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Abstract Researchers in software engineering have attempted to improve soft-
ware development by mining and analyzing software repositories. Since the ma-
jority of the software engineering data is unstructured, researchers have applied
Information Retrieval (IR) techniques to help software development. The recent
advances of IR, especially statistical topic models, have helped make sense of un-
structured data in software repositories even more. However, even though there
are hundreds of studies on applying topic models to software repositories, there is
no study that shows how the models are used in the software engineering research
community, and which software engineering tasks are being supported through
topic models. Moreover, since the performance of these topic models is directly
related to the model parameters and usage, knowing how researchers use the topic
models may also help future studies make optimal use of such models. Thus, we
surveyed 167 articles from the software engineering literature that make use of
topic models. We find that i) most studies centre around a limited number of
software engineering tasks; ii) most studies use only basic topic models; iii) and
researchers usually treat topic models as black boxes without fully exploring their
underlying assumptions and parameter values. Our paper provides a starting point
for new researchers who are interested in using topic models, and may help new
researchers and practitioners determine how to best apply topic models to a par-
ticular software engineering task.

Keywords Topic modeling · LDA · LSI · Survey

1 Introduction and Motivation

Researchers in software engineering have attempted to improve software develop-
ment by mining and analyzing software repositories, such as source code changes,
email archives, bug databases, and execution logs (Godfrey et al., 2008; Hassan,
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2008). Research shows that interesting and practical results can be obtained from
mining these repositories, allowing developers and managers to better understand
their systems and ultimately increase the quality of their products in a cost effec-
tive manner (Tichy, 2010). Particular success has been experienced with structured
repositories, such as source code, execution traces, and change logs.

However, automated techniques to understand the unstructured textual data
in software repositories are still relatively immature (Hassan, 2008), even though
80–85% of the data is unstructured (Blumberg and Atre, 2003; Grimes, 2008). Un-
structured data is a current research challenge because the data is often unlabeled,
vague, and noisy (Hassan, 2008). For example, the Eclipse bug database contains
the following bug report titles:

– “NPE caused by no spashscreen handler service available” (#112600)
– “Provide unittests for link creation constraints” (#118800)
– “jaxws unit tests fail in standalone build” (#300951)

This data is unlabeled and vague because it contains no explicit links to the source
code entity (e.g., package, file, or method) to which it refers, or even to a topic
or task from some pre-defined ontology. Instructions such as “link creation con-
straints,” with no additional information or pointers, are ambiguous at best. The
data is noisy due to misspellings and typographical errors (“spashscreen”), un-
conventional acronyms (“NPE”), and multiple phrases used for the same concept
(“unittests”, “unit tests”). The sheer size of a typical unstructured repository (for
example, Eclipse has received an average of 115 new bug reports a day for the
last 10 years), coupled with its lack of structure, makes manual analysis extremely
challenging and in many cases impossible. The end result is that this unstructured
data is still waiting to be mined and analyzed.

Despite the above-mentioned challenges, mining unstructured repositories has
the potential to benefit software development teams in several ways. For example,
linking emails to the source code entities that they discuss could provide developers
access to the design decisions made about each code entity. Determining which
source code entities are related to a new bug report would significantly reduce the
maintenance effort that is required to fix the bug. Automatically creating labels for
source code entities would allow developers to more easily browse and understand
the code, understand how certain concepts are changing over time, and uncover
relationships between entities. All of these tasks would help decrease maintenance
costs, increase software quality, and ultimately yield pleased, paying customers.

Advances in the field of Information Retrieval (IR), Machine Learning (ML),
and statistical learning, especially the development of statistical topic models (Blei
and Lafferty, 2009; Blei et al., 2003; Griffiths et al., 2007), have helped make
sense of unstructured data in other research communities, including the social
sciences (Griffiths et al., 2007; Ramage et al., 2009b) and computer vision (Barnard
et al., 2003). Topic models, such Latent Semantic Indexing (LSI) (Deerwester
et al., 1990) and latent Dirichlet allocation (LDA) (Blei et al., 2003), are models
that automatically discover structure within an unstructured corpus of documents,
using the statistical properties of its word frequencies. Topic models can be used
to index, search, cluster, summarize, and infer links within the corpus, all tasks
that were previously manually performed or not performed at all.

In addition to discovering structure, topic models are hold great promise for
several reasons. The models require no training data, which makes them easy to
use in practical settings (Blei et al., 2003). The models operate directly on the
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raw, unstructured text without expensive data acquisition or preparation costs.
(The textual data is often preprocessed, for example by removing common English-
language stop words and removing numbers and punctuation, but these steps are
fast and simple (Marcus et al., 2004)). Most models, even generative statistical
models like LDA, are fast and scalable to millions of documents in real time (Por-
teous et al., 2008). Some topic models are well equipped to handle both synonymy
and polysemy, as explained in Section 2.3. Finally, all topic models can be applied
to any text-based software repository, such as the identifier names and comments
within source code, bug reports in a bug database, email archives, execution logs,
and test cases.

Indeed, researchers are beginning to use topic models to mine software repos-
itories. Recent studies focus on concept mining (e.g., Abebe et al., 2013; Cleary
et al., 2008; Grant et al., 2008; Kagdi et al., 2012b; Marcus et al., 2004, 2005; Me-
dini, 2011; Poshyvanyk and Marcus, 2007; Poshyvanyk et al., 2006; Revelle et al.,
2010; Van der Spek et al., 2008), constructing source code search engines (e.g.,
Bajracharya and Lopes, 2010; Grechanik et al., 2010; Tian et al., 2009), recover-
ing traceability links between artifacts (e.g., Ali et al., 2014; Antoniol et al., 2008;
Asuncion et al., 2010; Biggers et al., 2014; de Boer and van Vliet, 2008; De Lucia
et al., 2004, 2007; Hayes et al., 2006; Jiang et al., 2008; Lohar et al., 2013; Lormans
and Van Deursen, 2006; Lormans et al., 2006; Marcus and Maletic, 2003; McMil-
lan et al., 2009), calculating source code metrics (e.g., Bavota et al., 2010; Chen
et al., 2012; Gall et al., 2008; Gethers and Poshyvanyk, 2010; Hu and Wong, 2013;
Kagdi et al., 2010; Linstead and Baldi, 2009; Liu et al., 2009; Marcus et al., 2008;
Ujhazi et al., 2010), and clustering similar documents (e.g., Brickey et al., 2012;
Galvis Carreño and Winbladh, 2013; Gorla et al., 2014; Kuhn et al., 2005, 2007,
2008, 2010; Lin et al., 2006; Maletic and Marcus, 2001; Maletic and Valluri, 1999;
Raja, 2012). Although there are hundreds of studies on applying topic models to
software repositories, there is no study that shows how the models are used in the
software engineering research community, and which software engineering tasks
are being supported through topic models. Moreover, since the performance of
these topic models is directly related to the model parameters and usage, knowing
how researchers use the topic models may also help future studies make optimal
use of such models.

Prior studies focus on studying the use of topic models on a specific SE task.
Thus, in this paper, we survey the software engineering field to determine how
topic models have thus far been applied to one or more software repositories.
We follow the mapping study approach (Kitchenham et al., 2011; Petersen et al.,
2008). Our primary goals are to characterize and quantify:

– which topics models are being used,
– which SE tasks are being supported through topic models,
– how researchers are evaluating their results,
– what preprocessing steps are being performed on the data, and
– what are the typical tools and input parameter values.

Although recent studies have shown promising results (e.g., Borg et al. (2014);
Dit et al. (2013c, 2014)), we performed a detailed analysis of the literature and
found several limitations. In particular, we find that most studies to date:

– focus on only a limited number of software engineering tasks;
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– use only basic topic models; and
– treat topic models as black boxes without fully exploring their underlying as-

sumptions and parameter values.

We examine a total of 167 articles from the Software Engineering literature
that use topic models (see Appendix A for details regarding our article selection
process). Section 2 discusses background of the field Mining Software Repositories
and topic models. Section 3 collects and presents 37 attributes on each article
that help quantify and distinguish it from the others. We use the attributes to
present aggregated findings, discuss current research trends, and highlight future
research opportunities. Section 4 discusses common uses of topic models on dif-
ferent Software Engineering tasks. Section 5 provides a general guideline on how
to avoid common pitfalls when applying topic models to support SE tasks. Sec-
tion 6 discusses possible future research directions. Finally, Section 7 concludes
the paper.

2 Background

In this Section, we first provide background information on the field of Mining
Software Repositories. We then highlight the differences between mining structured
and unstructured data. Finally, we introduce topic models and their background
knowledge.

2.1 Mining Software Repositories

Mining Software Repositories (MSR) is a field of software engineering research,
which aims to analyze and understand the data repositories related to software
development. The main goal of MSR is to make intelligent use of these software
repositories to support the decision-making process of software development (God-
frey et al., 2008; Hassan, 2004, 2008; Hassan and Holt, 2005).

Software development produces several types of repositories during its lifetime,
detailed in the following paragraphs. Such repositories are the result of the daily
interactions between the stakeholders, as well as the evolutionary changes to var-
ious software artifacts, such as source code, test cases, bug reports, requirements
documents, and other documentation. These repositories offer a rich, detailed view
of the path taken to realize a software system, but they must be transformed from
their raw form into something usable (Godfrey et al., 2008; Hassan, 2008; Hassan
and Xie, 2010; Tichy, 2010; Zimmermann et al., 2005). A prime example of mining
software repositories is bug prediction. By mining the characteristics of source code
entities (such as size, complexity, number of changes, and number of past bugs),
researchers have shown how to accurately predict which entities are likely to have
future bugs and therefore deserve additional quality control resources.

2.2 Structured vs. Unstructured Data in Software Repositories

The term “unstructured data” is difficult to define and its usage varies in the
literature (Bettenburg and Adams, 2010; Manning et al., 2008). In this paper, we
adopt the definition given by Manning et al. (2008):
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“Unstructured data is data which does not have clear, semantically
overt, easy-for-a-computer structure. It is the opposite of struc-
tured data, the canonical example of which is a relational database,
of the sort companies usually use to maintain product inventories
and personnel records.”

Unstructured data usually refers to natural language text, since such text has no
explicit data model. Most natural language text indeed has latent structure, such
as parts-of-speech, named entities, relationships between words, and word sense,
that can be inferred by humans or advanced machine learning algorithms. However,
in its raw, unparsed form, the text is simply a collection of characters with no
structure and no meaning to a data mining algorithm. Examples of unstructured
data in software repositories include: bug report titles and descriptions; source code
linguistic data (i.e., identifier names, comments, and string literals); requirements
documents; descriptions and comments in design documents; mailing lists and chat
logs; and source control database commit messages.

Structured data, on the other hand, has a data model and a known form. Ex-
amples of structured data in a software repository include: source code parse trees,
call graphs, inheritance graphs; execution logs and traces; bug report metadata
(e.g., author, severity, date); source control database commit metadata (e.g., au-
thor, date, list of changed files); and mailing list and chat log metadata.

2.3 Topic Models

A topic model (or latent topic model or statistical topic model) is a method designed
to automatically extract topics from a corpus of text documents (Anthes, 2010;
Blei and Lafferty, 2009; Steyvers and Griffiths, 2007). Here, a topic is a collection
of words that co-occurred frequently in the documents of the corpus. Due to the
nature of language usage, the words that constitute a topic are often semantically
related.

Topic models were originally developed as a means of automatically indexing,
searching, clustering, and structuring large corpora of unstructured and unlabeled
documents. Within the topic modeling framework, documents can be represented
by the topics within them, and thus the entire corpus can be indexed and organized
in terms of this discovered semantic structure.

2.3.1 Common Terminology

Topic models share a common vernacular, which we summarize below. To make
the discussion more concrete, we use a running example of a corpus of three simple
documents (shown in Figure 1).

term (word or token) w: a string of one or more alphanumeric characters.
In our example, we have a total of 101 terms. For example, predicting, bug,
there, have, bug and of are all terms. Terms might not be unique in a given
document.

document d: an ordered set of N terms, w1, . . . , wN .
In our example, we have three documents: d1, d2, and d3. d1 has N = 34 terms,
d2 has N = 35 terms, and d3 has N = 32 terms.
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Predicting the incidence
of faults in code has been
commonly associated
with measuring com-
plexity. In this paper,
we propose complexity
metrics that are based on
the code change process
instead of on the code.

(a) Document d1.

Bug prediction models
are often used to help
allocate software quality
assurance efforts (for
example, testing and
code reviews). Mende
and Koschke have re-
cently proposed bug
prediction models that
are effort-aware.

(b) Document d2.

There are numerous stud-
ies that examine whether
or not cloned code is
harmful to software sys-
tems. Yet, few of these
studies study which char-
acteristics of cloned code
in particular lead to soft-
ware defects (or faults).

(c) Document d3.

Fig. 1 A sample corpus of three documents.

query q: an ordered set of |q| terms created by the user, q1, . . . , q|q|.
In our example, a user might query for “defects” (with |q|=1 term) or “cloned
code” (with |q|=2 terms).

corpus C: an unordered set of n documents, d1, . . . , dn.
In our example, there is one corpus, which consists of n = 3 documents: d1, d2,
and d3.

vocabulary V : the unordered set of m unique terms that appear in a corpus.
In our example, the vocabulary consists of m = 71 unique terms across all
three documents: code, of, are, that, to, the, software, . . . .

term-document matrix A: an m × n matrix whose ith, jth entry is the weight of
term wi in document dj (according to some weighting function, such as term-
frequency).
In our example, we have

A =

d1 d2 d3

code 3 1 2

of 2 0 2

are 1 2 1

. . . . . .

indicating that, for example, the term code appears in document d1 with a
weight of 3, and the term are appears in document d2 with a weight of 2.

topic (concept) z: an m-length vector of probabilities over the vocabulary of a
corpus.
In our example, we might have a topic

code of are that to the software . . .

z1 = 0.25 0.10 0.05 0.01 0.10 0.17 0.30 . . .

indicating that, for example, when a term is drawn from topic z1, there is a
25% chance of drawing the term code and a 30% chance of drawing the term
software. (This example assumes a generative model, such as PLSI or LDA.
See Section 2.3.3 for the full definitions.)

topic membership vector θd: For document d, a K-length vector of probabilities
of the K topics.
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In our example, we might have a topic membership vector

z1 z2 z3 z4 . . .

θd1
= 0.25 0.0 0.0 0.70 . . .

indicating that, for example, when a topic is selected for document d1, there
is a 25% chance of selecting topic z1 and a 70% chance of selecting topic z3 .

document-topic matrix θ (also called document-topic matrix D): an n by K ma-
trix whose ith, jth entry is the probability of topic zj in document di. Row i
of θ corresponds to θdi

.
In our example, we might have a document-topic matrix

θ =

z1 z2 z3 z4 . . .

d1 0.25 0.0 0.0 0.70 . . .

d2 0.0 0.0 0.0 1.0 . . .

d3 0.1 0.4 0.2 0.0 . . .

indicating that, for example, document d3 contains topic z3 with probability
20%.

topic-term matrix φ (also called topic-term matrix T ): a K by m matrix whose
ith, jth entry is the probability of term wj in topic zi. Row i of φ corresponds
to zi.
In our example, we might have a topic-term matrix:

φ =

code of are that to the software . . .

z1 0.25 0.10 0.05 0.01 0.10 0.17 0.30 . . .

z2 0.0 0.0 0.0 0.05 0.2 0.0 0.05 . . .

z3 0.1 0.04 0.2 0.0 0.07 0.10 0.12 . . .

. . . . . .

Some common issues arise with any language model:

synonymy: Two terms w1 and w2, w1 6= w2, are synonyms if they possess similar
semantics.

homonymy: A term w is a homonym if it has multiple semantics.

We note that the term semantic is hard to define and takes on different mean-
ings in different contexts. In the field of information retrieval, often a manually-
created oracle is used (e.g., WordNet (Miller, 1995)) to determine the semantics
of a term (i.e., relationships with other terms).

2.3.2 The Vector Space Model

While not a topic model itself, the Vector Space Model (VSM) is the basis for
many advanced IR techniques and topic models. The VSM is a simple algebraic
model directly based on the term-document matrix (Salton et al., 1975). In the
VSM, a document is represented by its corresponding column vector in A. For
example, if a vector for a document d was [0, 1, 1, 0, 0], then according to the
VSM, d contains the two terms, namely those with index 2 and 3. Likewise, it is
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Fig. 2 The path from a raw corpus to a topic model (TM). Here, “Topic Models” includes
LSI, ICA, PLSI, LDA, and all LDA variants.

possible to determine which documents contain a given term w by simply selecting
the non-zero elements of w’s vector in A.

With this representation, one can query the corpus as follows. First, compute
the m-lengthed term vector q for the query, as if it were another document in
the corpus. Then, compute the semantic-relatedness (often the cosine-similarity)
between q and each column of A. Finally, sort the semantic relatedness results
to obtain a ranked list of documents that are similar to q. In a similar way, it
is possible to determine which of the original documents in the query are most
similar to one another.

2.3.3 Topic Models

A topic model (or latent topic model) is designed to automatically extract topics
from a corpus of text documents (Anthes, 2010; Blei and Lafferty, 2009; Steyvers
and Griffiths, 2007; Zhai, 2008). Here, a topic is a collection of terms that co-occur
frequently in the documents of the corpus, for example {mouse, click, drag, right,
left} and {user, account, password, authentication}. Due to the nature of language
use, the terms that constitute a topic are often semantically related (Blei et al.,
2003).

Topic models were originally developed as a means of automatically indexing,
searching, clustering, and structuring large corpora of unstructured and unlabeled
documents. Using topic models, documents can be represented by the topics within
them, and thus the entire corpus can be indexed and organized in terms of this dis-
covered semantic structure. By representing documents by the lower-dimensional
topics, as opposed to terms, topic models (i) uncover latent semantic relationships
and (ii) allow faster analysis on text (Zhai, 2008). Figure 2 shows the general pro-
cess of creating basic topic models from a raw corpus; we describe several topic
modeling techniques below.

Latent Semantic Indexing Latent Semantic Indexing (LSI) (or Latent Semantic
Analysis (LSA)) is an information retrieval model that extends the VSM by re-
ducing the dimensionality of the term-document matrix by means of Singular
Value Decomposition (SVD) (Deerwester et al., 1990). During the dimensional-
ity reduction phase, terms that are related (in terms of co-occurrence) will be



A Survey on the Use of Topic Models when Mining Software Repositories 9

grouped together into topics1. This noise-reduction technique has been shown to
provide increased performance over VSM in terms of dealing with polysemy and
synonymy (Baeza-Yates and Ribeiro-Neto, 1999).

SVD is a factorization of the original term-document matrix A that reduces the
dimensionality of A by isolating the singular values of A (Salton and McGill, 1983).
Since A is likely to be very sparse, SVD is a critical step of the LSI approach. SVD
decomposes A into three matrices: A = TSDT , where T is an m by r = rank(A)
term-topic matrix, S is the r by r singular value matrix, and D is the n by r
document-topic matrix.

LSI augments the reduction step of SVD by choosing a reduction factor, K,
which is typically much smaller than the rank of the original term-document matrix
r. Instead of reducing the input matrix to r dimensions, LSI reduces the input
matrix to K dimensions. There is no perfect choice for K, as it is highly data- and
task-dependent. In the literature, typical values range between 50–300. A common
approach to choose K for LSI is to examine the amount of variance (e.g., singular
values) in the data after computing the SVD (Hu et al., 2003; Jolliffe, 2002). The
number of dimensions (K) is chosen such that the variance in the data is lower
than a cut-off point, or such that the dimensions that include 70% of the variance
are retained (Hu et al., 2003; Jolliffe, 2002).

As in VSM, terms and documents are represented by row and column vectors,
respectively, in the term-document matrix. Thus, two terms (or two documents)
can be compared by some distance measure between their vectors (e.g., cosine sim-
ilarity) and queries can by formulated and evaluated against the matrix. However,
because of the reduced dimensionality of the term-document matrix after SVD,
these measures are more equipped to deal with noise in the data.

Independent Component Analysis Independent Component Analysis (ICA) (Comon,
1994) is a statistical technique used to decompose a random variable into statis-
tically independent components (i.e., dimensions). Although not generally consid-
ered a topic model, it has been used in similar ways to LSI to model source code
documents in a K-dimensional conceptual space.

Like LSI, ICA reduces the dimensionality of the term-document matrix to help
reduce noise and associate terms. However, unlike LSI, the resulting dimensions
in ICA are statistically independent of one another, which helps capture more
variation in the underlying data (Grant and Cordy, 2009).

Probabilistic LSI Probabilistic Latent Semantic Indexing (PLSI) (or Probabilistic
Latent Semantic Analysis (PLSA)) (Hofmann, 1999, 2001) is a generative model
that addresses the statistical unsoundness of LSI. Hofmann argues that since LSI
uses SVD in its dimension-reduction phase, LSI is implicitly making the unquali-
fied assumption that term counts will follow a Gaussian distribution. Since this as-
sumption is not verified, LSI is “unsatisfactory and incomplete” (Hofmann, 1999).

To overcome this assumption, PLSI defines a generative latent-variable model,
where the latent variables are topics in documents. At a high level, a generative
model has the advantages of being evaluable with standard statistical techniques,
such as model checking, cross-validation, and complexity control; LSI could not be

1 The creators of LSI call these reduced dimensions “concepts”, not “topics”. However, to
be consistent with other topic modeling approaches, we will use the term “topics”.
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evaluated with any of these techniques. And since the latent variables are topics
in documents, PLSI is also well-equipped to more readily handle polysemy and
synonymy.

The generative model for each term in the corpus can be summarized with the
following steps.

– Select a document di with probability P (di).
– Select a topic zk with probability P (zk|di).
– Generate a term wj with probability P (wj |zk).

Given the observations in a dataset (i.e., terms), one can perform inference
against this model to uncover the topics z1, ..., zk. We refer interested readers to
the original articles (Hofmann, 1999, 2001).

Subsequent articles (e.g., Blei et al., 2003; Zhai, 2008) show that the generative
model of PLSI suffers from at least two critical problems. First, since d is used
as an index variable in the first step, the number of parameters that need to be
estimated grows linearly with the size of the corpus, which can lead to severe over-
fitting issues. Second, since the zk vectors are only estimated for documents in the
training set, they cannot be easily applied to new, unseen documents.

Latent Dirichlet Allocation Latent Dirichlet Allocation (LDA) is a popular prob-
abilistic topic model (Blei et al., 2003) that has largely replaced PLSI. One of
the reasons for its popularity is because it models each document as a multi-
membership mixture ofK corpus-wide topics, and each topic as a multi-membership
mixture of the terms in the corpus vocabulary. This means that there is a set of
topics that describe the entire corpus, each document can contain more than one
of these topics, and each term in the entire repository can be contained in more
than one of these topics. Hence, LDA is able to discover a set of ideas or themes
that well describe the entire corpus (Blei and Lafferty, 2009).

LDA is based on a fully generative model that describes how documents are
created. Intuitively, this generative model makes the assumption that the corpus
contains a set of K corpus-wide topics, and that each document is comprised of
various combinations of these topics. Each term in each document comes from one
of the topics in the document. This generative model is formulated as follows:

– Choose a topic vector θd ∼ Dirichlet(α) for document d.
– For each of the N terms wi:

– Choose a topic zk ∼ Multinomial(θd).
– Choose a term wi from p(wi|zk, β).

Here, p(wi|zk, β) is a multinomial probability function, α is a smoothing parameter
for document-topic distributions, and β is a smoothing parameter for topic-term
distributions.

The two levels of this generative model allow three important properties of LDA
to be realized: documents can be associated with multiple topics, the number of
parameters to be estimated does not grow with the size of the corpus, and, since
the topics are global and not estimated per document, unseen documents can
easily be accounted for.

Like any generative model, the task of LDA is that of inference: given the terms
in the documents, what topics did they come from (and what are the topics)? LDA
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Table 1 Example topics from JHotDraw source code version 7.5.1. The labels are
automatically-generated based on the most popular bigram in the topic.

Label Top words Top 3 matching classes

file filter file uri chooser urichoos save
filter set jfile open

JFileURIChooser, URIUtil,
AbstractSaveUnsavedChangesAction

tool bar editor add tool draw action
button bar view creat

DrawingPanel, ODGDrawingPanel,
PertPanel

undoabl edit edit action undo chang undoabl
event overrid

NonUndoableEdit, CompositeEdit,
UndoRedoManager

connect figur figur connector connect start
end decor set handl

ConnectionStartHandle,
ConnectionEndHandle, Connector

bezier path path bezier node index mask
point geom pointd

CurvedLiner, BezierFigure,
ElbowLiner

performs inference with latent variable models (or hidden variable models), which
are machine learning techniques devised for just this purpose: to associate observed
variables (here, terms) with latent variables (here, topics). A rich literature exists
on latent variable models (Bartholomew, 1987; Bishop, 1998; Loehlin, 1987); for
the purposes of this paper, we omit the details necessary for computing the pos-
terior distributions associated with such models. It is sufficient to know that such
methods exist and are being actively researched.

For the above-mentioned reasons, it is argued that LDA’s generative process
gives it a solid footing in statistical rigor—much more so than previous topic
models (Blei et al., 2003; Griffiths and Steyvers, 2004; Steyvers and Griffiths,
2007). As such, LDA may be better suited for discovering the latent relationships
between documents in a large text corpus.

Table 1 shows example topics discovered by LDA from version 7.5.1 of the
source code of JHotDraw (Gamma, 2007), a framework for creating simple drawing
applications. For each topic, the table shows an automatically-generated two-word
topic label, the top (i.e., highest probable) words for the topic, and the top three
matching Java classes in JHotDraw. The topics span a range of concepts, from
opening files to drawing Bezier paths. The discovered topics intuitively make sense
and the top-matching classes match our expectations—there seems to be a natural
match between the “Bezier path” topic and the CurvedLinear and BezierFigure

classes.

A prior study by Wallach et al. (2009a) shows that choosing a larger K for
LDA does not significantly affect the quality of the generated topics. The additional
topics are rarely used (i.e., noise) in the LDA sampling process and may be filtered
out. For example, if the data has only 10 topics, running LDA with 15 topics will
likely identify 10 real topics and five noise topics (Wallach et al., 2009a). Topic
filtering approaches may vary for different domains, and future studies are needed
to examine the best approach to filter these noise topics. On the other hand,
choosing a small K may be more problematic, since the information (i.e., topics)
cannot be separated precisely (Wallach et al., 2009a).

Variations of LDA Several variants and offshoots of LDA have been proposed. All
of these variants apply additional constraints on the basic LDA model. Although
promising, the software engineering literature usually does not make use of many
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of these variants, and therefore we omit a detailed presentation of each. However,
the details can be found in references to the original papers.

– Hierarchical Topic Models (HLDA) (Blei et al., 2004, 2010). HLDA discovers a
tree-like hierarchy of topics within a corpus, where each additional level in the
hierarchy is more specific than the previous. For example, a super-topic “user
interface” might have sub-topics “toolbar” and “mouse events”.

– Cross-Collection Topic Models (ccLDA) (Paul, 2009). ccLDA discovers topics
from multiple corpora, allowing the topics to exhibit slightly different behavior
in each corpus. For example, a “food” topic might contain the words {food
cheese fish chips} in a British corpus and the words {food cheese taco burrito}
for a Mexican corpus.

– Supervised Topic Models (sLDA) (Blei and McAuliffe, 2008). sLDA consid-
ers documents that are already marked with a response variable (e.g., movie
reviews with a numeric score between 1 and 5), and provides a means to auto-
matically discover topics that help with the classification (i.e., predicting the
response variable) of unseen documents.

– Labeled LDA (LLDA) (Flaherty et al., 2005; Ramage et al., 2009a). LLDA
takes as input a text corpus in which each document is labeled with one or
more labels (such as Wikipedia) and discovers the term-label relations. LLDA
discovers a set of topics for each label and allows documents to only display
topics from one of its labels.

– Correlated Topic Models (CTM) (Blei and Lafferty, 2007). CTM discovers the
correlation between topics and uses the correlation when assigning topics to
documents. For example, a document about the “genetics” topic is more likely
to also contain the “disease” topic than the “X-ray astronomy” topic.

– Networks Uncovered by Bayesian Inference (Nubbi) (Chang et al., 2009). Nubbi
discovers relationships between pairs of entities in a corpus, where entities are
specified as inputs into the model (e.g., people or places). For example, if the
entities George W. Bush and Gerald Ford were input into Nubbi as entities,
along with a corpus of political documents, then Nubbi might connect George
W. Bush to Gerald Ford through a “republican” topic.

– Author-Topic Model (Rosen-Zvi et al., 2004). The author-topic model consid-
ers one or more authors for each document in the corpus. Each author is then
associated with a probability distribution over the discovered topics. For exam-
ple, the author Stephen King would have a high probability with the “horror”
topic and a low probability with the “dandelions” topic.

– Polylingual Topic Models (PLTM) (Mimno et al., 2009). PLTM can handle
corpora in several different languages, discovering aligned topics in each lan-
guage. For example, if PLTM were run on English and German corpora, it
might discover the aligned “family” topics {child parent sibling} and {kind
eltern geschwister}.

– Relational Topic Models (RTM) (Chang and Blei, 2009). RTM models docu-
ments as does LDA, as well as discovers links between each pair of documents.
For example, if document 1 contained the “planets” topic, document 2 con-
tained the “asteroids” topic, and document three contained the “Michael Jack-
son” topic, then RTM would assign a stronger relationship between documents
1 and 2 than between documents 1 and 3 or documents 2 and 3, because topics
1 and 2 are more closely related to each other.
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– Markov Topic Models (MTM) (Wang et al., 2009). Similar to the Cross-Collection
Topic Model, MTM discovers topics from multiple corpora, allowing the topics
to exhibit slightly different behavior in each corpus.

– Pachinko Allocation Model (PAM) (Li and McCallum, 2006). PAM provides
connections between discovered topics in an arbitrary directed acyclic graph.
For example, PAM might connect the “language processing” topic to the
“speech recognition” topic, but not to the “snorkeling” topic.

– Topic Modeling with Network Regularization (TMN) (Mei et al., 2008). TMN
can model corpora which have networks defined between documents, such as
social networks or call-graph dependencies. TMN discovers topics that overlay
on the network in a meaningful way. For example, if a network was formed
from author-coauthor relationships in academic articles, then topics that are
assigned to author A have a high likelihood of being assigned to one of the
coauthors of author A.

– Biterm Topic Model (BTM) (Yan et al., 2013). Topic models generally perform
poorly on short documents. BTM is designed for short documents (e.g., tweets).
BTM learns topics by modeling the word co-occurrence patterns (i.e., biterms).
Recent experiments show that BTM generated topics are more prominent,
coherent topics, and include more relevant words (according to manual analysis
of the topics) (Yan et al., 2013).

2.3.4 Topic Evolution Models

Several advanced techniques have been proposed to extract the evolution of a
topic in a time-stamped corpus—how the usage of a topic (and sometimes the
topic itself) changes over time as the terms in the documents are changed over
time. Such a model is usually an extension to a basic topic model that accounts
for time in some way. We call such a model a topic evolution model.

Initially, the Dynamic Topic Model (Blei and Lafferty, 2006) was proposed.
This model represents time as a discrete Markov process, where topics themselves
evolve according to a Gaussian distribution. This model thus penalizes abrupt
changes between successive time periods, discouraging rapid fluctuation in the
topics over time.

The Topics Over Time (TOT) (Wang and McCallum, 2006) model represents
time as a continuous beta distribution, effectively removing the penalty on abrupt
changes from the Dynamic Topic Model. However, the beta distribution is still
rather inflexible in that it assumes that a topic evolution will have only a single
rise and fall during the entire corpus history.

The Hall model (Hall et al., 2008) applies LDA to the entire collection of
documents at the same time and performs post hoc calculations based on the
observed probability of each document in order to map topics to versions. Linstead
et al. (2008a) and Thomas et al. (2010) also used this model on a software system’s
version history. The main advantage of this model is that no constraints are placed
on the evolution of topics, providing the necessary flexibility for describing large
changes to a corpus.

The Link model, proposed by Mei and Zhai (2005) and first used on software
repositories by Hindle et al. (2009), applies LDA to each version of the repository
separately, followed by a post-processing phase to link topics across versions. Once
the topics are linked, the topic evolutions can be computed in the same way as in
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the Hall model. The post-processing phase must iteratively link topics found in one
version to the topics found in the previous. This process inherently involves the
use of similarity thresholds to determine whether two topics are similar enough to
be called the same, since LDA is a probabilistic process and it is not guaranteed
to find the exact same topics in different versions of a corpus. As a result, at
each successive version, some topics are successfully linked while some topics are
not, causing past topics to “die” and new topics to be “born”. Additionally, it is
difficult to allow for gaps in the lifetime of a topic.

2.4 Applying Topic Models to SE Data

Before topic models are applied to SE data, several preprocessing steps are gener-
ally taken in an effort to reduce noise and improve the resulting models.

– Characters related to the syntax of the programming language (e.g., “&&”,
“->”) are removed; programming language keywords (e.g., “if”, “while”) are
removed.

– Identifier names are split into multiple parts based on common naming con-
ventions, such as camel case (oneTwo), underscores (one two), dot seperators
(one.two), and capitalization changes (ONETwo)).

– Common English-language stopwords (e.g., “the”, “it”, “on”) are removed.
– Word stemming is applied to find the root of each word (e.g., “changing” be-

comes “chang”), typically using the Porter algorithm (Porter, 1980). Other
word normalization approaches such as lemmatization, which groups the dif-
ferent inflected forms of a word, may also be used.

– In some cases, the vocabulary of the resulting corpus is pruned by removing
words that occur in, for example, over 80% or under 2% of the documents (Mad-
sen et al., 2004).

The main idea behind these steps is to capture the semantics of the develop-
ers’ intentions, which are thought to be encoded within the identifier names and
comments in the source code (Poshyvanyk et al., 2007). The rest of the source
code (i.e., special syntax, language keywords, and stopwords) are just noise and
will not be beneficial to the results of topic models.

3 Research Trends

In this section, we identify and describe the research trends in the area of mining
unstructured repositories using topic models. We define a set of attributes that
allow us to characterize each of the surveyed articles. Additionally, we define six
facets of related attributes, summarized in Table 2.

First and foremost, we are interested in which topic model was primarily used
in the study: LSI, LDA or some other model. (Note that if an article evaluates its
proposed technique, which uses topic model X, against another technique, which
uses topic model Y, we only mark the article as using model X. However, if the main
purpose of an article is to compare various topic models, we mark the article with
all the considered topic models.) Second, we are interested in the SE task that was
being performed. We include a range of tasks to allow a fine-grained view of that
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Fig. 3 Trends of LSI and LDA use. The cumulative number of articles indicates the total
number of articles published up to the year shown on the x-axis.

literature. Third, we document the repository being used in the article. Fourth,
we are interested in how the authors of the article evaluated their technique, as
some topic models are known to be difficult to objectively evaluate. Fifth, we
are interested in how the corpus was preprocessed, as there are several proposed
techniques. Finally, we are interested in which topic modeling tool was used in the
article, along with which parameter values were chosen for the tool, and how they
were chosen.

We manually processed each of the articles in our article set and assigned at-
tribute sets to each. The results allow the articles to be summarized and compared
along our six chosen facets.

The results are shown in Appendix B (Tables B1 and B2). Table B1 shows our
first four facets: which topic model was used, which software engineering task was
being performed, which repository was used, and how the authors evaluated their
technique. Table B2 shows our last two facets: which preprocessing steps were
taken, and what topic modeling tools and parameters were used. We now analyze
the research trends of each facet.

3.1 Facet 1: Which Topic Models Were Used?

The majority of surveyed articles (66%) used LDA or an LDA variant (some papers
aim to compare different topic models, so the sum is over 100%), indicating that
LDA is indeed a popular choice. On the other hand, 47% of the surveyed used LSI
as the primary topic model. As Figure 3 illustrates, the use of LDA is increasing
rapidly since its introduction into the software engineering field in 2006. Although
we see some articles that compare the performance of different topic models, we
only see a few studies (e.g., the study by Dit et al. (2013b), Gethers et al. (2011c),
and Thomas et al. (2013)) that combine different topic models. Nevertheless, com-
bining the models may increase the performance significantly (Dietterich, 2000;
Thomas et al., 2013).
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Table 2 The final set of attributes we collected on each article.

Facet Attribute Description

Topic Model LSI uses LSI
LDA uses standard LDA
Other uses ICA, PLSI, or a variant of LDA

SE Task doc. clustering performs a clustering of documents
concept loc. concept/feature location or aspect-oriented pro-

gramming
metrics derives source code metrics (usually, but not al-

ways, for bug prediction)
trend/evolution analyzes/predicts source code evolution
traceability uncovers traceability links between pairs of arti-

facts (including bug localization)
bug predict./debug predicts bugs/faults/defects in source code, uses

statistical debugging techniques, or performs root
cause analysis

org./search coll. operates on collections of systems (search, orga-
nize, analyze)

other any other SE task, including bug triaging and
clone detection

Repository source code uses source code, revision control repository, or
software system repository

email uses email, chat logs, or forum postings
req./design uses requirements or design documents
logs uses execution logs or search engine logs
bug reports uses bug reports or vulnerability reports

Evaluation statistical uses topic modeling statistics, like log likelihood or
perplexity

task specific uses a task specific method (e.g., classification ac-
curacy)

manual performs a manual evaluation
user study conducts a user study

Preprocessing identifiers includes source code identifiers
comments includes source code comments
string literals includes string literals in source code
tokenize splits camelCase and under scores
stem stems the terms in the corpus
stop performs stop word removal
prune removes overly common or overly rare terms from

vocabulary

Tool Use tool name of the used topic model implementation
K value for LDA and LSI, the value chosen for the number

of topics, K
K justif. justification given for the chosen K
iterations number of sampling iterations run (if LDA or LDA

variant)

�

�

�

�
Although LSI appeared earlier than LDA, the majority of surveyed articles
used LDA or LDA variant. Moreover, we found little research that combines
the results of different topic modeling approaches to improve their overall
performance.
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Fig. 4 A stacked bar plot which shows the trends of the investigated tasks. The y-axis shows
the number of articles published in a year.

3.2 Facet 2: Which Software Engineering Task Was Supported?

The most popular software engineering tasks in the surveyed articles are traceabil-
ity link recovery (25% of articles) and concept location (24% of articles). Traceabil-
ity link recovering is a task well-suited for topic models, since the goal of traceabil-
ity recovering is to find the textual similarity between pairs of documents. Thus,
using the document similarity metrics defined on the topic membership vectors of
two documents is a direct implementation of traceability link recovery.

Concept location is an ideal task for topic models, since many researchers
(e.g., Baldi et al. (2008)) believe that the topics discovered by a topic model are
essentially equivalent (or can be directly mapped) to the conceptual concerns in
the source code.

The tasks in the “other” category include bug triaging (Ahsan et al., 2009;
Naguib et al., 2013), search engine usage analysis (Bajracharya and Lopes, 2009,
2010), auditor support for exploring the implementation of requirements (de Boer
and van Vliet, 2008), analyzing bug report quality (Alipour et al., 2013; Dit et al.,
2008), estimating the number of topics or other topic model parameters in source
code (Dit et al., 2013a; Grant and Cordy, 2010; Panichella et al., 2013), clone
identification (Grant and Cordy, 2009; Marcus and Maletic, 2001), finding related
code on the web (Poshyvanyk and Grechanik, 2009), web service discovery (Wu
et al., 2008), source code summarization and labelling (De Lucia et al., 2012, 2014;
Eddy et al., 2013; Iacob and Harrison, 2013; Medini et al., 2012), topic interpre-
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tation (Hindle et al., 2012c), and refactoring (Bavota et al., 2012). Section 4.8 has
a more detailed discussion on the articles in the “other” category.

Figure 4 shows a stacked bar plot of the trend of the tasks performed by the
surveyed articles across the years. We see the emergence of articles that conduct
studies on collections of systems since 2007 (org./search coll). The reason may be
the increased popularity of LDA and its variants, which gives researchers the right
technique for analyzing trends and patterns on collections of systems. In addition,
debug/bug prediction studies also emerged around 2007, and we notice several
articles that are published on a yearly basis on this task since 2007.�



�
	Most research performs traceability link recovery or concept location.

3.3 Facet 3: Which Repositories Were Mined?

The overwhelming majority (72%) of the articles mine the source code repository,
with the second most being requirements or design documents (21%). One possi-
ble reason for the popularity of mining source code is that source code is usually
the only repository that is (easily) available to researchers who study open source
systems. Requirements and design documents are not created as often for open
source systems, and if they are, they are rarely accessible to researchers. Email
archives are usually only available for large systems, and when they are available,
the archives are not usually in a form that is suited for analysis without compli-
cated preprocessing efforts, due to their unstructured nature. Execution logs are
most useful for analyzing ultra-large scale systems under heavy load, which is dif-
ficult for researchers to simulate. Bug reports, although gaining in popularity, are
typically only kept for large, well-organized projects. In addition, we found that
most articles only considered a single snapshot of the repository, even when the
repositories history was available.

Figure 5 shows a stacked bar plot of the trends of the mined repositories. We
find that source code and requirement repositories have been used by researchers
since the earlier 2000. Recently, we see more articles that mine bug reports, logs,
mobile applications, and developer discussions.�
�

�


The majority of prior research mines only the source code of the system, and
only mines a single snapshot of the repository.

3.4 Facet 4: How Were the Topic Models Evaluated?

The most typical evaluation method used is task-specific (75% of the surveyed
articles). For example, many articles use precision and recall, or the number of
recovered bugs as the evaluation approach. This result makes sense, because most
researchers are using topic models as a tool to support some software engineering
task. Hence, the researchers evaluate how well their technique performed at the
given task, as opposed to how well the topic model fit the data, as is typically
done in the topic model community.
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Perhaps surprising is that 19% of articles performed a manual evaluation of the
topic model results—an evaluation technique that is difficult and time consuming.
Manual evaluation requires humans to manually verify the generated results or
topics. This may be due to the seemingly “black-box” nature of topic models—
documents are input, results are output, and the rest is unknown. In articles that
used topic models such as LDA, manual evaluation is deemed to be the only way to
be sure that the discovered topics make sense for software repositories. This may
also be due to the limited ground truth available for many software engineering
tasks. We also see a few articles that conduct user studies, which usually involve
asking developers to verify or interpret the topics/results.

Although articles in the Machine Learning (ML) community, topic models,
and natural language processing articles tend to use statistical means to evaluate
topic models, only a few surveyed articles used statistical evaluation techniques
(e.g., Maskeri et al. (2008)). This is perhaps a result of the software engineering
community being task-focused, as opposed to model-focused.

Nevertheless, following topic evaluation approaches from the ML community
can still benefit MSR studies. ML articles usually evaluate topics using unseen
documents (Wallach et al., 2009b). They train the topic model using part of the
documents (e.g., 90% of the documents), and estimate the probability of the held-
out documents (e.g., rest 10% of the documents). By doing inferences on the
held-out documents, one can compute held-out likelihood (e.g., perplexity) for
measuring the topic quality (Blei et al., 2003). Blei et al. (2003) state that “the
perplexity, used by convention in language modeling, is monotonically decreasing
in the likelihood of the test data, and is algebraicly equivalent to the inverse of the
geometric mean per-word likelihood”. In general, perplexity, or similar metrics,
measure how well the topic model “generalizes” to the held-out documents. A
lower perplexity score indicates better generalization performance.

Wallach et al. (2009b) conducted an empirical study on comparing different
likelihood computation approaches. They found that Chib-style estimator and left-
to-right are better approaches for estimating the quality of topic models. Newman
et al. (2010) “’search” the topics on Wikipedia, WordNet, and Google search en-
gine, and they use the search result to compute the score for the quality of the
topic. They found that using Wikipedia and Google search engine yield the best
performance (very close to inter-annotator agreement). However, we note that
Wikipedia or WordNet may not be suitable for evaluating topics in the source
code, and other code search engine may be used in future studies.

Figure 6 shows a stacked bar plot of the trends of how the tasks are evaluated
by the surveyed articles. We see that only a few of the recent articles evaluate the
tasks using statistical approach or user studies, whereas most earlier studies make
use of task specific evaluation approaches. We also see that, although more articles
are published in recent years, most articles still only apply task-specific evaluation
approaches.

�
�

�
Most prior research uses task-specific or manual evaluation of the topic mod-

els.



A Survey on the Use of Topic Models when Mining Software Repositories 21

3.5 Facet 5: How Was the Data Preprocessed?

Of the articles that analyzed a source code repository, 54% mention that they
include the identifiers, 4% mention that they include the comments, and 13%
mention that they include string literals. The relatively high percentages for iden-
tifiers and comments seem to follow the idea that the semantics of the developers’
intention is captured by their choice of identifier names and comments (Abebe
et al., 2013; Poshyvanyk et al., 2007).

The majority of articles that analyzed source code created “documents” at the
class level (32%), with a close second being the method level (22%). 8% of the
articles left the choice of method or class as an input to their tool and reported
results on both. 15% of the articles did not specify the level of granularity used.

Studies (Jin et al., 2011; Phan et al., 2008a; Tang et al., 2014) in the Ma-
chine Learning and Data Mining community have found that topic models per-
form poorly on short documents (e.g., methods and logs). As a result, many new
approaches have been proposed to handle short documents (Guo and Diab, 2012;
Jin et al., 2011; Yan et al., 2013). However, we found there are no MSR studies
that discuss such a problem nor ones that adapt one of the more advanced topic
models for short documents.

The majority of articles that analyzed source code chose to tokenize terms
(55%). One reason for this is that identifier names in source code are often written
in a form that lends itself to tokenization (e.g., camelCase and under score). By
tokenizing these identifier names, the terms are being broken down into their base
form and generating a larger likelihood of finding meaningful topics.

To further reduce the size of the vocabulary and increase the effectiveness
of topic models, 45% of articles report stemming words, 60% report removing
stop words, and 15% report pruning the vocabulary by removing overly- and/or
underly-used terms. We did not find any paper that report using lemmatization.
Thus, a possible direction may be studying the effect of lemmatization when ap-
plying topic models on software engineering data.

In general, many articles were unclear as to how they preprocessed the tex-
tual data, even though this step may have a large impact on the results of topic
models (Thomas et al., 2013). For example, 15% of the surveyed articles did not
mention the document granularity of their technique (e.g., an entire class or an
individual method) and 50% of the articles did not indicate whether they used
word stemming, a common preprocessing step in the topic model community.�
�

�
�

Data preprocessing techniques are not well documented and are not consistent
across current research. Even though topic models perform poorly on short
documents, many studies still apply topic models on methods and logs etc.

3.6 Facet 6: Which Tools Were Used, and What Parameter Values Were Used?

For LDA-based articles, MALLET (McCallum, 2002) was the most frequently
reported tool used (7 times). The other commonly-used tools include GibbsLDA
and JGibbLDA (Phan et al., 2008b). For LSI-based articles, no tool was used by
more than on article.



22 Tse-Hsun Chen et al.

Choosing the number of topics. Not reporting the value of K was the norm, with
45% of articles giving no indication of their choice. Of those that did, values ranged
between 5 and 1,000, with the most frequent values being between 10 and 500. 61%
of the articles that did specify the value of K did not specify why that particular
value was used. Of the articles that did specify why, 42% came to an optimal
value by testing a range of K values and evaluating each in some way (usually
task-specific). A single article used an expert’s opinion on what the number of
topics should be (“The number of topics for each program are chosen according
to domain expert advice.” (Andrzejewski et al., 2007)), although the actual value
was not reported. A few articles also determine K based on the number of unique
terms in the source code files (e.g., Xia et al. (2013); Xue et al. (2012)).

Panichella et al. (2013) also proposed an approach to automatically find the
optimal LDA parameters for software engineering tasks. They used a genetic algo-
rithm to search for the combinations of LDA parameters that give the best result
for traceability, feature location, and software labeling. They found that the choices
of the parameters have large impacts on the results. Lohar et al. (2013) also used a
genetic algorithm to search for the best combination of LSI parameters, as well as
preprocessing approaches. Biggers et al. (2014) measured the performance of LDA-
based feature location approaches when using different configurations. They also
proposed a recommendation for LDA-based feature location approaches. Thomas
et al. (2013) applied different combinations of information retrieval models, model
configurations, and preprocessing approaches to find the best classifier for bug lo-
calization. They found that after properly preprocessing the source code entities,
VSM gives the best performance. Bradford (2008) conducted an empirical study
on choosing K for LSI. They found that when K is around 300, LSI provides very
good results on moderate-sized corpus. Moreover, checking the amount of variance
in the data after applying SVD can be used to find the optimal K for LSI (Wall
et al., 2003).

There are a number of studies which proposed approaches to find optimal topic
model parameters. Grant and Cordy (2010) tackled the challenge of choosing the
optimal number of topics to input into LDA when analyzing source code. The
authors’ technique varied the number of topics and used a heuristic to determine
how well a particular choice is able to identify two pieces of code located in the
same document. The authors concluded with general guidelines and case studies.

A prior study by Wallach et al. (2009a) in the ML community shows that
choosing a larger K for LDA does not significantly affect the quality of the gener-
ated topics. The extra topics can be considered noise during the LDA generative
process. However, choosing a small K may not separate the information (i.e., in-
formation) precisely (Wallach et al., 2009a). In short, researchers can filter out the
noise topics in the case of over-fitting K, but under-fitting will make the topics
non-separable. Nevertheless, we still see many MSR studies only use a relative
small number of topics (Table B1 in Appendix B), and only a few studies that
apply topic filtering.

Choosing hyperparameters and sampling iterations. The reporting of other input
parameters, such as α, β, and the number of sampling iterations (in the case of
LDA) was even more scarcer. 72% of the articles that used LDA did not indicate
the number of iterations sampled. Of those that did, values ranged between 50
and 10,000, with 1,000 and 3,000 being the norm. Wallach et al. (2009a) in the
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ML community found that using optimized hyperparameters result in improved
consistency in topic usage. Namely, using optimized hyperparameters, topics won’t
be dominated by common words (e.g., a topic of pure stopwords), and the topics
are more stable when K increases. Hence, important topics and noise topics will
be clearly separated. Thus, future studies may consider using hyperparameter
optimization for optimizing α and β.

Dit et al. (2013c, 2014) found that 95% of their studied articles do not use the
same dataset for evaluation, and only 38% of their studied articles compared the
proposed approach with prior studies. In our paper, we found that most articles do
not report the topic model parameters they use. Thus, it is difficult to reproduce
or compare the performance of the approaches proposed by prior studies. We
recommend future studies to include a discussion of the parameters used to improve
the reproducibility of the research.#

"

 

!

Key study design decisions are often not well documented. For instance, 45%
of the surveyed articles we studied did not report the value of K (topics or
reduction factor) that is used in the topic model, even though it is well known
that this choice greatly affects the output of the topic model, and thus the
results of the study.

3.7 Conclusions

The above-identified trends reveal many potentials for advancement of the state
of the art. First, concept location and traceability linking are the most often ad-
dressed software engineering tasks, leaving many tasks under explored.

Second, most research only uses a single topic model, even though research in
other communities indicates that combining multiple models can improve overall
performance (Misirli et al., 2011).

Finally, research is inconsistent as to which data preprocessing steps are per-
formed, and most articles lack any justification as to why some steps are performed
and others are not. In addition, parameter values are often not reported, and when
they are, they are not justified or consistent with previous research. Most research
rarely explores the sensitivity of topic models to their parameters.

4 Common Uses of Topic Models on Software Engineering Tasks

In this section, we describe and evaluate related work that uses topic models
to mine software repositories and perform some software engineering tasks. We
organize the work into subsections by software engineering task. We provide a
brief description of each task, followed by a presentation of the relevant articles.

4.1 Concept/Feature Location

The task of concept location (or feature location) is to identify the parts (e.g.,
documents or methods) of the source code that implement a given feature of the
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software system (Rajlich and Wilde, 2002). This is useful for developers wishing to
debug or enhance a given feature. For example, if the so-called file printing feature
contained a bug, then a concept location technique would attempt to automatically
find those parts of the source code that implement file printing (i.e., parts of the
source code that are executed when the system prints a file).

Related to concept location is aspect-oriented programming (AOP), which aims
at providing developers with the machinery to easily implement aspects of func-
tionality whose implementation spans over multiple source code documents.

4.1.1 LSI-based Techniques

LSI was first used for the concept location task by Marcus et al. (2004), who
developed a technique to take a developer query and return a list of related source
code documents. The authors showed that LSI provides better results than existing
methods (i.e., regular expressions and dependency graphs) and is easily applied to
source code, due to the flexibility and light-weight nature of LSI. The authors also
noted that since LSI is applied only to the comments and identifiers of the source
code, it is language-independent and thus accessible for any system.

Marcus et al. (2005) demonstrated that concept location is needed in the case
of Object-Oriented (OO) programming languages, contrary to previous beliefs.
The authors compared LSI with two other techniques, namely regular expressions
and dependency graphs, for locating concepts in OO source code. The authors
concluded that all techniques are beneficial and necessary, and each possesses its
own strengths and weaknesses.

Poshyvanyk et al. (2006) combined LSI and Scenario Based Probabilistic rank-
ing of execution events for the task of feature location in source code. The authors
demonstrated that using the two techniques, when applied together, outperform
either of the techniques individually.

Poshyvanyk and Marcus (2007) and Poshyvanyk et al. (2013) combined LSI
and Formal Concept Analysis (FCA) to locate concepts in source code. LSI is first
used to map developer queries to source code documents, then FCA is used to
organize the results into a concept lattice. The authors found that this technique
works well, and that concept lattices are up to four times more effective at grouping
relevant information than simple ranking methods.

Cleary et al. (2008) compared several IR (e.g., VSM, LSI) and NLP techniques
for concept location. After an extensive experiment, the authors found that NLP
techniques do not offer much of an improvement over IR techniques, which is
contrary to results in other communities.

Van der Spek et al. (2008) used LSI to find concepts in source code. The authors
considered the effects of various preprocessing steps, such as stemming, stopping,
and term weighting. The authors manually evaluated the resulting concepts with
the help of domain experts.

Grant et al. (2008) used ICA, a conceptually similar model to LSI, to locate
concepts in source code. The authors argued that since ICA is able to identify
statistically independent signals in text, it can better find independent concepts in
source code. The authors showed the viability of ICA to extract concepts through
a case study on a small system.

Revelle and Poshyvanyk (2009) used LSI, along with static and dynamic anal-
ysis, to tackle the task of feature location. The authors combined the different
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techniques in novel ways. For example, textual similarity was used to traverse the
static program dependency graphs, and dynamic analysis removed textually-found
methods that were not executed in a scenario. The authors found that no technique
outperformed all others across all case studies.

Revelle et al. (2010) performed data fusion between LSI, dynamic analysis,
and web mining algorithms (i.e., HITS and PageRank) to tackle the task of fea-
ture location. The authors found that combining all three techniques significantly
outperforms any of the individual methods, and outperforms the state-of-the-art
in feature location.

Binkley et al. (2012) studied possible ways to improve the performance of
feature location techniques. They proposed a way to normalize the vocabulary in
the source code, which goes beyond simple identifier name splitting. They found
that expanding the identifier names (e.g., expanding acronyms) can improve the
accuracy of feature location techniques.

4.1.2 LDA-based Techniques

Linstead et al. (2007b) were the first to use LDA to locate concepts in source code
in the form of LDA topics. Their technique can be applied to individual systems
or large collections of systems to extract the concepts found within the identifiers
and comments in the source code. The authors demonstrated how to group related
source code documents based on comparing the documents’ topics.

Linstead et al. (2007a) applied a variant of LDA, the Author-Topic model (Rosen-
Zvi et al., 2004), to source code to extract the relationship between developers
(authors) and source code topics. Their technique allows the automated summa-
rization of “who has worked on what”, and the authors provided a brief qualitative
argument as to the effectiveness of this technique.

Maskeri et al. (2008) applied LDA to source code to extract the business con-
cepts embedded in comments and identifier names. The authors applied a weight-
ing scheme for each keyword in the system, based on where the keyword is found
(e.g., class name, parameter name, method name). The authors found that their
LDA-based technique is able to successfully extract business topics, implementa-
tion topics, and cross-cutting topics from source code.

Baldi et al. (2008) proposed a theory that software concerns are equivalent to
the latent topics found by statistical topic models. Further, they proposed that
aspects are those latent topics that have a high scattering metric. The authors
applied their technique to a large set of open-source systems to identify the global
set of topics, as well as perform a more detailed analysis of a few specific systems.
The authors found that latent topics with high scattering metrics are indeed those
that are typically classified as aspects in the AOP community.

Savage et al. (2010) introduced a topic visualization tool, called TopicXP , which
supports interactive exploration of discovered topics located in source code.

Grant et al. (2011b) developed a technique for visualizing the software main-
tenance activities captured by LDA. They also examined the relationship between
the maintenance activities and concept location captured by LDA.

Nie and Zhang (2012) computed the topic cohesion and coupling using software
dependency network to improve the accuracy of LDA-based feature location tech-
niques. They found that their approach can improve the effectiveness of feature
location techniques.
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Bassett and Kraft (2013) proposed a new weighting algorithm for the vocabu-
laries in the source code. They evaluated the effect of their weighting algorithm on
LDA-based concept location technique, and found that they could achieve a sta-
tistically significant improvement to the accuracy of concept location techniques.

4.2 Traceability Recovery and Bug Localization

An often-asked question during software development is: “Which source code doc-
ument(s) implement requirement X?” Traceability recovery aims to automatically
uncover links between pairs of software artifacts, such as source code documents
and requirements documents. This allows a project stakeholder to trace a require-
ment to its implementation, for example to ensure that it has been implemented
correctly (or at all!). Traceability recovery between pairs of source code documents
is also important for developers wishing to learn which source code documents are
somehow related to the current source code file being worked on. Bug localization
is a special case of traceability recovery in which traceability links between bug
reports and source code are sought.

4.2.1 LSI-based Techniques

Marcus and Maletic (2003) were the first to use LSI to recover traceability links be-
tween source code and documentation (e.g., requirements documents). The authors
applied LSI to the source code identifiers and comments and the documentation,
then computed similarity scores between each pair of documents. A user could then
specify a similarity threshold to determine the actual links. The authors compared
their work to a VSM-based recovery technique and found that LSI performs at
least as good as VSM in all case studies.

De Lucia et al. (2004) integrated a traceability recovery tool, based on LSI,
into a software artifact management system called ADAMS. The authors presented
several case studies that use their LSI-based technique to recover links between
source code, test cases, and requirements documents. In subsequent work, De Lucia
et al. (2006) proposed an incremental technique for recovering traceability links.
In this technique, a user semi-automatically interacts with the system to find an
optimal similarity threshold between documents (i.e., a threshold that properly
discriminates between related and unrelated documents). The authors claimed
that a better threshold results in fewer links for the developer to consider, and
thus fewer chances for error, making human interaction a necessity.

Hayes et al. (2006) evaluated various IR techniques for generating traceability
links between various high- and low-level requirements, concentrating on the tf-
idf and LSI models. The authors implemented a tool called RETRO to aid a
requirements analyst in this task. The authors concluded that, while not perfect,
IR techniques provide value to the analyst.

Lormans and Van Deursen (2006) evaluated different linking strategies (i.e.,
thresholding techniques) for traceability recovering using LSI by performing three
case studies. The authors concluded that LSI is a promising technique for recov-
ering links between source code and requirements documents and that different
linking strategies result in different results. However, the authors observed that
no linking strategy is optimal under all scenarios. In subsequent work, Lormans
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(2007) introduced a framework for managing evolving requirements (and their
traceability links) in a software development cycle. Their technique uses LSI to
suggest candidate links between artifacts.

Lormans et al. (2006) used LSI for constructing requirement views, which are
different views of requirements. For example, one requirement view might display
only requirements that have been implemented. The authors implemented their
tool, called ReqAnalyst, and used it on several real-world case studies.

De Lucia et al. (2007) were the first to perform a human case study, which
evaluated the effectiveness of using LSI for recovering traceability links during
the software development process. The authors concluded that LSI is certainly a
helpful step for developers, but that its main drawback is the inevitable trade off
between precision and recall.

Jiang et al. (2008) proposed an incremental technique to maintaining trace-
ability links as a software system evolves over time. The authors’ technique, called
incremental LSI, uses links (and the LSI matrix) from previous versions when
computing links for the current version, thus saving computation effort.

de Boer and van Vliet (2008) developed a tool to support auditors in locating
documentation of interest. The tool, based on LSI, suggests to the auditor docu-
ments that are related to a given query, as well as documents that are semantically
related to a given document. Such a process gives the auditor, who is unfamiliar
with the documentation, a guide to make it easier to explore and understand the
documentation of a system.

Antoniol et al. (2008) introduced a tool called Reuse or Rewrite (ReORe)
to help stakeholders decide if they should update existing code (for example, to
introduce new functionalities) or completely rewrite from scratch. ReORe achieves
this by using a combination of static (LSI), manual, and dynamic analysis to create
traceability links between existing requirements and source code. The stakeholders
can then review the recovered traceability links to decide how well the current
system implements the requirements.

McMillan et al. (2009) used both textual (via LSI) and structural (via Evolving
Inter-operation Graphs) information to recover traceability links between source
code and requirements documents. The authors performed a case study on a small
but well-understood system, CoffeeMaker. The authors demonstrated that com-
bining textual and structural information modestly improves traceability results
in most cases.

Islam et al. (2012b) used LSI to link test cases and software requirements.
They prioritize test cases using the test execution time and the requirements to
which a test is linked. They showed that their approach outperformed the baseline
techniques and provided additional improvements.

4.2.2 Comparison Studies

While the majority of researchers only evaluate their technique with respect to
a single topic model, a few have directly compared the performance of multiple
topic models.

Lukins et al. (2008, 2010) used LDA for bug localization. The authors first
build an LDA model on the source code at the method level, using the standard
preprocessing steps. Then, given a bug report, the authors compute the similarity
of the text content of the bug report to all source code documents. They then return
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the top ranked source code documents. By performing case studies on Eclipse and
Mozilla (on a total of 3 and 5 bug reports, respectively), the authors find that LDA
often outperforms LSI. We note that the authors use manual query expansion,
which may influence their results.

Nguyen et al. (2011a) introduced a new topic model based on LDA, called
BugScout, in an effort to improve the performance of bug localization techniques.
BugScout explicitly considers past bug reports, in addition to identifiers and com-
ments, when representing source code documents, using the two data sources to-
gether to identify key technical concepts. The authors applied BugScout to four
different systems and found that BugScout improves performance by up to 20%
over LDA applied only to source code.

Rao and Kak (2011) compared several IR models for bug localization, including
VSM, LSI, and LDA, as well as various combinations. The authors performed a
case study on a small dataset, iBUGS (Dallmeier and Zimmermann, 2007), and
concluded that simpler IR models often outperform more sophisticated models.

Capobianco et al. (2009) compared the ability of four different techniques (Vec-
tor Space Model, LSI, Jenson-Shannon, and B-Spline) to recover traceability links
between source code, test cases, and UML diagrams. The authors found that the
B-Spline method outperforms VSM and LSI, and is comparable to the Jenson-
Shannon method.

Oliveto et al. (2010) compared the effectiveness of four IR techniques for trace-
ability recovery: Jenson-Shannon, VSM, LSI, and LDA. The authors showed that
LDA provides unique dimensionality compared to the other four techniques.

Asuncion et al. (2010) introduced a tool called TRASE that uses LDA for
prospectively, as opposed to retrospectively, recovering traceability links amongst
diverse artifacts in software repositories. This means that developers can create and
maintain traceability links as they work on the system. The authors demonstrated
that LDA outperforms LSI in terms of precision and recall.

Beard et al. (2011) compared the performance of LSI and LDA for bug local-
ization, after including structural information (e.g., call graph). They found that,
after including structural information, both topic models had similar performance.

4.3 Source Code Metrics

Bug prediction (or defect prediction or fault prediction) tries to automatically pre-
dict which parts (e.g., classes or methods) of the source code are likely to contain
bugs. This task is often accomplished by collecting metrics on the source code,
training a statistical model to the metrics of documents that have known bugs,
and using the trained model to predict whether new documents will contain bugs.

Often, the state of the art in bug prediction is advanced either by the intro-
duction of new metrics or by the use of a previously unexplored statistical model
(e.g., Kamei et al. (2010), Nguyen et al. (2010), Shihab et al. (2010)). An entire
suite of metrics have thus far been introduced, counting somewhere in the hun-
dreds. Additionally, dozens or hundreds of statistical models have been applied
with varying degrees of success.

The majority of metrics are measured directly on the code (e.g., code com-
plexity, number of methods per class) or on the code change process (methods
that are frequently changed together, number of methods per change). However,
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researchers have used topic models to introduce semantic or conceptual metrics,
which are mostly based on the comments and keywords in the source code.

4.3.1 LSI-based Metrics

Marcus et al. (2008) introduced a new class cohesion metric, called the Conceptual
Cohesion of Classes (C3), for measuring the cohesion of a program entity. The
metric is based on the semantic information in the class, such as identifier names
and comments, and is computed using LSI. Highly cohesive entities are thought to
follow better design principles and are shown to correlate negatively with program
faults. Bavota et al. (2010) used the C3 metric in developing a technique to support
the automatic refactoring of so-called blob classes (i.e., classes that contain too
much functionality and thus have a low cohesion score). Kagdi et al. (2010) used
a similar metric, the conceptual similarity between pairs of source code methods,
as a part of a novel change impact analysis technique.

Gall et al. (2008) extensively evaluated a suite of semantic metrics that are
computed on the design and requirements documents and on the source code of
a system throughout the development process. Some of the metrics are based on
LSI. Through three case studies, the authors found significant correlation between
metrics measured on design and requirements documents and the same metrics
measured source code, providing strong evidence of the semantic similarity of these
documents. The authors argued that tracking such metrics can help in the detec-
tion of problematic or suspect design decisions early in the software development
process.

Ujhazi et al. (2010) defined two new conceptual metrics that measure the cou-
pling and cohesion of methods in software systems. Both metrics are based on
a method’s representation in an LSI subspace. The authors compared their new
metrics to an existing suite of metrics (including those of Marcus et al. (2008))
and found that the new metrics provide statistically significant improvements com-
pared to previous metrics.

4.3.2 LDA-based Metrics

Linstead and Baldi (2009) applied LDA to the bug reports in the GNOME system
with the goal of measuring the coherence of a bug report, i.e., how easy to read
and how focused a bug report is. This coherence metric is defined as the tangling
of LDA topics within the report, i.e., how many topics are found in the report
(fewer is better).

Liu et al. (2009) applied LDA to source code methods in order to compute a
novel class cohesion metric called Maximum Weighted Entropy (MWE). MWE is
computed based on the occupancy and weight of a topic in the methods of a class.
The authors demonstrated that this metric captures novel variation in models that
predict software faults.

Gethers and Poshyvanyk (2010) introduced a new coupling metric, the Re-
lational Topic-based Coupling (RTC) metric, based on a variant of LDA called
Relational Topic Models (RTM). RTM extends LDA by explicitly modeling links
between documents in the corpus. RTC uses these links to define the coupling be-
tween two documents in the corpus. The authors demonstrated that their proposed
metric provides value because it is statistically different from existing metrics.
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Nguyen et al. (2011b) and Chen et al. (2012) proposed a number of metrics
based on LDA topics to study software defects. Nguyen et al. (2011b) predict
defects using topic membership values. On the other hand, Chen et al. (2012)
found that topics can give extra information in statistical models (i.e., logistic
regression model) when studying defects. They also found that the more topics a
file has, the more likely it will be defect-prone.

Hu and Wong (2013) used a variant of LDA, called citation influence model,
to quantify the dependency strength among software components and developers.
They used the strength of the dependency and social network properties to predict
software defects.

4.4 Statistical Debugging and Root Cause Analysis

Andrzejewski et al. (2007) performed statistical debugging with the use of Delta
LDA, a variant of LDA. Statistical debugging is the task of identifying a problem-
atic piece of code, given a log of the execution of the code. Delta LDA is able to
model two types of topics: usage topics and bug topics. Bug topics are those topics
that are only found in the logs of failed executions. Hence, the authors were able
to identify the pieces of code that likely caused the bugs.

Bose and Suresh (2008) used LSI as a tool for root cause analysis (RCA), i.e.,
identifying the root cause of a software failure. The authors built and executed
a set of test scenarios that exercised the system’s methods in various sequences.
Then, the authors used LSI to build a method-to-test co-occurrence matrix, which
clustered tests that execute similar functionalities, helping to characterize the dif-
ferent manifestations of a fault.

Zawawy et al. (2010) presented a framework for reducing the size and com-
plexity of execution logs so that the manual work performed by a log analyst is
reduced during RCA. The reduction is accomplished by filtering the log by per-
forming SQL queries and LSI queries. The authors demonstrated that LSI leads
to fewer false positives and higher recall during the filtering process.

4.5 Software Evolution and Trend Analysis

Analyzing and characterizing how a software system changes over time, or the
software evolution (Lehman, 1980) of a system, has been of interest to researchers
for many years. Both how a software system changes (e.g., it grows rapidly every
twelfth month) and why a software system changes (e.g., a bug fix) can help yield
insights into the processes used by a specific software system as well as software
development as a whole.

Linstead et al. (2008a) applied LDA to several versions of the source code of a
system in an effort to identify the trends in the topics over time. Trends in source
code histories can be measured by changes in the probability of seeing a topic at
specific version. When documents pertaining to a particular topic are first added
to the system, for example, the topics will experience a spike in overall probability.

In a similar effort, Thomas et al. (2010) evaluated the effectiveness of topic
evolution models for detecting trends in the software development process. The
authors applied LDA to a series of versions of the source code and calculated
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the popularity of a topic over time. The authors manually verified that spikes or
drops in a topic’s popularity indeed coincided with developer activity mentioned in
the release notes and other system documentation, providing evidence that topic
evolution models provide a good summary of the software history.

Hindle et al. (2009, 2010) applied LDA to commit log messages in order to see
what topics are being worked on by developers at any given time. The authors
applied LDA to the commit logs in a 30 day period, and then linked successive pe-
riods together using a topic similarity score (i.e., two topics are linked if they share
8 out of their top 10 terms). The authors found LDA to be useful in identifying
developer activity trends.

Neuhaus and Zimmermann (2010) used LDA to analyze the Common Vulnera-
bilities and Exposures (CVE) database, which archives vulnerability reports from
many different sources. The authors’ goal was to find the trends of each vulnera-
bility, in order to see which are increasing and which are decreasing. The authors
found that their results are mostly comparable to an earlier manual study on the
same dataset.

Han et al. (2012) used LDA to analyze bug reports for HTC and Mozilla
overtime. They studied how the topics evolve, and used the topics mined from bug
reports to study Android fragmentation and vendor-specific bugs.

Barua et al. (2012) applied LDA on Stack Overflow posts for studying the
topic trends in programming question and answer websites. The authors found
that topics related to mobile application and web development are getting more
popular over time. Linares-Vásquez et al. (2013) used LDA to study popular topics
related to mobile-development on Stack Overflow. Allamanis and Sutton (2013)
used LDA on Stack Overflow to study which programming concepts are more
confusion. Bajaj et al. (2014) used LDA on Stack Overflow questions to study
common challenges and misconcepts about web development.

4.6 Document Clustering

Document clustering is the task of grouping related documents together, usually
to enhance program understanding or reduce a developer’s searching effort (Kuhn
et al., 2005, 2007). Documents can be clustered using any of several possible at-
tributes, including their semantic similarity or dependency graphs.

Maletic and Marcus (2001); Maletic and Valluri (1999) first applied LSI to
cluster source code documents. The authors claimed that such a clustering can
improve program comprehension during the maintenance and evolutionary phases
of the software development cycle. The authors found that LSI produces useful
clusters and, since LSI is automated, can be of significant value to developers.

In a similar effort, Kuhn et al. (2005, 2007) introduced a tool named HAPAX
for clustering source code documents. The authors extended the work by Maletic
and Marcus (2001) by visualizing the resulting clusters and providing each cluster
with a name based on all the words in the class, not just the class names.

Lin et al. (2006) introduced a tool called Prophecy that allows developers to
search the Java API for groups of related functionalities. The authors applied LSI
to the Javadocs of the Java API to find similarities in their functionalities. A
developer can then search the LSI index to yield a cluster of related classes.
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Kuhn et al. (2008, 2010) built a two dimensional map of a software system,
where the positions of entities and distances between entities are based on their
vocabularies. LSI is used to reduce the dimensionality of the document-term ma-
trix so that similar documents can be closely aligned on the map. This software
cartography can help developers understand the layout and relationships of their
source code.

4.7 Organizing and Searching Software Repositories

Kawaguchi et al. (2006) presented a tool called MUDABlue for automatically or-
ganizing large collections of open-source software systems (e.g., SourceForge and
Google Code) into related groups, called software categories. MUDABlue applies
LSI to the identifier names found in each software system. The authors demon-
strated that MUDABlue can achieve recall and precision scores above .80, com-
pared with manually created tags of the systems.

Tian et al. (2009) developed LACT, a technique to categorize systems based
on their underlying topics. This work is similar in nature to Kawaguchi et al.
(2006), except this work employs LDA instead of LSI. The authors compared
their technique to MUDABlue and concluded that the techniques are comparable
in effectiveness.

Linstead et al. (2008b,c) introduced and used an Internet-scale repository
crawler, Sourcerer, to analyze a large set of software systems. The authors ap-
plied LDA and the Author-Topic model to extract the concepts in source code
and the developer contributions in source code, respectively. The authors also de-
fined new techniques for searching for code, based on the extracted topic model.
Sourcerer can be used to analyze existing systems (i.e., view most popular iden-
tifier names and LDA topics) as well as search for modules which contain desired
functionality.

Poshyvanyk and Grechanik (2009) proposed a technique called S3 for search-
ing, selecting, and synthesizing existing systems. The technique is intended for
developers wishing to find code snippets from an online repository matching their
current development needs. The technique builds a dictionary of available API
calls and related keywords, based on online documentation. Then, developers can
search this dictionary to find related code snippets. LSI is used in conjunction
with Apache Lucene to provide the search capability.

Although not using topic models directly, Haiduc et al. (2013) found that
reforming and optimizing search queries can significantly improve code search
performance.

4.8 Other Tasks

Clone Detection. Marcus and Maletic (2001) were the first to detect high-level
clones (Bellon et al., 2007; Rahman et al., 2012; Roy et al., 2009) of source code
methods by computing the semantic similarity between pairs of methods. The
authors used LSI to cluster related methods together in concept space (i.e., a K-
dimensional representation of a document, based on the document’s topic mem-
berships), and tight clusters represents code clones. Despite low levels of precision,
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the authors argued that this technique is cheap and can therefore be used in con-
junction with existing clone detection techniques to enhance the overall results.

Grant and Cordy (2009) used ICA to detect method clones. The authors argued
that since ICA can identify more distinct signals (i.e., topics) than LSI, then the
conceptual space used to analyze the closeness of two methods will be of higher
effectiveness. The authors performed a small case study on the Linux kernel

package, but do not compare their results to LSI.

Bug Triaging. Ahsan et al. (2009) aimed to create an automatic bug triaging
system, which determines which developer should address a given bug report. The
authors extracted the textual content from the titles and summaries of a system’s
bug reports and applied LSI to obtain a reduced term-document matrix. Then,
various classifiers mapped each bug report to a developer, trained on previous
bug reports and related developers. In the best case, this technique achieved 45%
classification accuracy.

Yang et al. (2014) map bug reports to topics, then use such mapping to rec-
ommend developers that can work on a newly filed bug report.

The number of bug reports and bug report categories may vary significantly,
which may affect the result of automated bug report classification using Machine
Learning algorithms. Thus, Somasundaram and Murphy (2012) combine both LDA
and other Machine Learning algorithms to generate consistent bug report classi-
fication results. They found that combining LDA and the Kullback Leibler di-
vergence algorithm yields the most consistent results across all components with
various sizes.

Measuring Cohesion of the Comments in Bug Reports. Dit et al. (2008)
measured the cohesion of the content of a bug report by applying LSI to the
entire set of bug reports and then calculating a similarity measure on each com-
ment within a single bug report. The authors compared their metrics to human-
generated analysis of the comments and found a high similarity.

Search Query Analysis. Bajracharya and Lopes (2009, 2010) applied LDA to
a usage log of a popular code search engine (Koders) to analyze the user queries
over time. Their goal was to determine which topics are the most popular search
topics, and whether the search engine provides users with the features that they
need to identify the code they want. They found LDA to be an effective tool for
such a task.

Software Verification. Thomas et al. (2014) applied LDA to prioritize test cases
based on the semantic differences in the test cases. They found that their topic
model-based approach outperforms traditional black-box test case prioritization
approaches. Islam et al. (2012b) also proposed approaches to prioritize test cases by
using links between test requirement and source code. Gorla et al. (2014) applied
LDA on the description of mobile applications, and cluster the applications based
on the LDA generated topics. Then, they detect mobile applications that have
anomalous application permissions within the cluster, and such applications are
possibly malicious. Chen et al. (2015) apply LDA to find and predict the topics
that are less-tested and defect-prone. By focusing the testing resources on the less-
tested and defect-prone topics, the maintenance effort can be allocated effectively.

Web-service Discovery. Wu et al. (2008) tackled the challenge of building a
semantic-based Web-service discovery tool. Their technique, built on LSI, allows
the automatic discovery of Web services based on concepts, rather than keywords.
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5 A Guideline for Performing Different Software Engineering Tasks
Using Topic Models

In this section, we organize the results of our mapping study of the surveyed
articles, and present a discussion on the common pitfalls when applying topic
models on SE tasks.

5.1 How the Surveyed Articles Use Topic Models for Different Tasks

For each task, we look at three dimensions: 1) the topic model that is used; 2)
the repositories that are mined; and 3) how the task is evaluated. In other words,
given a software engineering task, we want to answer which topic model is usually
used, which repositories are often mined, and how do prior studies evaluate the
task. The results may help new researchers and practitioners determine how to
best apply topic models to a particular software engineering task.

Table 3 shows how the surveyed articles support each of the software engi-
neering tasks. We focus on the eight tasks that we previously identified (Table 2),
and we show the percentage of the surveyed articles that uses each kind of topic
model, repository, and evaluation approach. We find that LSI is usually used for
document clustering and traceability. Recent studies (e.g., Rao and Kak (2011);
Thomas et al. (2013)) show that LSI outperforms LDA for traceability, which may
explain why most studies choose LSI over LDA for this particular task. We also
find that LDA is more often used for trend analysis and for analyzing a collection
of systems. The reason may be that LDA can generate human-readable topics, so
researchers can interpret and identify the trends of each topic more easily.

We find that most tasks only analyze source code, and rarely use other reposi-
tories. One exception is the traceability task, since doing traceability requires two
kinds of documents (e.g., source code and requirements). We also find that prior
studies evaluate each task differently, and some tasks often lack any evaluation.
For example, an evaluation approach is usually missing for studies that analyze
collections of systems (around 50% of such studies have an evaluation). We also
find that user study is only performed for trend analysis and traceability; whereas
other studies do not perform any user studies. Thus, future studies on using topic
models for trend analysis and traceability may consider performing user studies
for their evaluation.

5.2 Common Pitfalls when Applying Topic Models on Software Engineering
Tasks

In Section 4, we discussed how topic models are commonly used in different SE
tasks. In this subsection, we further discuss the common pitfalls when applying
topics models on Software Engineering tasks.

5.2.1 Choosing Parameters

Although researchers in SE have proposed several approaches to determine the
best topic model parameters, we see very few studies that adapt the approaches
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proposed by the Machine Learning community. For example, Hierarchical Topic
Models (HTM) may be used for estimating the number of topics in a system (Blei
et al., 2004, 2010). Hence, HTM may be used to find or verify the optimal number of
topics (K) for the examined SE data. In addition, the topic evaluation approaches
that are used in the Machine Learning community (e.g., perplexity) can also be
used to find the best topic parameters. Future studies may consider using the
approach proposed by the Machine Learning community to choose the topic model
parameters.

Current studies usually use topic models as a black box, and do not consider
the effect of different parameter on the SE task. As a result, future studies may
want to examine the effect of different topic model parameters on SE tasks. For
example, there is no clear guideline on how varying the LDA hyperparameters
may affect the result of feature location. Providing such guideline can help MSR
studies choose better topic model parameters.

5.2.2 Labelling and Interpreting Topics

Giving meaningful labels to topics is important for program comprehension. How-
ever, interpreting topics is difficult and may be subjective. Researchers in SE have
proposed several approaches for labelling the topics. De Lucia et al. (2012, 2014)
applied topic models on labelling source code artifacts, and compared the auto-
matically generated labels with the human annotated labels. They found that topic
models have higher advantages when used on labelling source code artifacts with
higher verbosity, or when the artifacts require much effort for humans to label. Me-
dini et al. (2012) applied LSI to generate labels for execution traces. The authors
compare the generated labels with manually annotated labels, and they found that
the generated are informative and useful. Researchers in the ML community pro-
posed an approach to automatically label topics in a more subjective fashion by
minimizing the Kullback-Leibler divergence between word distributions (Mei et al.,
2007). Their case study shows that their approach can generate more meaningful
and useful topic labels.

Although automatic topic labelling can be helpful, recent studies show that
interpreting topics may not always be an easy task. Hindle et al. (2012c) conduct
a study on whether LDA topics make sense to practitioners (i.e., Mircosoft devel-
opers). The results show that although many LDA topics are perceptually valid,
some topics are hard to understand. Hindle et al. (2012c) recommend that topics
need to be interpreted, pruned, and labelled by experts for better understanding.

Hindle et al. (2011, 2012a) propose an approach to automatically generate more
meaningful labels for LDA topics by classifying the topic labels using predefined
labels derived from software engineering standards (ISO9126 standard of non-
functional requirements). Labeled LDA (LLDA) (McIlroy et al., 2015; Ramage
et al., 2009a) can also be used for generating more meaningful topics. However,
LLDA requires a training set where the topics are annotated, which must be
prepared manually.

In short, labelling and interpreting topics can be difficult and subjective, and
may require much human effort. Future studies should explore ways to apply
different approaches to automatically label the topics.
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5.2.3 Data Preprocessing

Data preprocessing is a very important step before applying topic models. Stud-
ies (Madsen et al., 2004; Thomas et al., 2013) show that the data preprocessing
steps have direct impact on the final topic models. Most common data prepro-
cessing steps that we see are tokenization and stop word removal. We found that
few studies report the use of pruning (15%). However, pruning can remove overly
common (or rare) words, which may improve the performance of topic models.
Note that since the words are related to the domain-level concepts in the system,
filtering too many words may have negative effects on the performance. Future
studies may want to explore how to best prune the words in order to achieve the
optimal performance.

There are also no studies that use lemmatization. Lemmatization is similar
to stemming, but lemmatization considers knowledge of the context, which may
improve the accuracy. Future studies may want to apply lemmatization, or compare
lemmatization with stemming when applying topic models on SE tasks.

5.2.4 Document Size

We found that many SE studies apply topic models at the method level (47%).
However, topic models usually perform poorly on short documents (Jin et al.,
2011; Phan et al., 2008a; Tang et al., 2014), so the generated topics will be of
low quality. We found that there are no MSR studies that discuss this problem
nor ones that adapt one of the more advanced topic models for short documents.
Future SE studies should consider using some of the specialized topic models for
short documents (Guo and Diab, 2012; Jin et al., 2011; Yan et al., 2013) when
applying topic models on smaller source code entities (e.g., methods).

5.2.5 Document Noise

When applying topic models for tasks such as analyzing software systems, common
boilerplate code in each file may affect the final topics. The boilerplate code (or
legal licensing text) may become one of the dominating topics in the system, but
the topic is less interesting. Thus, depending on the use case, researchers may want
to remove the boilerplate code or apply the topic evolution models discussed in
Section 2.3.4.

5.2.6 Tendency to Employ More Complex Models

We found that many SE studies prefer using more complex topic models, such
as LDA. Although LDA has the advantage of generating human-readable topics
directly, simpler models such as LSI or even VSM may work better for some other
tasks. Studies (Rao and Kak, 2011; Thomas et al., 2013) have shown that simpler
models outperform more complex models for tasks such as traceability linking and
bug localization. In short, SE researchers may want to choose topic models that
are more suitable for the task, instead of choosing more complex models.
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Table 3 Summary of how surveyed articles apply topic models for different software engineer-
ing tasks. The numbers are shown in percentage for each category (i.e., Topic Model, Repo.
Used, and Evaluation).

cluster- feature metrics trend trace- debug collections other
ing ability

Topic Model
LSI 69 55 43 23 89 45 14 0
LDA 38 42 50 77 28 45 86 100
Other 0 15 7 8 11 27 0 0

Repo. Used

source code 81 100 93 46 86 73 86 100
email 0 0 0 0 3 0 0 0
req./design 6 3 14 15 64 0 0 0
logs 6 3 7 23 0 36 14 0
bug reports 13 9 7 15 19 9 0 0

Evaluation

statistical 0 3 0 0 3 0 0 0
task specific 50 52 57 31 92 100 14 56
manual 13 9 7 15 11 18 14 0
user study 0 0 0 8 3 0 0 0

5.2.7 Topic Consistency

Since topic models like LDA are based on probability distributions, different LDA
runs may generate slightly different topics. This probabilistic behaviour may cause
problems when combining different LDA runs (e.g., when studying software evo-
lution). Therefore, researchers may want to consider using LDA models proposed
by Mei and Zhai (2005), Hall et al. (2008), Linstead et al. (2008a), and Thomas
et al. (2010) (Section 2.3.4) to maintain topic consistency across LDA runs.

5.2.8 Realistic Evaluation

Some probabilistic models like LDA are usually implemented using different sam-
pling techniques, so the running time of the algorithm directly impacts the quality
of the generated topics (Binkley et al., 2014). However, researchers usually do
not report the required efforts when applying topic models on software systems,
which is an important measure for adapting the approach for practical uses. For
example, taking over a week to run topic models on a system may not be feasible
or practical if the system is constantly changing. Future studies should consider
reporting the efforts (e.g., time) required to adapt the proposed approach.

6 Future Research Opportunities

In this Section, we discuss some opportunities for future work on applying topic
models to software engineering tasks.

Underused Repositories From our survey study, we found that there remain sev-
eral other software repositories that require more attention. For example, email
archives and execution logs have rarely been studied, even though they are rich
with information about a software system.
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Underexplored Software Engineering Tasks Bug prediction, searching collections
of software systems, and measuring the evolutionary trends of repositories are all
underexplored tasks in the literature. In addition, traceability links are typically
established between requirements documents and source code, although it would
also be useful to find links between other repositories, such as emails and source
code, and between source code documents themselves.

Additional Topic Models The variants of LDA listed in Section 2.3.3 have promis-
ing features that may directly improve the results of several software engineering
tasks. For example, the correlated topic model, which models dependencies be-
tween topics, may allow sets of dependent topics in need of refactoring to be
found in the source code. Additionally, the cross-collection topic model might al-
low similar topics to be discovered from the source code of related systems, such
as Mozilla Firefox and Google Chrome. In addition, lightweight models such as
BM25 or BM25F may be useful for bug localization or test case prioritization.

Data Preprocessing and Topic Model Parameters Prior study has shown the im-
portance of data preprocessing and topic models parameters (Panichella et al.,
2013; Thomas et al., 2013). Previous studies from the literature can be performed
again after determining the best combination of the preprocessing steps and topic
model parameters.

Additional Preprocessing Steps A preprocessing step that is currently less popu-
lar, but may also provide benefits, is query expansion (Carpineto and Romano,
2012), i.e., automatically fixing spelling errors, finding synonyms, or using or Word-
Net (Miller, 1995) to find related concepts and themes. Query expansion can be
applied, for example, to bug localization datasets to reduce noise in the bug re-
ports, and to help expand short or vague bug reports to provide more contexts. In
addition, most preprocessing steps treat all words as equals, independent of their
context. Considering context might allow the opportunity to give higher weights to
important terms, technical terms, or system-specific terms. For example, it may be
fruitful for the preprocessor to determine whether a bug report has an embedded
code snippet and use this context to preserve identifier names in their entirety,
so as to maximize the chance of linking the bug report to relevant source code
entities that contain the same identifier names.

Special Topic Models for Software Data Topic models were initially proposed for
natural language texts. Thus, topic models may not perform as well when applied
on software development data (e.g., source code). We so far only see one study that
proposes a new topic model that considers the properties of software data (Nguyen
et al., 2012). Future studies may want to propose new topic models that consider
the structure of the software development data. Moreover, as we observed, many
SE studies use task-specific evaluation approaches (e.g., measuring the number
of discovered bugs). There could potentially be new general evaluation metrics
for software engineering tasks. Such metrics could improve the future usage of
topic modeling in SE, and possibly help improve general parameter tuning and
specification.
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Treating Software as Natural Language Recent work by Hindle et al. (2012b) has
compared source code to natural language: both are created by humans, and while
any given instance of either could theoretically be very complex, most of the time
the instances are quite simple. The authors show that source code is indeed “natu-
ral”, in that it is highly repetitive and predictable. As a consequence, models that
deal with source code text can use this fact to construct more intelligent models.

7 Conclusion

The field of mining software repositories uses readily-available data to increase the
productivity of developers and reduce project costs. Using all available data, both
structured and unstructured, maximizes benefits. Since the majority of software
repositories store unstructured data, researchers have used statistical topic models
to mine textual information in the repositories. However, the performance of topic
models is directly related to the usage and model parameters. Even though there
are hundreds of studies on applying topic models to software repositories, there is
no study that shows how the models are used in the software engineering research
community, and which software engineering tasks are being supported through
topic models. Knowing how researchers use the topic models may also help future
studies improve the model performance.

In this paper, we surveyed 167 articles from the software engineering literature
that use topic models. We found that:

– most studies focus on only a limited number of software engineering tasks;
– most studies use only basic topic models;
– and researchers usually treat topic models as black boxes without fully explor-

ing their underlying assumptions and parameter values.

We have also provided possible direction of future work on applying topic
models on software repositories. Our paper provides a starting point for new re-
searchers who are interested in using topic models, and may help new researchers
and practitioners determine how to best apply topic models to a particular soft-
ware engineering task.
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Appendix

A Article Selection Process

In this paper, we are interested in locating articles that use topic modeling techniques to solve
SE tasks. We focus our attention on articles written between December 1999 and December
2014, more than a full decade of research results. We consider in our search a wide range of
journals and conferences in an effort to cover as many relevant articles as possible.

To select our list of articles, we use first compile a list of highly relevant venues to search.
Then, we perform a series of keyword searches at each venue, producing a list of candidate
articles. For each of the candidate articles, we read the abstract (and, in some cases, the
introduction) of the article to determine if the article is indeed relevant to our interests. This
yields an initial set of related articles. For each of the articles in the initial set, we consider
the citations that are contained in the article for additional relevant articles. Then, we reach
our final set of articles.

A.1 Considered Venues

Table A.1 lists the journals and conference venues that we included in our initial search for
articles.

A.2 Keyword Searches and Filtering

We collected the initial set of articles by performing keyword searches at the publisher websites
for each of our considered venues. We also searched using aggregate search engines, such as
the ACM Digital Library and IEEE Xplore. The keywords and search queries that we use are
listed below.

IEEE Xplore

("topic models" OR "topic model"
OR "lsi" OR "lda" OR "plsi"
OR "latent dirichlet allocation" OR "latent semantic")
AND
( "Publication Title":"Source Code Analysis and Manipulation"
OR "Publication Title":"Software Engineering, IEEE Transactions on"
OR "Publication Title":"Reverse Engineering"
OR "Publication Title":"Software Maintenance"
OR "Publication Title":"Software Engineering"
OR "Publication Title":"Program Comprehension"
OR "Publication Title":"Mining Software Repositories")
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Table A1 The fifteen venues that we considered in our initial article selection process.

Type Acronym Description

Journal TSE IEEE Transactions on Software Engineering
TOSEM ACM Transactions on Software Engineering &

Methodology
EMSE Empirical Software Engineering
JSS Journal of Systems and Software
JSME Journal of Software Maintenance and Evolution
SP&E Software – Practice & Experience

Conference ICSE International Conference on Software Engineering
ESEC/FSE European Software Engineering Conference / Sympo-

sium on the Foundations of Software Engineering
FASE International Conference on Fundamental Approaches

to Software Engineering
ASE International Conference on Automated Software En-

gineering
ICSM International Conference on Software Maintenance
WCRE Working Conference on Reverse Engineering
IWPC/ICPC International Workshop/Conference on Program

Comprehension
SCAM International Workshop/Working Conference on

Source Code Analysis and Manipulation
MSR International Workshop/Working Conference on Min-

ing Software Repositories

Software Practice and Experience

lsi or lda or "topic model" or "topic models" or
"latent dirichlet allocation" or "latent semantic"
AND publication title="Software Practice and Experience"

Journal of Software Maintenance and Evolution

lsi or lda or "topic model" or "topic models" or
"latent dirichlet allocation" or "latent semantic"
AND publication title="Software Maintenance and Evolution"

Empirical Software Engineering

lsi or lda or "topic model" or "topic models" or
latent dirichlet allocation" or "latent semantic"

In general, we found that keyword searches resulted in many irrelevant results. We manu-
ally filtered the search results by reading the article’s abstract (and sometimes introduction) to
determine if the article solved an SE task by employing one or more topic modeling technique.
The articles that were determined to be relevant were added to our initial set.

A.3 Reference Checking

For each article in the initial set, we followed its citations to obtain another list of potentially
relevant articles. Again, we filtered this list by reading the abstract and introduction. The
articles that were determined to relevant were added to our final set of articles.
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A.4 Article Selection Results

We finally arrive at 167 articles published between 1999 and 2014. Figure A1 shows the dis-
tribution of venues and years for the articles.

B Article characterization results for facets 1–6.
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Table B1 Article characterization results of facets 1–4. The attributes are described in Ta-
ble 2.
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Marcus and Maletic (2001) o . . . . . . . . . o o . . . . . . o .
Marcus and Maletic (2003) o . . . . . . o . . . o . o . . . o . .
Marcus et al. (2004) o . . . o . . . . . . o . . . . . o o .
Marcus (2004) o . . o o o . o . . . o . o . . . . . .
Marcus et al. (2005) o . . . o . . . . . . o . . . . . . o .
Marcus et al. (2008) o . . . . o . . o . . o . . . . . o . .
Maskeri et al. (2008) . o . . o . . . . . . o . . . . o . . .
McMillan et al. (2009) o . . . . . . o . . . o . o . . . o o o
Misra et al. (2012) o . . o . . . . . . . o . . . . . o . .
Moritz et al. (2013) . . o . . . . . . . o o . . . . . o . .
Naguib et al. (2013) . o . o . . . . . . o . . . . o . o . .
Neuhaus and Zimmermann (2010) . o . . . . o . . . . . . . . o . . . .
Nguyen et al. (2011b) . o . . . . . . o . . o . . . . . o o .
Nguyen et al. (2011a) . . o . o . . . . . o o . . . o . o . .
Nguyen et al. (2012) . o . . . . . . . . o . . . . o . o . .
Nie and Zhang (2012) . o . . o . . . . . . o . . . . . o . .
Niu et al. (2012) . . o . o . . . . . . o . . . . . o . .
Oliveto et al. (2010) o o . . . . . o . . . o . . . . . o . .
Oliveto et al. (2011) . . o . . . . . o . . o . . . . . o . .
Ossher et al. (2009) . o . . o . o . . o . o . . . . . . . .
Panichella et al. (2013) . o . . . . . . . . o o . . . . o o . .
Poshyvanyk et al. (2006) o . . . o . . . . . . o . . . . . o . .
Poshyvanyk and Marcus (2007) o . . . o . . . . . . o . . . . . o . .
Poshyvanyk et al. (2007) o . . . o . . . . . . o . . . . . o . .
Poshyvanyk and Grechanik (2009) o . . . o . . . . . o o . . . . . . . .
Poshyvanyk et al. (2013) o . . . o . . . . . . o . . . . . o . .
Qusef et al. (2013) o . . . . . . o . . . o . . . . . o . .
Revelle and Poshyvanyk (2009) o . . . o . . . . . . o . . . . . o . .
Revelle et al. (2010) o . . . o . . . . . . o . . . . . o . .
Saha et al. (2013) o . . . o . . . . . o o . . . o . . . .
Savage et al. (2010) . o . . o . . . . . . o . . . . . . . .
Shang et al. (2013) . o . . . . . . . . . . . . o . . . o .
Sharafl et al. (2012) o o . . . . . o . . . o . o . . . o o .
Thomas et al. (2010) . o . . . . o . . . . o . . . . . . o .
Thomas et al. (2013) o o o . . . . o . . . o . . . o . o . .
Tian et al. (2009) . o . . . . . . . o . o . . . . . . . .
Ujhazi et al. (2010) o . . . . o . . o . . o . . . . . o . .
Van der Spek et al. (2008) o . . . o . . . . . . o . . . . . . o .
Wang et al. (2011) o o o . o . . . . . . o . . . . . o . .
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Wu et al. (2008) o . . . . . . . . . o . . . o . . . . .
Xia et al. (2013) . o . . . . . . . . o . . . . o . o . .
Xie et al. (2013) . o . . . . . . . . o o . . . . . . . .
Xue et al. (2012) o . . . . . . o . . . o . . . . . o . .
Zawawy et al. (2010) o . . . . . . . o . . . . . o . . o . .
Zhou et al. (2012) o o o . . . . . o . . o . . . o . o . .
Medini (2011) . o . . o . . . . . . . . . o . . o . .
Zou and Hou (2014) . o . . . . . . . . o . . . . . . . . .
Limsettho et al. (2014) . o o . . . . . . . o . . . . o . o . .
Grant and Cordy (2014) . o . . o . . . . . . o . . o . . o . .
Yu (2012) . o . . . . o . . . . . . . . o . o o .
Thomas et al. (2014) . o . . . . . . . . o o . . . . . o . .
Grant et al. (2012) . o . . . . o o . . . o . . o . . o . .
Bavota et al. (2014) . . o . . . . o . . . o . . . . . o . o
Alhindawi et al. (2013b) o . . . . . . o . . . o . o . . . o . .
Parizy et al. (2014) o . . . . . . . . . o o . . o . . o . .
Islam et al. (2012a) o . . . . . . . . . o o . o . . . o . .
Le et al. (2013) . o . . o . . . . . . o . . . o . o . .
Misra and Das (2013) o . . . . . . . . . o . . o . . . o . .
Asadi et al. (2010b) o . . . o . . . . . . o . . o . . o o .
Dit et al. (2013b) o . . . o . . . . . . o . o . . . o . .
Tairas and Gray (2009) o . . o . . . . . . . o . . . . . o . .
Lormans et al. (2008) o . . . . . . o . . . o . o . . . o . .
Ali et al. (2014) o o . . . . . o . . . o . o . . . o . .
Kagdi et al. (2012b) o . . . . o . . . . . o . . . . . o . .
Bavota et al. (2012) o . . . . . . . . . o o . . . . . o . .
Raja (2012) . . . o . . . . . . . . . . . o . o . .
Barua et al. (2012) . o . . . . . . . o . . . . . . . o o .
Hindle et al. (2014) . o . . . . o o . . o . . o o . . . . o
Hindle et al. (2012a) . o . . . . . . . . o . . . o . . o o .
Pagano and Maalej (2013) . o . . . . . . . o . . . . . . . o o .
Biggers et al. (2014) . o . . o . . . . . o o . . . . . o . .
Canfora et al. (2014) . o . . . . o . . . . . . . o . . o o .
Gorla et al. (2014) . o . . . . . . . o . . . . . . . o . .
Linares-Vásquez et al. (2013) . o . . . . o . . o . . . . . . . o o .
Allamanis and Sutton (2013) . o . . . . . . . . . . . . . . . o o .
Bajaj et al. (2014) . o . . . . o . . . . . . . . . . o o .
Brickey et al. (2012) o . . o . . . . . . . . . . o . . o o .
Pingclasai et al. (2013) . o . o . . . . . . o . . . . o . o . .
Galvis Carreño and Winbladh (2013) . . o o . . . . . . . . . o . . . o o .
Kelly et al. (2011) . o . o . . . . . o . o . . . . . o o .
Risi et al. (2010) o . . o . . . . . . . o . . . . . o . .
Asadi et al. (2010a) o . . . o . . . . . . . . . o . . o . .
Medini et al. (2012) o . . . . . . . . . o o . . o . . o o .
Binkley et al. (2014) . o . . . . . . . . o o . . . . . o . .
Yang et al. (2014) . o . . . . . . . . o . . . . o . o . .
Somasundaram and Murphy (2012) . o . o . . . . . . o . . . . o . . . .

Percentage ‘o’ 53 48 11 14 24 9 11 25 7 7 2 71 1 20 15 17 1 74 19 4
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Table B2 Article characterization results of facets 5 and 6. The attributes are described in
Table 2. A ‘Y’ means the article stated that it included this attribute or performed this step;
a ‘N’ means the article stated that it did not include this attribute or perform this task; a ‘?’
means the article did not state either way; and a ‘-’ means this attribute is not applicable to
this article.
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Ahsan et al. (2009) ? ? ? bug report ? N Y Y MATLAB 50-500 vary ?
Alhindawi et al. (2013a) Y Y ? method Y ? Y ? ? ? ? ?
Ali et al. (2012) Y ? ? class/report ? Y Y ? ? 50-200 vary ?
Alipour et al. (2013) ? ? ? report ? ? Y ? ? 35 previous ?
Andrzejewski et al. (2007) ? ? ? ? ? ? ? ? own ? expert 2000
Antoniol et al. (2008) ? ? ? method Y Y Y ? own ? ? ?
Asuncion et al. (2010) ? ? ? ? ? Y Y ? own ? ? ?
Bajracharya and Lopes (2009) ? ? ? query Y ? N ? Dragon 50-500 vary ?
Bajracharya and Lopes (2010) ? ? ? query Y ? N ? Dragon 50-500 vary ?
Baldi et al. (2008) Y N N class Y ? Y ? ? 125 vary ?
Bassett and Kraft (2013) Y Y Y ? Y Y Y Y ? ? ? ?
Bavota et al. (2010) ? ? ? method ? ? ? ? ? ? ? ?
Bavota et al. (2013) Y ? ? class/req. Y Y Y ? ? ? vary ?
Beard et al. (2011) Y Y ? method ? Y Y ? Gensim 75 vary 200
Binkley et al. (2012) Y ? ? class Y ? Y ? ? ? ? ?
Bose and Suresh (2008) ? ? ? ? ? ? ? ? ? ? ? ?
Campbell et al. (2013) ? ? ? req./post Y ? Y ? TMT 400 ? ?
Capobianco et al. (2009) ? ? ? class ? ? Y ? ? ? ? ?
Chen et al. (2012) Y Y Y class Y Y Y Y MALLET 500 previous 10000
Cleary et al. (2008) Y Y Y ? Y Y Y Y ? 300 ? ?
Corley et al. (2012) Y Y ? class Y ? Y ? MALLET 50-200 ? 1000
Dasgupta et al. (2013) Y Y ? class/report Y ? ? ? TraceLab ? ? ?
De Lucia et al. (2011) Y Y ? class/req. Y Y Y ? ? ? ? ?
de Boer and van Vliet (2008) ? ? ? req. N ? Y ? ? 5 ? ?
De Lucia et al. (2004) Y ? ? ? Y ? Y ? own ? ? ?
De Lucia et al. (2006) ? ? ? ? ? N ? ? own ? ? ?
De Lucia et al. (2007) Y N N ? Y ? Y Y own ? ? ?
Dit et al. (2008) ? ? ? bug report Y ? Y ? ? 300 ? ?
Dit et al. (2013a) Y ? ? class/req. Y Y Y ? TraceLab ? vary ?
Eddy et al. (2013) ? ? ? class Y ? Y ? ? ? ? ?
Eyal-Salman et al. (2013) Y Y ? class/req. Y Y ? ? ? ? ? ?
Gall et al. (2008) Y Y ? class ? ? ? ? own ? ? ?
Gethers and Poshyvanyk (2010) Y Y ? class Y ? ? ? lda-r 75, 125, 225 vary ?
Gethers et al. (2011b) Y Y ? class ? ? Y ? lda-r ? ? ?
Gethers et al. (2011d) Y ? ? class Y Y Y Y lda-r ? vary ?
Gethers et al. (2012) Y Y ? method/report Y Y ? Y ? ? ? ?
Gethers et al. (2011a) Y Y ? method/report ? ? ? ? ? ? ? ?
Grant et al. (2008) Y Y Y method ? ? ? Y own 10 ? ?
Grant and Cordy (2009) Y N Y method ? ? ? Y ? ? ? ?
Grant and Cordy (2010) Y N ? method Y ? ? ? GibbsLDA 50-300 vary ?
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Grant et al. (2011b) Y Y Y class/method ? ? ? ? Multiple 100 ? ?
Grant et al. (2011a) ? ? Y WSDL Y ? ? ? ? 100 ? ?
Han et al. (2012) ? ? ? report Y ? Y ? TMT 10-70 manual ?
Hayes et al. (2006) ? ? ? ? ? Y Y ? own 10-100 vary ?
Hindle et al. (2009) ? ? ? commit msg ? ? Y Y lda-c 20 vary ?
Hindle et al. (2010) ? ? ? commit msg ? ? ? ? ? ? ? ?
Hindle et al. (2011) ? ? ? log ? ? ? Y ? 20 previous ?
Hindle et al. (2012c) ? ? ? req. Y Y Y ? ? 5-250 vary ?
Hu and Wong (2013) ? Y ? class/log ? ? ? ? ? 20 previous ?
Iacob and Harrison (2013) ? ? ? review ? ? ? ? ? 5 ? ?
Islam et al. (2012b) ? ? ? class/req. ? ? ? ? ? 300 ? ?
Jiang et al. (2008) ? ? ? ? ? ? ? ? own ? ? ?
Kagdi et al. (2010) Y Y ? method ? ? ? ? ? ? ? ?
Kagdi et al. (2012a) Y Y ? class Y Y Y ? ? ? ? ?
Kaushik et al. (2011) Y Y ? class Y Y Y ? ? 50-500 vary ?
Kaushik and Tahvildari (2012) ? ? Y report Y Y Y ? Gensim 400-550 vary ?
Kawaguchi et al. (2006) Y N N system ? ? ? Y own ? ? ?
Kouters et al. (2012) ? ? ? log ? ? ? ? ? ? ? ?
Kuhn et al. (2005) Y Y ? class/method Y Y Y ? ? 200-500 ? ?
Kuhn et al. (2007) Y Y ? class Y Y Y ? own 15 ? ?
Kuhn et al. (2008) ? ? ? class ? ? ? ? own ? ? ?
Kuhn et al. (2010) Y Y Y class ? ? ? ? own 50 ? ?
Lin et al. (2006) N Y N class ? Y Y ? own ? ? ?
Linstead et al. (2007b) ? ? ? class Y ? Y ? own 100 vary 3000
Linstead et al. (2007a) ? ? ? ? Y ? Y ? TMT 100 vary 3000
Linstead et al. (2008b) ? ? ? ? Y ? Y ? ? 100 vary 3000
Linstead et al. (2008c) ? ? ? ? Y ? Y ? ? 100 vary 3000
Linstead et al. (2008a) Y ? ? class Y ? Y ? ? 100 vary ?
Linstead and Baldi (2009) ? ? ? bug report Y ? Y ? ? 100 vary 3500
Linstead et al. (2009) ? ? ? ? ? ? ? ? ? ? ? ?
Liu et al. (2009) Y Y ? method Y ? Y ? GibbsLDA 100 ? 1000
Lohar et al. (2013) ? ? ? class/report/req. Y Y Y ? ? ? ? ?
Lormans and Van Deursen (2006) ? ? ? ? ? Y Y ? TMG ? ? ?
Lormans et al. (2006) ? ? ? ? ? ? ? ? own ? ? ?
Lormans (2007) ? ? ? ? ? ? ? ? own ? ? ?
De Lucia et al. (2012) Y Y ? class Y Y Y Y ? ? vary ?
De Lucia et al. (2014) Y Y ? class Y Y Y ? ? ? previous ?
Lukins et al. (2008) Y Y Y method Y Y Y ? GibbsLDA 100 ? ?
Lukins et al. (2010) Y Y ? method N N N ? GibbsLDA 100 vary ?
Maletic and Valluri (1999) Y Y Y class/method ? ? ? ? ? 250 vary ?

continued on next page
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Maletic and Marcus (2001) Y Y Y class/method ? ? ? ? ? 350 ? ?
Marcus and Maletic (2001) Y Y Y class/method ? ? ? ? own 350 ? ?
Marcus and Maletic (2003) Y Y Y class Y ? ? ? ? ? ? ?
Marcus et al. (2004) Y Y N ? Y ? ? ? ? ? ? ?
Marcus (2004) Y Y ? class/method Y ? ? ? ? ? ? ?
Marcus et al. (2005) Y Y N ? ? ? ? ? ? ? ? ?
Marcus et al. (2008) Y Y N method ? ? ? ? ? ? ? ?
Maskeri et al. (2008) Y Y ? class Y Y Y ? own 30 ? ?
McMillan et al. (2009) Y ? ? method Y Y Y ? own 25-75 ? ?
Misra et al. (2012) Y Y ? class Y Y Y ? ? 30 ratio ?
Moritz et al. (2013) ? ? ? method ? ? ? ? ? ? ? ?
Naguib et al. (2013) ? ? ? report Y ? Y ? MALLET ? ? ?
Neuhaus and Zimmermann (2010) ? ? ? report N Y Y ? ? 40 ? ?
Nguyen et al. (2011b) Y Y Y class Y ? Y ? ? 5 ? 50
Nguyen et al. (2011a) Y Y ? class/report Y Y Y Y own 1-1000 vary ?
Nguyen et al. (2012) ? ? ? report ? Y Y ? ? 20-400 vary ?
Nie and Zhang (2012) Y Y ? class ? Y Y ? ? ? vary ?
Niu et al. (2012) Y Y ? class ? ? ? ? ? ? ? ?
Oliveto et al. (2010) ? ? ? ? ? Y Y Y ? 250 vary ?
Oliveto et al. (2011) ? ? ? class/method ? ? ? ? ? ? ? ?
Ossher et al. (2009) ? ? ? ? ? ? ? ? ? ? ? ?
Panichella et al. (2013) ? ? ? class ? ? ? ? ? 10-500 vary 500
Poshyvanyk et al. (2006) Y Y ? method ? ? ? ? ? ? ? ?
Poshyvanyk and Marcus (2007) Y Y N method Y N N N ? ? ? ?
Poshyvanyk et al. (2007) Y Y N method Y N N N ? 500 ? ?
Poshyvanyk and Grechanik (2009) ? ? ? ? ? ? ? ? ? ? ? ?
Poshyvanyk et al. (2013) Y Y ? class/method Y Y Y ? ? ? ? ?
Qusef et al. (2013) Y Y ? class ? ? ? ? lda-r ? ? ?
Revelle and Poshyvanyk (2009) Y ? ? method ? ? ? ? ? ? ? ?
Revelle et al. (2010) Y Y Y method Y Y ? ? ? ? ? ?
Saha et al. (2013) Y Y Y class/report Y Y Y ? Indri ? ? ?
Savage et al. (2010) Y Y ? class Y Y Y ? JGibbLDA input ? input
Shang et al. (2013) ? ? ? log ? ? ? ? MALLET 5 ? ?
Sharafl et al. (2012) Y Y ? class Y Y Y ? MALLET 2 ? ?
Thomas et al. (2010) Y Y ? class Y Y Y ? MALLET 45 previous ?
Thomas et al. (2013) Y Y ? class/report Y Y Y ? MALLET 32-256 vary max
Tian et al. (2009) Y Y ? system Y ? Y ? GibbsLDA 40 vary ?
Ujhazi et al. (2010) Y Y N method Y Y Y ? ? ? ? ?
Van der Spek et al. (2008) Y Y N method Y N Y ? SVDLIBC input vary ?
Wang et al. (2011) Y Y ? method Y Y Y ? ? 50-500 vary ?
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Wu et al. (2008) ? ? ? log Y Y Y ? JAMA ? ? ?
Xia et al. (2013) ? ? ? report ? Y Y ? JGibbLDA 5% of ratio 500

unique
terms

Xie et al. (2013) Y ? ? class Y Y Y ? JGibbLDA ? max 2000
likelihood

Xue et al. (2012) Y Y Y class Y Y Y ? ? ? ratio ?
Zawawy et al. (2010) ? ? ? log ? Y Y ? ? ? ? ?
Zhou et al. (2012) Y ? ? class/report Y Y Y ? JGibbLDA 100-500 ? ?
Medini (2011) ? ? ? log ? ? ? ? ? ? ? ?
Zou and Hou (2014) ? ? ? ? ? ? ? ? ? ? ? ?
Limsettho et al. (2014) ? ? ? report Y Y Y ? ? 25-600 ? ?
Grant and Cordy (2014) ? ? ? ? ? ? ? ? GibbsLDA ? ratio ?
Yu (2012) ? ? ? report Y Y Y ? ? 200 previous 100000
Thomas et al. (2014) Y Y Y class Y Y Y ? MALLET 21-48 ratio 200
Grant et al. (2012) ? ? ? method ? ? ? ? ? 25-650 vary ?
Bavota et al. (2014) Y Y Y method Y Y Y ? lda-r 75 previous ?
Alhindawi et al. (2013b) ? ? ? class/req. Y Y Y Y ? ? ? ?
Parizy et al. (2014) Y Y ? method Y Y Y Y ? 50 ? ?
Islam et al. (2012a) Y Y ? class/req. Y ? Y ? ? 100 ? ?
Le et al. (2013) Y Y Y method/report Y Y ? ? ? ? ? ?
Misra and Das (2013) ? ? ? req. ? Y Y Y ? ? ? ?
Asadi et al. (2010b) Y Y ? method/log Y Y Y Y ? 50 ? ?
Dit et al. (2013b) Y ? ? method/req. Y Y ? ? ? 300 previous ?
Tairas and Gray (2009) Y N ? class ? N N ? MATLAB ? previous ?
Lormans et al. (2008) ? ? ? test/req. ? Y ? ? ? 40% ? ?
Ali et al. (2014) Y Y ? class/req. Y Y Y Y MALLET 2-100 vary ?
Kagdi et al. (2012b) Y Y ? method ? ? Y ? ? 300 ? ?
Bavota et al. (2012) ? ? ? method ? ? ? ? ? ? ? ?
Raja (2012) ? ? ? report ? Y Y ? ? ? ? ?
Barua et al. (2012) ? ? ? discussion ? Y Y Y MALLET 40 vary 500
Hindle et al. (2014) ? Y ? req. Y Y Y ? ? 10-250 vary 1000
Hindle et al. (2012a) ? ? ? log ? N Y ? ? 20 ? ?
Pagano and Maalej (2013) ? ? ? blogs ? Y Y ? ? 50 vary ?
Biggers et al. (2014) Y Y Y method Y Y Y ? MALLET 75-200 vary ?
Canfora et al. (2014) ? ? ? log ? Y Y ? lda-r 10 vary ?
Gorla et al. (2014) ? ? ? app description ? Y Y Y ? 30 ratio ?
Linares-Vásquez et al. (2013) ? ? ? discussion Y Y Y ? FastLDA 20 ? 1000
Allamanis and Sutton (2013) Y ? ? discussion Y Y ? ? MALLET 150 ? 2000
Bajaj et al. (2014) ? ? ? discussion ? Y Y ? ? ? ? ?
Brickey et al. (2012) ? ? ? survey ? ? ? ? ? ? ? ?
Pingclasai et al. (2013) ? ? ? report Y Y Y ? ? 10-150 vary ?
Galvis Carreño and Winbladh (2013) ? ? ? req./comment Y ? Y ? ? 25-150 manual ?
Kelly et al. (2011) Y N ? class Y ? ? ? MALLET 20 ? ?
Risi et al. (2010) Y Y ? class Y Y Y Y ? ? ? ?
Asadi et al. (2010a) Y Y ? method/log Y Y Y Y ? 50 ? ?
Medini et al. (2012) ? Y ? method/log Y Y Y Y ? 50 previous ?
Binkley et al. (2014) Y Y ? class Y ? ? ? ? 5-300 vary ?
Yang et al. (2014) ? ? ? report Y Y Y ? TMT 30 ? ?
Somasundaram and Murphy (2012) ? ? ? report Y ? Y ? ? 20-270 ? ?

Percentage ‘Y’ 53 44 13 - 56 46 60 15 - - - -
Percentage ‘N’ 1 4 7 - 2 5 4 1 - - - -
Percentage ‘?’ 46 52 80 14 43 50 36 84 58 45 62 87
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