMS inefficiently
(i.e., causes performance problems) and/or incorrectly (i.e.,
causes functional problems).

Recent studies (e.g., [3], [4], [5]) have proposed various
frameworks on top of database-access abstraction layers (e.g.,
ORM) to transform and optimize the automatically generated
SQLs. However, a potential problem with these approaches is
that the system may experience higher overheads and become
harder to debug due to the extra layer of complexity. Thus,
in this thesis, we propose several new approaches to detect
potential problems in the application source code, and we
rank the problems according to their severity. Our approaches
add little to no overheads to the system, and developers can
allocate their effort effectively according to our results. We
will demonstrate our proposed contributions using both open
source and commercial systems.

Our research makes the following contributions:
• We have proposed approaches using static and dynamic

analysis to detect problematic database access code.
• We have proposed an approach to help developers locate

data mismatches between the needed data in the applica-
tion code and the requested data by ORM.

• We have proposed a non-intrusive approach to monitor
runtime data interactions.

• We have proposed an approach to understand and detect



transaction management bugs in systems that are imple-
mented using ORM.

• Part of our initial work is adapted by BlackBerry to
ensure the performance and quality of their large-scale
database-centric systems.

Paper Organization. Section II surveys related work, and
Section III outlines our research hypothesis. Section IV dis-
cusses our exploratory study on the maintenance of database
abstraction code. Section V introduces the research problems
and our proposed approaches for improving the quality of
database-centric systems. Finally Section VI concludes the
paper.

II. RELATED WORK

In this section, we discuss related research that aims to help
developers improve the quality of database-centric systems.

A. Optimizing the Performance of Generated Queries

Smith and Williams [6] first document the problem and
possible solutions of a number of database-related perfor-
mance anti-patterns. They discuss a pattern called Empty Semi
Trucks, which occurs when a large number of excessive query
calls (e.g., select, insert, update, or delete) is sent to the
DBMS for a given task. Chen et al. [7] implement a static
analysis framework, which automatically detects performance
anti-patterns that are similar to Empty Semi Trucks. Smith
and Williams [6] do not provide any detection approaches for
Empty Semi Trucks and they only discuss non-ORM systems.
Chen et al. apply static analysis to detect ORM DBMS calls
within loops, which result in a large number of repetitive
SQL queries. In addition, Chen et al. [7] apply static analysis
to detect data that is retrieved from a DBMS, but never
used by the system. Cheung et al. [4] optimize the system
performance using SQL query synthesis. SQL query synthesis
aims to generate SQL queries automatically according to
some predefineded constraints. The approach that Cheung
et al. developed is based on the pre- and post-conditions
of methods that access the DBMS. Pre-conditions are the
conditions that must always hold before executing a method,
and post-conditions are the conditions that must always hold
after executing a method. By generating optimized queries that
satisfy the pre- and post-conditions, Cheung et al. transform
SQL query into a more efficient form. Chaudhuri et al. [8]
propose an approach to link functions with the SQLs that they
generate. Their approach can help locate the root cause of
problematic SQLs (i.e., the functions that generate the SQLs).
Tamayo et al. [9] construct the program dependency graph
of a database-centric system using dynamic information flow,
and combine the information with the corresponding query
operations to identify performance bottlenecks. Their tool may
also be used to identify problems related to batching, SQL
synchronization, repetitive SQL queries, and extra operations.

B. Reducing Query Transmission Latency

Cheung et al. [3] dynamically keep track of the SQL
queries, and delay all the query operations (i.e., submission of

queries and computations) as late as possible. Their approach
reduces the data transmission overheads between the DBMS
and a database-centric system by sending the queries to the
DBMS in one large batch. Thus, the impact of round-trip
time and network latency can be reduced. Chavan et al. [5]
use static analysis to automatically transform source code to
allow asynchronous query submission. Their approach allows
the system to continue doing other computations while waiting
for the results of queries to return from the DBMS. Thus, total
system execution time for a task can be reduced.

C. Deadlock Analysis by Analyzing the Source Code

Grechanik et al. [10] develop an approach for detecting
database deadlocks in database-centric systems. In another
work, Grechanik et al. [11] combine dynamic and static
analysis to prevent database deadlocks. They first discover
SQL queries that belong in the same transaction, and derive a
wait-for graph. If two transactions are executed in an order that
may cause a deadlock, they postpone one of the transactions.
Jula et al. [12] collect deadlock patterns, which are patterns
that may lead to deadlocks. They derive the patterns using
traces collected during system execution. Future executions
that contain such patterns are avoided by rescheduling.

D. Improving Database Schema

Nijjar et al. [13] extract formal mathematical models from
the database schema of Ruby on Rails applications, and look
for errors in the models. In their follow-up work, Nijjar et
al. [14] extract formal mathematical models from the database
schema, and develop heuristics to discover anti-patterns in
the schema. Their framework can then automatically propose
solutions to correct the database schema.

From the survey, we discover that prior work usually
requires adding some frameworks on top of ORM, or requires
developers to have deep knowledge of the database. However,
adding another layer of complex framework may bring extra
overheads and make the system harder to debug. In addition,
since ORM abstracts database accesses from developers, many
of the prior approaches that depend on developer-written
queries may not work. Hence, to ensure the quality of database
access code, this thesis proposes a series of approaches to help
detect and locate inefficient and/or incorrect database access
code when using ORM.

III. RESEARCH HYPOTHESIS

A large amount of prior work [15], [16], [17], [18], [19] has
advanced the performance and quality of DBMSs. However,
software systems still suffer from database-related problems,
and one of the major reasons is related to how developers
access the DBMS [4], [6], [7], [20]. We believe that by
helping developers write better database access code, we can
significantly improve the quality of database-centric systems.

In this thesis, we leverage both static code analysis and
dynamic analysis to uncover potential problems about how



developers access the DBMS. Our approaches differ from pre-
vious work in that they are usually introducing an extra layer
between the system and the DBMS, which may increase the
difficulty of debugging. Our underlying research hypothesis is:

�

�

�



Due to the impedance mismatch between the Object-
Oriented paradigm and the relational model, developers
may write code that access the DBMS inefficiently (i.e.,
causes performance problems) and/or incorrectly (i.e.,
causes functional problems). By detecting and locating
such inefficient and incorrect code, we can significantly
improve the quality of database-centric software systems.

IV. AN EXPLORATORY STUDY ON THE MAINTENANCE
EFFORTS OF DATABASE ABSTRACTION CODE

DBMSs are usually abstracted from developers through
various database abstraction technologies such as ORM. Thus,
developers may not be aware that the code they write may
interact with the DBMS, or they may not know how changing
the DBMS configurations will affect the code (or vice versa).
As a pilot study, we conducted a study on the maintenance
of database abstraction technologies (we focus on Java ORM
due to its popularity [4]) using three open source systems
(Broadleaf Commerce [21], Devproof [22], and JeeSite [23])
and one enterprise system. We find that ORM code is usually
the core of the system (more files depend on ORM code), and
ORM code is changed more frequent than regular code (115%
– 179% more). Moreover, developers usually need to change
ORM code to accommodate database schema changes (56% of
all ORM code changes), and configure ORM to achieve better
usability (36%) and performance (8%). In short, we find that
even though ORM tries to abstract database accesses from
developers, many ORM code changes are still bounded to the
underlying DBMS. Thus, writing efficient and correct ORM
code may significantly improve the quality of database-centric
system.

�

�

�

�
We find that ORM code is usually the core of a system, and
developers constantly maintain it. However, even though
ORM tries to abstract database accesses, most ORM code
changes are still bounded to the underlying database.

V. OUR PROPOSED APPROACH

In this section, we discuss our proposed approaches to
improve the quality of database-centric systems by finding
problems in how developers access the DBMS. We present
our approaches for detecting inefficient and incorrect database
access code in three subsections. For each approach, we
present the problem we wish to solve and a brief overview
of our proposed approach, evaluation criteria, and preliminary
results if available.

A. Our Approaches for Detecting Inefficient Database Access
Code
Detecting Performance Anti-patterns for Systems Imple-
mented Using ORM

Problem: Using ORM, object manipulations are automat-
ically translated to SQL queries. Thus, developers may not
be aware which source code snippet would result in database
access nor the generated SQLs are efficient. As a result,
Developers may not proactively optimize the ORM database
access code to improve system performance.

Our proposed approach: We have proposed a framework
to automatically detect two types of ORM performance anti-
patterns [7]. We discovered the anti-patterns through em-
pirically study and our industrial partner, BlackBerry. We
leverage static code analysis to detect such patterns, and
our framework can also automatically prioritize the detected
instances of anti-patterns according to their severity. The two
anti-patterns that our framework can detect are: one-by-one
processing and excessive data. One-by-one processing happens
when developers write database access code in a loop, which
results in generating a large number of similar but repetitive
SQLs (the ideal solution would be to execute the SQLs in
batches) [6]. Such code may be harder to find due to the ORM
abstraction. Excessive data is related to ORM configurations,
where ORM eagerly fetch data from associated table (i.e.,
SQL joins), but the eagerly fetched data is never used in the
application code (i.e., join is not necessary). More detailed
descriptions of our approach can be found in [7].

Evaluation Criteria: We apply dynamic analysis to rank
and prioritize the anti-pattern instances. Our studied systems
are Broadleaf [21], Pet Clinic [24], and an industrial system.
We apply an automated code transformation on the ORM
generated SQLs to remove the anti-patterns, a similar approach
by Jovic et al. [25]. Then, we compare the performance
between the SQLs with and without the anti-patterns.

Preliminary Results: Our framework is able to detect hun-
dreds of anti-pattern instances in our studied systems, and
developers have confirmed that some of the detected instances
are indeed the root cases of performance bugs. We use MySQL
as our DBMS, and we conduct our experiment on two separate
machines, one for sending SQL requests, and one for hosting
the DBMS. We find that by removing the anti-patterns, the
system performance (i.e., response time) can improve 35% on
average in our studied systems [7]. In addition, our dynamic
analysis can help reduce the false positive in our static analysis
results, so developers can focus on fixing more severe prob-
lems first. Our framework is now being used at BlackBerry on
a daily basis to help the company ensure the quality of their
database-centric systems.
Detecting Mismatches Between the Needed Data and the
Requested Data

Problem: When using ORM or other similar database ab-
straction technologies, developers do not need to worry about
writing SQL queries. However, since these abstraction tech-
nologies are generic and they do not know what data is needed
in the application code, the needed data in the application



code and the requested data by the abstraction technologies
may be different. The mismatches can result in serious perfor-
mance problems when, for example, the generated SQLs are
constantly updating unchanged non-clustered indexed columns
in a table or retrieving unused BLOB columns [26], [27].
Although different ORM providers may have different ways
to resolve the mismatches, developers may not know what to
look for and where to start in a large system.

Proposed Approach: We plan to propose an approach that
can automatically detect and locate the mismatches between
the needed data in the application code and the ORM requested
data. Our approach is general and should be applicable to
other technologies. Our approach contains three steps: 1) static
analysis for finding data read/write functions in the application
code; 2) dynamic analysis for detecting the needed data in
the application code and the requested data by the generated
SQLs; and 3) locating the mismatches in the code. For the
static analysis part, we plan to identify all the functions
that read or write to the variables, which store data returned
by the DBMS. For example, if a function A reads a user’s
name, and the value of the user name variable was returned
from the DBMS, then we mark A as a data-read function.
For the dynamic analysis part, we plan to use binary code
instrumentation to monitor the execution of the data-read and
-write functions, and the SQLs being generated. By comparing
the needed and requested database accesses, our approach can
find that, for example, a BLOB column is retrieved from the
DBMS, but the column data is never used in the code.

Evaluation Criteria: After collecting the execution infor-
mation, we will compare the requested and the needed data
within and across transactions to identify data mismatches
in the application system. Finally, we plan to evaluate the
performance impact of the detected data mismatches. We
plan to first perform an automated code transformation on
the collected problematic SQLs to generate SQLs that re-
quest/update only the needed/used data in the application
code. Then, we plan to automatically execute the original
SQLs (SQLs with data mismatches) and the transformed SQLs
(SQLs without data mismatches) separately to compare the
performance difference, and rank the code snippet with data
mismatches according to the performance impact.

Preliminary Results: We conduct our experiment in the
same settings mentioned above using Broadleaf [21], Pet
Clinic [24], and an industrial system. We find that in our
exercised workloads, each transaction may contain up to
several mismatches. We find that resolving the mismatches
can improve the system performance (i.e., response time) by
3–88%.

B. Our Approaches for Understanding System Execution

A Non-intrusive Profiler for Runtime Data Interactions
Problem: We discover several challenges when trying to

implement and execute the above-mentioned approaches: 1)
there is no direct link between the code and the generated
SQLs; 2) even though we can recover the link using instrumen-
tation, instrumentation framework gives significant overheads,

which can be problematic for systems deployed in production
and make our approach less usable. However, understanding
data interactions during runtime can help identify performance
bottlenecks and improve software quality [9], [8]. Thus, to
overcome the challenges, it is important to propose a non-
intrusive data interaction profiler which is easy to use and can
be applied to systems deployed in production.

Proposed Approach: We plan to implement a framework
that can automatically recover the runtime DBMS data inter-
actions without instrumentations. We plan to first apply static
analysis to discover the corresponding data access of system
logs (e.g., Tomcat HTTP access logs), and then recover the
runtime data interaction by analyzing the logs. For example,
for SaaS systems that implement REST for their external APIs,
our framework will scan all functions that handle the REST
requests, and record possible data access in each function
using static analysis. We will map each function to the
corresponding HTTP access log, and then we will be able to
recover the runtime data interactions by only analyzing HTTP
access logs (we obtain possible data access associated with
the log from the previous step). To improve the granularity
and accuracy of our approach, we will analyze the identifier
of each request and how the identifier is used in the request
handling function. We will perform a data flow analysis to see
if the identifier is being used as a selection or update criteria
for database access, and thus we may map each request to
the corresponding records in database tables. Although our
proposed approach may miss some cases, it is easy to use and
brings no overheads to the system.

Evaluation Criteria: We plan to compare the recovered data
interactions (using logs and static analysis) with the actual data
interactions (i.e., SQLs) that we collect using instrumentation.
Then, we will be able to evaluate the accuracy of our proposed
approach. We also plan to show some use cases of our ap-
proach, such as helping developers configure cache or finding
database tables that may suffer from performance problems
due to frequent locking.

C. Our Approaches for Detecting Incorrect Database Access
Code
Identifying Incorrect Transaction Management Code

Problem: Transaction management is a difficult issue in
large-scale systems, and such issue may become more difficult
to detect when using abstraction technologies such as ORM.
For example, due to the implementation of some ORM frame-
works, updating and deleting the same record sequentially
may cause exceptions [28]. In addition, many database-centric
systems now use dependency injection (DI) frameworks [29],
such as Spring [30], to manage transactions. As a result,
managing transactions is not as straightforward as writing
plain mutex, and may cause different kinds of multithreading
issues related to DBMS.

Proposed Approach: We plan to conduct an empirical study
on systems that are implemented using ORM and DI frame-
works. We plan to investigate Github1 bug reports, and sample

1https://github.com



the bug reports related to transaction management. Then, we
will conduct a manual study on the root causes of these bugs,
and examine how often the database access code is causing
the problem. Finally, we will develop a framework that can
detect these problems statically.

Evaluation Criteria: After implementing the framework,
we plan to evaluate the false positive rate of the detection result
by manual analysis and by reporting the detected problems to
developers.

Preliminary Results: Our initial study shows that there exist
different transaction management issues in such systems [28],
[31]. For example, due to Hibernate’s own unique key handling
mechanism, incorrect insertion and deletion order may cause
exceptions during system runtime [28].

VI. CONCLUSION

Our pilot empirical study finds that, although Object-
Relational Mapping (ORM) frameworks abstract database
accesses from developers, many of the ORM code changes
are still related to the underlying DBMSs. As a result, we
hypothesize that by improving the quality of the database
access code that developers write, we can significantly improve
the quality of database-centric systems that are implemented
using such abstraction frameworks. We have proposed several
approaches to detect inefficient ORM code, locate where to
configure ORM code efficiently, monitor system execution
non-intrusively, and discover transaction management prob-
lems.

ACKNOWLEDGEMENTS
The author thanks Dr. Ahmed E. Hassan and Dr. Weiyi

Shang for their valuable comments on earlier drafts. The
author is grateful to the Performance Engineering team at
BlackBerry for the support. By working as a researcher in the
team, the author has learnt to appreciate the current challenges
and possible solutions to improve the quality of database-
centric systems.

REFERENCES

[1] D. Barry and T. Stanienda, “Solving the java object storage problem,”
Computer, vol. 31, no. 11, pp. 33–40, Nov. 1998.

[2] N. Leavitt, “Whatever happened to object-oriented databases?” Com-
puter, vol. 33, no. 8, pp. 16–19, Aug. 2000.

[3] A. Cheung, A. Solar-Lezama, and S. Madden, “Sloth: Being lazy is
a virtue (when issuing database queries),” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data, 2014.

[4] ——, “Optimizing database-backed applications with query synthesis,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13, 2013, pp. 3–14.

[5] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan,
“Program transformations for asynchronous query submission,” in Pro-
ceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ser. ICDE ’11, 2011, pp. 375–386.

[6] C. U. Smith and L. Williams, “More new software performance antipat-
terns: Even more ways to shoot yourself in the foot,” in Proceedings of
the 2003 Computer Measurement Group Conference, ser. CMG 2003,
2003.

[7] T.-H. Chen, S. Weiyi, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora,
“Detecting performance anti-patterns for applications developed using
object-relational mapping,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE, 2014.

[8] S. Chaudhuri, V. Narasayya, and M. Syamala, “Bridging the application
and dbms profiling divide for database application developers,” in
Proceedings of the 33rd International Conference on Very Large Data
Bases, ser. VLDB ’07. VLDB Endowment, 2007, pp. 1252–1262.

[9] J. M. Tamayo, A. Aiken, N. Bronson, and M. Sagiv, “Understanding the
behavior of database operations under program control,” in Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12, 2012, pp. 983–
996.

[10] M. Grechanik, B. Hossain, and U. Buy, “Testing database-centric
applications for causes of database deadlocks,” in Proceedings of the
6th International Conference on Software Testing Verification and Vali-
dation, ser. ICST ’13, 2013, pp. 174–183.

[11] M. Grechanik, B. M. M. Hossain, U. Buy, and H. Wang, “Preventing
database deadlocks in applications,” in Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013,
2013, pp. 356–366.

[12] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea, “Deadlock immunity:
Enabling systems to defend against deadlocks,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08, 2008, pp. 295–308.

[13] J. Nijjar and T. Bultan, “Bounded verification of ruby on rails data mod-
els,” in Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ser. ISSTA ’11, New York, NY, USA, 2011, pp.
67–77.

[14] ——, “Data model property inference and repair,” in Proceedings of the
2013 International Symposium on Software Testing and Analysis, ser.
ISSTA ’13, 2013, pp. 202–212.

[15] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Widmayer, “Progressive
merge join: A generic and non-blocking sort-based join algorithm,” in
Proceedings of the 28th International Conference on Very Large Data
Bases, ser. VLDB ’02, 2002, pp. 299–310.

[16] M. F. Mokbel, M. Lu, and W. G. Aref, “Hash-merge join: A non-
blocking join algorithm for producing fast and early join results,” in
Proceedings of the 20th International Conference on Data Engineering,
ser. ICDE ’04, 2004, pp. 251–.

[17] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, pp. 23–52, Mar. 1988.

[18] M. Jarke and J. Koch, “Query optimization in database systems,” ACM
Comput. Surv., vol. 16, no. 2, pp. 111–152, Jun. 1984.

[19] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1986.

[20] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, ser. Pragmatic Bookshelf Series. Pragmatic Bookshelf,
2010.

[21] B. Commerce, “Broadleaf commerce,” http://www.broadleafcommerce.
org/, 2013.

[22] D. Portal, “Devproof portal,” https://code.google.com/p/devproof/, 2014.
[23] ThinkGem, “JEEsite,” http://jeesite.com/, 2014.
[24] S. PetClinic, “Petclinic,” https://github.com/SpringSource/

spring-petclinic/, 2013.
[25] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can:

performance bug detection in the wild,” in Proceedings of the 2011
ACM international conference on Object oriented programming systems
languages and applications, ser. OOPSLA ’11, 2011, pp. 155–170.

[26] R. Ramakrishnan and J. Gehrke, Database Management Systems.
McGraw-Hill Education, 2003.

[27] P. Zaitsev, V. Tkachenko, J. Zawodny, A. Lentz, and D. Balling, High
Performance MySQL: Optimization, Backups, Replication, and More.
O’Reilly Media, 2008.

[28] H. ORM, “wrong insert/delete order when updating record-set,”
https://hibernate.atlassian.net/browse/HHH-2801, 2014.

[29] D. R. Prasanna, Dependency Injection. Greenwich, CT, USA: Manning
Publications Co., 2009.

[30] SpringSource, “Spring framework,” www.springsource.org/, 2013.
[31] B. Commerce, “Fulfillmentoptionservice has transactional annotation at

class level, which causes transactions to flush when reading something
from the db from a controller,” https://github.com/BroadleafCommerce/
BroadleafCommerce/issues/1069, 2013.

http://www.broadleafcommerce.org/
http://www.broadleafcommerce.org/
https://code.google.com/p/devproof/
http://jeesite.com/
https://github.com/SpringSource/spring-petclinic/
https://github.com/SpringSource/spring-petclinic/
www.springsource.org/
https://github.com/BroadleafCommerce/BroadleafCommerce/issues/1069
https://github.com/BroadleafCommerce/BroadleafCommerce/issues/1069

