
IMPROVING THE PERFORMANCE OF DATABASE-CENTRIC

APPLICATIONS THROUGH PROGRAM ANALYSIS

by

TSE-HSUN CHEN

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

September 2016

Copyright © Tse-Hsun Chen, 2016

Abstract

MODERN software applications are becoming more dependent on database

management systems (DBMSs). DBMSs are usually used as black

boxes by software developers. For example, Object-Relational Map-

ping (ORM) is one of the most popular database abstraction approaches that devel-

opers use nowadays. Using ORM, objects in Object-Oriented languages are mapped

to records in the database, and object manipulations are automatically translated

to SQL queries. As a result of such conceptual abstraction, developers do not need

deep knowledge of databases; however, all too often this abstraction leads to in-

efficient and incorrect database access code. Thus, this thesis proposes a series of

approaches to improve the performance of database-centric software applications

that are implemented using ORM. Our approaches focus on troubleshooting and

detecting inefficient (i.e., performance problems) database accesses in the source

code, and we rank the detected problems based on their severity. We first con-

duct an empirical study on the maintenance of ORM code in both open source and

industrial applications. We find that ORM performance-related configurations are

i

rarely tuned in practice, and there is a need for tools that can help improve/tune

the performance of ORM-based applications. Thus, we propose approaches along

two dimensions to help developers improve the performance of ORM-based appli-

cations: 1) helping developers write more performant ORM code; and 2) helping

developers configure ORM configurations.

To provide tooling support to developers, we first propose static analysis ap-

proaches to detect performance anti-patterns in the source code. We automatically

rank the detected anti-pattern instances according to their performance impacts.

Our study finds that by resolving the detected anti-patterns, the application per-

formance can be improved by 34% on average. We then discuss our experience

and lessons learned when integrating our anti-pattern detection tool into industrial

practice. We hope our experience can help improve the industrial adoption of future

research tools. However, as static analysis approaches are prone to false positives

and lack runtime information, we also propose dynamic analysis approaches to fur-

ther help developers improve the performance of their database access code. We

propose automated approaches to detect redundant data access anti-patterns in the

database access code, and our study finds that resolving such redundant data access

anti-patterns can improve application performance by an average of 17%. Finally,

we propose an automated approach to tune performance-related ORM configura-

tions using both static and dynamic analysis. Our study shows that our approach

can help improve application throughput by 27–138%.

Through our case studies on real-world applications, we show that all of our

proposed approaches can provide valuable support to developers and help improve

application performance significantly.

ii

Acknowledgments

First of all, I would like to thank my supervisor Dr. Ahmed E. Hassan for his contin-

uous guidance and support throughout my graduate study. You are the best mentor

and supervisor that one can ask for. I am extremely lucky that I have the chance to

work under your supervision. Thank you very much for encouraging me to pursue

the research topics that I love. Your great guidance has helped me grow not only as

a researcher, but also a thinker. Your advice has become my mottos and is priceless

to my future career.

A sincere appreciation to my supervisory and examination committee members,

Dr. Patrick Martin, Dr. Juergen Dingel, Dr. Hossam Hassanein, and Dr. Mark

Grechanik for their continued critique and guidance. Many thanks to my examiners

for their valuable and insightful feedback on my work.

I am very honored to have the chance to work and collaborate with the brightest

researchers during my Ph.D. career. I would like to thank all of my labmates and

collaborators, Dr. Weiyi Shang, Dr. Zhen Mining Jiang, Dr. Meiyappan Nagappan,

Heng Li, Dr. Emad Shihab, Dr. Stephen Thomas, Dr. Hadi Hemmati, and Dr.

iii

Michael Godfrey for all the fruitful discussions and collaborations.

I would like to thank BlackBerry and especially the members of the Performance

Engineering team. I cloud not find my thesis topic without the industrial environ-

ment and thoughtful feedback provided by the BlackBerry team. I would like to

thank Mohamed Nasser and Parminder Flora for their continuous support through-

out my Ph.D. career.

A special thanks to my family, especially my father, mother, and brother. Thank

you for all the sacrifices that you have made for me during my study. Your precious

and invaluable love have been my greatest support in my life. At the end, I would

like to express my greatest appreciation to my beloved wife Jinqiu Yang. Jinqiu,

thank you very much for your understanding and continuous support. I dedicate

this thesis to you.

iv

Dedication

To my parents, my family, and my special lady, Jinqiu Yang.

v

Related Publications

In all chapters and related publications of the thesis, my contributions are: draft-

ing the initial research idea; researching background knowledge and related work;

implementing the tools; conducting experiments; and writing and polishing the

writing. My co-authors supported me in refining the initial ideas, pointing me to

missing related work, providing feedback on earlier drafts, and polishing the writ-

ing.

Earlier versions of the work in the thesis were published as listed below:

1. Improving the Quality of Large-Scale Database-Centric Software Systems by An-

alyzing Database Access Code (Chapter 1)

Tse-Hsun Chen, 31st International Conference on Data Engineering (ICDE),

PhD Symposium, 2015. Seoul, Korea. Pages 245–249.

2. An Empirical Study on the Practice of Maintaining Object-Relational Mapping

Code in Java Systems (Chapter 4)

Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W. God-

frey, Mohamed Nasser, and Parminder Flora, 13th International Conference on

vi

Mining Software Repositories (MSR), 2016. Austin, Texas. Pages 165–176.

3. Detecting Performance Anti-patterns for Applications Developed using Object-

relational Mapping (Chapter 5)

Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora, 36th International Conference on Software En-

gineering (ICSE), 2014. Hyderabad, India. Pages 1001–1012.

4. Detecting Problems in Database Access Code of Large Scale Systems - An Indus-

trial Experience Report (Chapter 6)

Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Par-

minder Flora, 38th International Conference on Software Engineering, Soft-

ware Engineering in Practice Track (ICSE-SEIP), 2016. Austin, Texas. Pages

71–80.

5. Finding and Evaluating the Performance Impact of Redundant Data Access for

Applications that are Developed Using Object-Relational Mapping Frameworks

(Chapter 7)

Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora, IEEE Transactions on Software Engineering (TSE),

2016. In Press.

6. CacheOptimizer: Helping Developers Configure Caching Frameworks for Hibernate-

based Database-centric Web Applications (Chapter 8)

Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Par-

minder Flora, 24th ACM SIGSOFT International Symposium on the Founda-

tions of Software Engineering (FSE), 2016. Seattle, WA. Accepted.

vii

Table of Contents

Abstract i

Acknowledgments iii

Dedication v

Related Publications vi

List of Tables xi

List of Figures xiii

Chapter 1: Introduction . 1
1.1 Thesis Statement . 2
1.2 Thesis Overview . 3
1.3 Thesis Contributions . 8

Chapter 2: Literature Review . 9
2.1 Paper Selection Process . 11
2.2 Program Analysis . 11
2.3 Code Transformation . 15
2.4 Domain specific languages and APIs 17
2.5 Chapter Summary . 17

Chapter 3: Background about Object-Relational Mapping 18
3.1 Background on ORM Frameworks . 19
3.2 Translating Objects to SQL Queries 19
3.3 Caching . 22
3.4 Chapter Summary . 25

Chapter 4: Maintenance Activities of ORM Code 26
4.1 Introduction . 27

viii

4.2 The Main Contributions of this Chapter 29
4.3 Related Work . 30
4.4 Preliminary Study . 32
4.5 Case Study Results . 34
4.6 Highlights and Implications of our findings 52
4.7 Threats to Validity . 54
4.8 Chapter Summary . 56

Chapter 5: Statically Detecting ORM Performance Anti-patterns 58
5.1 Introduction . 59
5.2 The Main Contributions of this Chapter 60
5.3 Motivating Examples . 62
5.4 Our Framework . 64
5.5 Case Study . 72
5.6 Discussion . 77
5.7 Threats to Validity . 79
5.8 Chapter Summary . 81

Chapter 6: Adopting Anti-pattern Detection Framework 83
6.1 Introduction . 84
6.2 The Main Contributions of this Chapter 86
6.3 Related Work . 86
6.4 Background . 87
6.5 Challenges and Lessons Learned . 89
6.6 Database Access Anti-Patterns . 100
6.7 Chapter Summary . 112

Chapter 7: Dynamically Detecting Redundant Data 114
7.1 Introduction . 115
7.2 The Main Contributions of this Chapter 118
7.3 Related Work . 118
7.4 Our Approach for Detecting Redundant Data Anti-patterns 119
7.5 Experimental Setup . 124
7.6 Evaluation of Our Approach . 126
7.7 A Survey on the Redundant Data Anti-patterns in Other ORM Frame-

works . 141
7.8 Chapter Summary . 144

Chapter 8: Automated ORM Cache Configuration Tuning 145
8.1 Introduction . 146
8.2 The Main Contributions of this Chapter 148

ix

8.3 Related Work and Background . 149
8.4 CacheOptimizer . 151
8.5 Evaluation . 163
8.6 Threats to Validity . 174
8.7 Chapter Summary . 176

Chapter 9: Conclusion and Future Work 178
9.1 Thesis Contributions . 179
9.2 Future Research Directions . 183

x

List of Tables

2.1 Name of the conferences as starting venues for the literature review. . 12
2.2 A list of popular static anti-pattern detection tools. 13

3.1 Pros and cons of object cache. 24
3.2 Pros and cons of query cache. 24

4.1 Statistics of the studied applications in the latest version. EA is not
shown in detail due to NDA. 33

4.2 Medians (Med., computed across all versions) and effect sizes (Eff.,
median across all versions) of fan-in of ORM and non-ORM files. All
differences are statistically significant. We only show the effect sizes
for EA due to NDA. 40

4.3 Medians (Med., computed across all versions) and effect sizes (Eff.,
averaged across all versions) of the complexity of ORM code changes.
All differences are statistically significant. We only show the effect
sizes for EA due to NDA. 40

4.4 Number of ORM files in the top 100 files with the largest degree of
fan-in (averaged across versions). 41

4.5 Percentage of files that contain each type of ORM code in the top 100
high fan-in files. 41

4.6 Total code churn and ORM-related code churn in the studied appli-
cations. 44

4.7 Median churn percentage of each type of ORM code across all versions. 47
4.8 Manually derived categories for commits. 48

5.1 Statistics of the studied applications and number of detected anti-
pattern instances. 73

5.2 Performance assessment result for one-by-one processing. Tests with
p-value < 0.05 have statistically significant performance improve-
ment (marked in bold). Numbers in the parentheses are the percent-
age reduction in response time. 74

xi

5.3 Performance assessment result for different scales of data sizes. We
do not show the effect size for the tests where the performance im-
provements are not statistically significant (i.e., p-value >= 0.05).
. 76

7.1 Statistics of the studied applications. 124
7.2 Prevalence of the discovered redundant data anti-patterns in each

test case. The detail of EA is not shown due to NDA. 127
7.3 Overview of the redundant data anti-patterns that we discovered in

our exercised workloads. Trans. column shows where the redundant
data anti-pattern is discovered (i.e., within a transaction or across
transactions). 128

7.4 Total number of SQLs and the number of duplicated selects in each
test case. 133

7.5 Performance impact study by resolving the redundant data anti-patterns
in each test case. Response time is measured in seconds at the client
side. We mark the results in bold if resolving the redundant data
anti-patterns has a statistically significant improvement. For response
time differences, large/medium/small/trivial effect sizes are marked
with L, M, S, and T, respectively. 136

7.6 Existence of the studied redundant data anti-patterns in the surveyed
ORM frameworks (under default configurations). 142

8.1 Statistics of the studied applications. 164
8.2 Performance improvement (throughput) against NoCache after ap-

plying different cache configurations. 166
8.3 Total number of possible places to add cache in the code, and the

number of location that are enabled by CacheOptimizer and that exist
in the DefaultCache. 167

8.4 Comparing the gain of the application under three different configu-
rations: CacheOptimizer, CacheAll, and DefaultCache 172

xii

List of Figures

1.1 Focus of the thesis. 3

3.1 An example flow of how JPA translates object manipulation to SQL.
Although the syntax and configurations may be different for other
ORM frameworks, the fundamental idea is the same: developers
need to specify the mapping between objects and database tables,
the relationships between objects, and the data retrieval configura-
tion (e.g., eager v.s. lazy). 20

3.2 An example of simplified ORM code, ORM cache configuration code,
and ORM cache mechanism. The numbers and the arrows indicate
the flow for different workloads. The grey User objects in the cache
layer means the objects are invalidated in the cache layer. 23

4.1 Evolution of the total number of database table mappings, ORM
query calls, and ORM configurations. The values on the y-axis are
not shown for EA due to NDA. 35

4.2 Distribution of the percentage of code churn for different types of
ORM code changes across all the studied versions. We omit the scale
for EA due to NDA. 43

4.3 Distributions of the commits for ORM and non-ORM code in each
categories. 49

5.1 A motivating example. (1) shows the original class files and the ORM
configurations; and (2) shows the modified Company.java, the one-
by-one processing application code, and the resulting SQLs. 61

5.2 Overview of our static ORM performance anti-pattern detection and
prioritization framework. 63

6.1 An example detection report for the nested transaction anti-pattern. . 92

7.1 An overview of our approach for detecting and evaluating redundant
data anti-patterns. 120

xiii

7.2 An example of the exercised database access methods and generated
SQL queries during a transaction. 122

8.1 A working example of CacheOptimizer. The + sign in front of the
@Cachable line indicates that the caching configuration is added by
CacheOptimizer. 152

8.2 Overview of CacheOptimizer. 153
8.3 An example of modeling potential cache benefits using a coloured

Petri net. A red token represents a read to a specific database entity
object (e.g., findUserById(1)), and a blue token represents write to a
specific database entity object (updateUserById(1)). 159

8.4 Number of handled requests overtime (cumulative). 167

xiv

CHAPTER 1

Introduction

An earlier version of this chapter is published at the 31st International Conference on Data
Engineering (ICDE), PhD Symposium, 2015. Seoul, Korea. Pages 245–249. (Chen, 2015b)

MODERN software applications are nowadays more dependent on the

underlying database management system (DBMS) for data integrity

and management. Developers often store all user data in DBMSs to

provide better scalability and maintainability. Thus, DBMSs are one of the core com-

ponents in these database-centric applications. Although DBMSs are usually fairly

optimized in terms of performance and data management, how developers con-

trol and communicate with the DBMS has a significant impact on the performance

1

CHAPTER 1. INTRODUCTION 2

of database-centric software applications. Since managing the data consistency be-

tween the source code and the DBMS is a difficult task, especially for complex large-

scale applications, several frameworks have been proposed to ease and abstract the

complexity of data access. For example, developers often employ Object-Relational

Mapping (ORM) frameworks to provide a conceptual abstraction between objects in

Object-Oriented Programming Languages and records in the underlying DBMS. Us-

ing ORM frameworks, changes in the object states are propagated automatically to

the corresponding records in the DBMS. These abstraction frameworks significantly

reduce the amount of code that developers need to write (Barry and Stanienda,

1998; Leavitt, 2000); however, due to the black box nature of such abstraction lay-

ers, developers may not fully understand the behaviour of the framework-generated

SQL queries, which may result in performance problems. In short, despite the pro-

moted benefits of these frameworks, using them incorrectly can lead to poor appli-

cation quality.

1.1 Thesis Statement

Existing approaches primarily improve application performance from a database

perspective, e.g., SQL query optimization. However, all too often, the root cause of

such problematic queries is having inefficient database access code. Recent studies

(e.g., Chavan et al. (2011b); Cheung et al. (2013a, 2014)) propose various frame-

works on top of database access abstraction layers (e.g., ORM) to automatically

transform and optimize the framework-generated SQL queries. However, a poten-

tial problem with these approaches is that the database-centric application may

experience higher overheads and become harder to debug due to the extra layer

CHAPTER 1. INTRODUCTION 3

Source
Code

Source
CodeDB

access
code

Source Code

DB
access

code

DB
access

code

ORM
ORM generated

SQL queries Database

Focus of the thesis Focus of prior work in
the database community

Figure 1.1: Focus of the thesis.

of complexity. We, on the other hand, believe that by identifying problems or pos-

sible places for improvement in the database access code, developers can allocate

performance improvement resources more effectively and directly. Therefore, we

propose:

The key to improving the performance of database-centric applications is not only

by improving the backend database management system, but also by improving

the database access code, which is rarely considered in prior studies.

In this thesis, we consider performance problems as potential places in the code

that need performance optimization (e.g., increase throughput or decrease response

time), since not all performance problems have a non-trivial impact in practice.

1.2 Thesis Overview

Figure 1.1 gives an overview of the focus of this thesis, and how it differs from prior

studies. We focus on ORM-based database access code, since ORM frameworks are

CHAPTER 1. INTRODUCTION 4

widely used in practice (e.g., more than 67% of Java developers use ORM (Zero-

turnAround, 2014)). We now give an overview of the work that is presented in this

thesis.

1.2.1 Chapter 2: Literature Review of Applying Program Analy-

sis to Improve Database Access Code

For our literature review, we focus on prior studies that attempt to improve or de-

tect problems in database access code. We characterize and compare the surveyed

literature along the following dimensions:

1. Program analysis: We report on prior studies that use static or dynamic anal-

ysis to detect problems in database access code;

2. Code transformation: We report on prior studies that improve database access

code by statically or dynamically transforming database access code;

3. Domain specific languages and APIs: We report on prior studies that propose

domain specific languages and APIs for improving database access code.

From our literature review, we find that there is lack of tooling support for detecting

performance problems in the database-access code. We also observe that most prior

studies do not provide an automated evaluation or prioritization of the detected

problems in the database access code, and most prior studies do not consider how

the queried data would be used in the application.

CHAPTER 1. INTRODUCTION 5

1.2.2 Chapter 3: Background

We provide a brief background of how developers use ORM frameworks to access

the DBMS. ORM frameworks abstract SQL queries as a set of API calls along with

associated configurations. We first provide a brief overview of different ORM frame-

works, then we discuss how ORM frameworks ease access of the DBMS.

1.2.3 Chapter 4: Maintenance Activities of ORM Code

Despite the advantages of using ORM frameworks, we observe several difficulties

in maintaining ORM code when cooperating with our industrial partner. After con-

ducting studies on other open source applications, we find that such difficulties

are common in other Java applications. In particular, we find that i) ORM can-

not completely encapsulate database accesses in objects or abstract the underlying

database technology, thus leading ORM code changes to be more scattered; ii) ORM

code changes are more frequent than regular code, but there is a lack of tools that

help developers verify the correctness of ORM code at compilation time; iii) we find

that changes to ORM code are more commonly due to performance or security rea-

sons; however, traditional static code analyzers need to be extended to capture the

peculiarities of ORM code in order to detect such problems. In short, we highlight

the hidden maintenance costs of using ORM frameworks, and provide some initial

insights about potential approaches to help maintain ORM code.

CHAPTER 1. INTRODUCTION 6

1.2.4 Chapter 5: Statically Detecting ORM Performance Anti-

patterns

We propose an automated framework to detect ORM performance anti-patterns in

the source code. Furthermore, as there could be hundreds or even thousands of

instances of anti-patterns, our framework is able to prioritize the detected anti-

patterns based on a statistically rigorous performance assessment of their impact.

We have successfully evaluated our framework on one open source application and

another large-scale industrial applications. Our evaluation demonstrates that our

framework can detect new and known real-world performance bugs and that fixing

the detected instances of performance anti-patterns can improve the application

response time by up to 69%.

1.2.5 Chapter 6: Adopting Anti-pattern Detection Framework in

Practice

We document our industrial experience over the past few years on detecting anti-

patterns in database access code, implementing an anti-pattern detection tool, and

integrating the tool into daily practice. We discuss the challenges that we encoun-

tered and the lessons that we learned during integrating our tool into practice.

Since most applications nowadays are leveraging frameworks, we also provide a

detailed discussion of five framework-specific database access anti-patterns that we

found. We hope to encourage further research efforts on framework-specific de-

tectors, instead of the current research focus on general programming language

anti-patterns and associated detectors.

CHAPTER 1. INTRODUCTION 7

1.2.6 Chapter 7: Dynamically Detecting Redundant Data Anti-

patterns

We propose an automated approach, which we implement as a Java framework, to

dynamically detect redundant data anti-patterns. We apply our framework on one

enterprise application and two open source applications. Our analysis finds that

redundant data anti-patterns exist in 87% of the exercised transactions. Due to the

large number of detected redundant data anti-patterns, we propose an automated

approach to assess the impact and prioritize the resolution efforts. Our performance

assessment result shows that by resolving the redundant data anti-patterns, the ap-

plication response time for the studied applications can be improved by an average

of 17%.

1.2.7 Chapter 8: Automated ORM Cache Configuration Tuning

We propose CacheOptimizer, a lightweight approach that helps developers opti-

mize the configuration of caching frameworks for web applications that are imple-

mented using Hibernate (one of the most popular ORM frameworks). CacheOpti-

mizer leverages readily-available web logs to create mappings between a workload

and database access requests. Given the mappings, CacheOptimizer discovers the

optimal cache configuration using coloured Petri nets, and automatically adds the

appropriate cache configurations to the application. We evaluate CacheOptimizer

on three open-source web applications. We find that i) CacheOptimizer improves

the throughput by 27–138%; and ii) after considering both the memory cost and

throughput improvement, CacheOptimizer still brings statistically significant gains

CHAPTER 1. INTRODUCTION 8

(with mostly large effect sizes) in comparison to the developers’ default cache con-

figuration and blindly enabling all possible caches.

1.3 Thesis Contributions

In this thesis, we demonstrate that, in order to improve the performance of database-

centric applications, it is important to help developers write better database access

code. In addition, we show that it is valuable to focus not only on the traditional

SQL queries, since developers nowadays usually leverage different frameworks to

access the database. In particular, our contributions are as follows:

1. We show that performance problems are more likely to occur in database

access code, but developers rarely tune performance-related configurations

for database accesses.

2. We propose an automated approach that finds the optimal performance con-

figuration for database-centric applications.

3. We demonstrate that many performance-related problems in the database ac-

cess code can be found prior to release using automated anti-pattern detec-

tors.

4. We provide an experience report on adopting our static analysis framework

into practice, and we hope our experience can assist others who wish to deploy

their research in practice.

CHAPTER 2

Literature Review of Applying Program Analysis to Improve

Database Access Code

9

CHAPTER 2. LITERATURE REVIEW 10

IN this thesis, we propose approaches to help developers improve database ac-

cess code, with a focus on ORM code. Most prior studies in the database

community usually focus on implementing frameworks that can either stat-

ically or dynamically transform the database access code into a more optimized

form (i.e., more efficient SQL queries). However, such approaches are difficult to

debug due to the added complexity. In addition, these frameworks may cause extra

overhead to the application, and the framework implementations are usually not

available to developers.

This thesis aims to improve the database access code from the perspective of

Software Engineering research, where we try to identify and rank problems (i.e.,

anti-patterns) in the code, and assist developers in fixing the problems. Thus, the

applications can be easier to maintain, and developers have full control of how they

want to resolve a problem.

For our literature review, we focus on prior studies that attempt to improve or

detect problems in database access code. Note that we exclude security-related

studies in our review, since this thesis mostly focuses on performance-related prob-

lems in database access code, and security problems are a different area of study.

We characterize and compare the surveyed literature along the following dimen-

sions:

• Program analysis: We report on studies that use static or dynamic analysis

to detect problems in database access code.

• Code transformation: We report on studies that improve database access

code by statically or dynamically transforming database access code.

CHAPTER 2. LITERATURE REVIEW 11

• Domain specific languages and APIs: We report on studies that propose

domain specific languages and APIs for improving database access code.

2.1 Paper Selection Process

There exists a large amount of prior work that focuses on improving the quality of

DBMS, but not as much work that attempts to improve the quality of database ac-

cess code. Since improving application qualities by analyzing database access code

is an interdisciplinary area of study that involves database and software engineering

research, we survey the papers in these two areas of computing. Below, we briefly

explain the paper selection process for our literature review.

Table 2.1 lists the venues that we surveyed. We consider the papers that are

published in the past 10 years (2005 – 2015). To improve the coverage of our

literature review, we also check the citations of each relevant paper. In total, we

surveyed 40 papers in the areas of database and software engineering.

2.2 Program Analysis

Table 2.2 shows a list of popular static anti-pattern detection tools. FindBugs (Hov-

emeyer and Pugh, 2004) is a widely-used open source static Java anti-pattern de-

tection tool. FindBugs scans Java binaries to detect general bugs, bad coding styles,

and some security problems. PMD (PMD, 2016) is a static source code analyzer

that detects potential problems in the code using pre-defined rules that are related

to general coding problems (e.g., empty code blocks and bad code design). Er-

ror Prone (Google, 2016) is a code analysis tool that is developed by Google. The

CHAPTER 2. LITERATURE REVIEW 12

Table 2.1: Name of the conferences as starting venues for the literature review.

Field Conference Name Abbreviation

SE International Conference on Automated Software Engineering ASE
SE International Conference on Fundamental Approaches to

FASE
the Construction and Analysis of Systems

SE International Conference on Performance Engineering ICPE
SE International Conference on Runtime Verification RV
SE International Conference on Software Engineering ICSE
SE International Conference on Software Maintenance and Evolution ICSME
SE International Conference on Tools and Algorithms for

TACAS
Software Engineering

SE International Symposium on Software Testing and Analysis ISSTA
SE International Symposium on the Foundations FSE

of Software Engineering
SE Static Analysis Symposium SAS
DB International Conference on Data Engineering ICDE
DB International Conference on Management of Data SIGMOD
DB International Conference on Very Large Data Bases VLDB

tool aims to give detection results during compilation, and can give suggested fixes.

Most of the bug patterns encoded by Error Prone are general problems that are

related to coding errors such as comparing arrays using “==”. Infer (Facebook,

2016) is a static anti-pattern detection tool built by Facebook. The tool focuses on

detecting problems in programming languages that are used for developing mo-

bile apps (e.g., Java and Obj-C). Coverity (Coverity, 2016) is a commercial static

anti-pattern detection tool, which looks for different kinds of bug patterns across

various programming languages. Finally, AppScan (IBM, 2016a) is a static anti-

pattern detection tool that is developed by IBM. The tool specializes in detecting

security bugs. Although the above-mentioned static anti-pattern detection tools are

widely used and are able to detect many kinds of bugs, none of them is focused on

detecting functional or non-functional (i.e., performance) bugs related to database

CHAPTER 2. LITERATURE REVIEW 13

Table 2.2: A list of popular static anti-pattern detection tools.

Tool Focused Input Language Open
bug types sourced

FindBugs (Hovemeyer and Pugh, 2004) General Binary Java Yes
Error Prone (Google, 2016) General Binary Java Yes
Infer (Facebook, 2016) General Binary Multiple Yes
PMD (PMD, 2016) General Source Multiple Yes
Coverity (Coverity, 2016) General Source Multiple No
AppScan (IBM, 2016a) Security Source Multiple No

access code.

In terms of prior research, Dasgupta et al. (2009) propose a static analysis frame-

work for database access code, and developers can use the framework to write de-

tectors themselves. However, their framework only supports ADO.NET, and does

not offer a list of pre-implemented patterns.

Finding 1. All surveyed state-of-the-art static anti-pattern detection tools are not

geared towards detecting problems in database access code.

Nijjar and Bultan (2011) extract formal mathematical models from the database

schema of Ruby on Rails applications, and look for errors in the models. In their

follow-up work, Nijjar and Bultan (2013) extract formal mathematical models from

the database schema, and develop heuristics to discover anti-patterns in the schema.

Their framework can then automatically propose solutions to correct the database

schema. Gould et al. (2004) propose a framework to validate SQL statically by

analyzing the Java query strings. Gligoric and Majumdar (2013) propose a model

checking approach to detect database concurrency issues in web applications, but

their approach only found two problems in 12 studied applications. Zhang et al.

CHAPTER 2. LITERATURE REVIEW 14

(2011) propose an approach that uses static analysis to discover violations of in-

tegrity constraints in database-centric applications based on four code anti-patterns.

Since ORM queries are not statically typed, Cook and Rai (2005) present an ap-

proach for representing ORM queries as statically typed objects to avoid runtime

errors.

There are some prior studies that aim to discover performance problems in

database access code using program analysis. Smith and Williams (2003) first

document the problem and possible solutions of a number of database-related per-

formance anti-patterns. They discuss a pattern called Empty Semi Trucks, which

occurs when a large number of excessive database query calls (e.g., select, insert,

update, or delete) are sent to the database for a given task. However, Smith and

Williams (2003) do not provide any detection algorithms for such problems. Hoek-

stra (2011) propose approaches to statically detect anti-patterns in database access

code; however, the author did not provide any evaluation of the impact for the de-

tected problems. A number of prior studies (Grechanik et al., 2013a,b; Jula et al.,

2008) focus on detecting or preventing database deadlocks using program analysis.

Pohjalainen and Taina (2008) propose an approach to analyze data usage in the

application code, in order to automatically configure ORM frameworks. However,

Pohjalainen and Taina (2008) do not provide the details of the algorithms nor do

they implement nor evaluate their approaches. In summary, prior studies usually

do not consider the efficiency of the database access calls (e.g., the performance of

the SQLs generated by the ORM framework).

CHAPTER 2. LITERATURE REVIEW 15

Chaudhuri et al. (2007), Tamayo et al. (2012), and Cao and Shasha (2013) pro-

pose approaches to link method calls to the corresponding generated SQLs. How-

ever, these approaches usually require developers to identify the problems them-

selves (i.e., similar to using profilers), instead of directly pinpointing developers to

the problems.

Finding 2. Prior studies usually do not provide an automated evaluation or prior-

itization of the detected problems in the database access code, and cannot directly

pinpoint developers to the root causes of the detected problems.

2.3 Code Transformation

Many prior studies in the database community use code transformation to improve

the performance of database access code. There are two main directions of research

on using code transformation to improve the quality of the database access code.

One direction is to transform source code or byte code to improve the performance

of SQL execution. Another direction is to transform and compile application code

directly to SQL queries or stored procedures. Below, we discuss the approaches that

are used by prior studies according to these two aforementioned directions.

Several prior studies improve the performance of database-centric applications

by altering how the SQL queries are executed. Common approaches include batch-

ing (Chavan et al., 2011a,b; Cheung et al., 2014; Cook and Wiedermann, 2011; Gu-

ravannavar and Sudarshan, 2008; Iu and Zwaenepoel, 2006; Ramachandra et al.,

2015), pre-fetching (Ibrahim and Cook, 2006; Manjhi et al., 2009; Ramachandra

and Sudarshan, 2012; Ramachandra et al., 2012), and asynchronous query execu-

tion (Chavan et al., 2011a,b; Ramachandra et al., 2015). These approaches improve

CHAPTER 2. LITERATURE REVIEW 16

the performance of the database-centric application by reducing the round-trip time

(RTT) between the application and the DBMS. However, these approaches do not

consider how the queried (i.e., retrieved) data would be used in the application,

since some of the queried data may not be needed in the code.

Cheung et al. (2012a,b, 2013b) propose an approach to separate the application

and the database logic automatically, and transform the database logic to stored

procedure calls. Stored procedure calls have better performance, since they are ex-

ecuted directly on the DBMS. Similarly, Wiedermann et al. (Wiedermann and Cook,

2007; Wiedermann et al., 2008) propose an approach that uses static analysis to first

understand how data will be used in the application code, and then transform the

code logic to SQL. On the other hand, Cheung et al. (2013c) propose approaches

to automatically transform Java code to SQL, and monitor the SQLs dynamically

for load balancing. Cheung et al. (2013a) propose an approach to automatically

synthesize SQL queries from Java code, based on pre- and post-conditions in Java

methods. Cooper (2009) proposes an approach to automatically transform code

written in functional programming languages to an equivalent SQL query. A poten-

tial problem of the above-mentioned approaches is that they add extra complexity

to the application, which increases application maintenance difficulties. In addition,

these approaches are rarely used in an industrial setting, since they do not involve

domain experts (i.e., developers). Instead, these approaches remain as another

layer of black boxes between the application code and the DBMS.

Finding 3. Many database access code transformation approaches only optimize

database queries, and do not consider how the queried (i.e., retrieved) data would

be used in the application code.

CHAPTER 2. LITERATURE REVIEW 17

2.4 Domain specific languages and APIs

A number of prior studies propose domain-specific languages or APIs for database

access code. Ackermann et al. (2015) propose a domain-specific query language

for parallel execution of query code. Grust et al. (2009) propose a domain-specific

language that can compile operations such as list iterations into SQL queries. Bal-

topoulos et al. (2011) propose a tool for SQL databases to allow transactions to be

written in a functional language, and to be verified using an SMT-based refinement-

type checker. Iu et al. (2010) propose a set of special Java APIs, which can be

translated into complex SQL queries using bytecode transformation.

2.5 Chapter Summary

In this chapter, we survey related work that focuses on improving database access

code. We find that existing static anti-pattern detection tools are not geared towards

detecting problems in database access code. In addition, most prior studies do not

prioritize the detected problems, and cannot pinpoint developers to the root cause.

Finally, most prior studies focus on helping developers improve the performance of

the SQL queries, but these studies do not consider how the queries data will be used

in the application. In Chapter 5 and 6, we propose a static performance anti-pattern

detection tool for database access code. In Chapter 7, we propose a dynamic anti-

pattern detection approach that helps developers reduce redundant data accesses,

by knowing what data is actually needed in the application. Finally, our proposed

approaches also automatically rank the detected anti-patterns according to their

performance impact.

CHAPTER 3

Background about Object-Relational Mapping

In this chapter, we provide some background knowledge of the ORM-based database access
code, before introducing our research. Unlike SQL queries, which are the standard database
access code for relational databases, ORM frameworks abstract SQL queries as a set of API
calls and configurations. We first provide a brief overview of different ORM frameworks,
then we discuss how database-centric applications access the DBMS using ORM frame-
works. Our example is shown using the Java ORM standard, Java Persistence API (JPA),
but the underlying concepts are common for other ORM frameworks.

18

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 19

3.1 Background on ORM Frameworks

ORM frameworks have become very popular among developers due to

their convenience (Johnson, 2005; Leavitt, 2000). ORM frameworks

support most modern programming languages, such as Java, C#, Ruby,

and Python. Java, in particular, has a unified persistent API for ORM, called Java

Persistent API (JPA). JPA has become an industry standard and is used in many

open source and commercial applications (Sutherland and Clarke, 2016). Using

JPA, users can switch between different ORM providers with minimal modifications.

There are many implementations of JPA, such as Hibernate (JBoss, 2016), Open-

JPA (Apache, 2016), EclipseLink (Eclipse, 2016c), and parts of IBM WebSphere (IBM,

2016b). These JPA implementations all follow the Java standard, and share similar

concepts and design. However, they may experience some implementation specific

differences (e.g., varying performance (ObjectDB, 2016a)).

3.2 Translating Objects to SQL Queries

ORM frameworks are responsible for mapping and translating database entity ob-

jects to/from database records. Figure 3.1 illustrates such process in JPA. Although

the implementation details and syntax may be different for other ORM frameworks,

the fundamental idea is the same.

JPA allows developers to configure a class as a database entity class using anno-

tations. There are three categories of annotations:

• Entities and Columns: A database entity class (marked as @Entity in the

source code) is mapped to a database table (marked as @Table in the source

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 20

@Entity
@Table (name = ”user”)
@DynamicUpdate
public class User {

@Id
@Column(name=”user_id”)
private long userId ;

@Column(name=”user_name”)
private String userName;

... other instance variables

@ManyToOne(FetchType.EAGER)
@JoinColumn(name=”group_id”)
private Group group;

void setName(String name){
this.userName = name;

}
... other getter and setter functions

}

User.java

Main.java
...
user.setName(“Peter”)
commit();

ORM pre-generated SQL templates

select u.id, u.name, u.address, u.phone_number
 from User u where u.id=?;

Update set user name=?, address=?, phone_number=? Where id=?;

ORM

ORM generated SQL using SQL templates

Update set user name=?, address=?, phone_number=? Where id=?;

Figure 3.1: An example flow of how JPA translates object manipulation to SQL. Al-
though the syntax and configurations may be different for other ORM frameworks,
the fundamental idea is the same: developers need to specify the mapping be-
tween objects and database tables, the relationships between objects, and the data
retrieval configuration (e.g., eager v.s. lazy).

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 21

code). Each database entity object is mapped to a record in the table. For

example, the User class is mapped to the user table in Figure 3.1. @Column

maps the instance variable to the corresponding column in the table. For

example, the userName instance variable is mapped to the user name column.

• Relations: There are four different types of class relationships in JPA: One-

ToMany, OneToOne, ManyToOne, and ManyToMany. For example, there is

a @ManyToOne relationship between User and Group (i.e., each group can

have multiple users).

• Fetch Types: The fetch type for the associated objects can be either EAGER or

LAZY. EAGER means that the associated objects (e.g., User) will be retrieved

once the owner object (e.g., Group) is retrieved from the DBMS; LAZY means

that the associated objects (e.g., User) will be retrieved from the DBMS only

when the associated objects are needed (by the source code). Note that in

some ORM frameworks, such as ActiveRecord (the default ORM for Ruby on

Rails), the fetch type is set per each data retrieval, but other underlying prin-

cipals are the same. However, most ORM frameworks allow developers to

change the fetch type dynamically for different use cases (Eclipse, 2016d).

JPA generates and may cache SQL templates (depending on the implementa-

tion) for each database entity class. SQL templates are predefined strings, such as

”select u.id, u.name, u.address, u.phone number from User u where u.id=?;“. JPA

can generate complete SQL statements using the SQL templates by filling in the

variable values (e.g., user id). The cached templates can avoid re-generating query

templates to improve performance. These templates are used for retrieving or up-

dating an object in the DBMS at run-time. As shown in Figure 3.1 (Main.java), a

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 22

developer changes the user object in the code in order to update a user’s name in

the DBMS. JPA uses the generated update template to generate the SQL queries for

updating the user records. In this thesis, we focus on JPA due to its popularity, but

our proposed approaches should be applicable to other ORM frameworks.

3.3 Caching

To optimize the performance and to reduce the number of calls to the DBMS, JPA,

as well as most other ORM frameworks, uses a local memory cache (Keith and

Stafford, 2008). When a database entity object (e.g., a User object) is retrieved

from the DBMS, the object is first stored in the JPA cache. If the object is modified,

JPA will push the update to the DBMS at the end of the transaction; if the object

is not modified, the object will remain in cache until it is garbage collected or until

the transaction is completed. By reducing the number of requests to the DBMS, the

JPA cache reduces the overhead of network latency and the workload on database

servers. Such caching mechanism provides significant performance improvement to

applications that rely heavily on DBMSs.

Most caching frameworks act like an in-memory key-value store. When using

JPA, these caching frameworks would store the database entity objects (objects

that have corresponding records in the DBMS) in memory and assign each object a

unique ID (i.e., the primary key). There are two types of caches in JPA:

• Object cache. As shown in workflow 1 (Figure 3.2), if the requested user

object is not in the cache layer, the object will be fetched from the DBMS.

Then, the user object will be stored in the cache layer and can be accessed as

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 23

@Entity
@Cachable
@Table (name = ”user”)
public class User {
 @Id
 @Column
 (name=”user_id”)
 private long userId ;

 @Column(
 name=”user_name”)
 private String userName;

 ... other instance
variables

 ... setter and getter
 methods

}

User.java

User user =
findUserByID(1);

Main.java

ORM
Cache
Layer

Database

1 1 1 1

User(1)
111

updateUserByID(1);
2 2 2

User(1)
2

User[] users =
execute(“select *
from User”).cache()

3 3 3

User(1) 333

3

User, id = 1,
name = Peter
User, id = 2,
name = Jack

updateUserByID(2)
4 4 4 User(1) 4

User(2)

User(2)

Figure 3.2: An example of simplified ORM code, ORM cache configuration code,
and ORM cache mechanism. The numbers and the arrows indicate the flow for
different workloads. The grey User objects in the cache layer means the objects are
invalidated in the cache layer.

a key-value pair using its id (e.g., {id: 1, User obj}). If the object is updated,

the cached data would be evicted to prevent a stale read (Workflow 2).

To cache database entity objects, developers must add an annotation @Cachable

at the class declaration (as shown in User.java in Figure 3.2). Then, all database

entity object retrieved by ID (e.g., retrieved using findUserById()) would be

cached. These annotations configure the underlying caching frameworks.

• Query cache. The cache mechanism for query cache is slightly different from

object cache. For example, the cached data for a select all query on the user

table (Workflow 3) would look as follows:select * from User→ {id : 1, id : 2}

{id : 1, id : 2} → {id : 1,User obj}, {id : 2,User obj}


The cache layer stores the ids of the objects (i.e., id 1 and 2) that are retrieved

by the query, and uses the ids to find the cached objects (the corresponding

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 24

Table 3.1: Pros and cons of object cache.
Pros Cons

Lower cache miss cost Lower performance improvement if cache hit
Easier to determine where to add cache

Table 3.2: Pros and cons of query cache.
Pros Cons

Higher performance improvement if cache hit High cache miss cost
Hard to determine whether
cache should be added

User obj). Thus, the object cache must be enabled to use a query cache. When

a user object is updated (workflow 4), the query cache needs to retrieve the

updated object from the DBMS to prevent a stale read. Thus, if the queried

entity objects are frequently modified, using a query cache may not be bene-

ficial, and may even hinder performance (Ferreira, 2016).

To cache query results, developers must call a method like cache() before exe-

cuting the query (Main.java in Figure 3.2). Such method is used to configure

the underlying caching frameworks.

Table 3.1 and 3.2 summarize the pros and cos of object and query cache.

Adding caches incorrectly can introduce overhead to the application. Caching a

frequently modified object or query will cause the caching framework to constantly

evict and renew the cache, which not only cause cache renewal overhead but may

also result in executing extra SQL queries (Linwood and Minter, 2010). Therefore,

blindly adding caches without understanding the workload can cause performance

degradation (Smith, 1985).

CHAPTER 3. BACKGROUND ABOUT OBJECT-RELATIONAL MAPPING 25

3.4 Chapter Summary

In this chapter, we provide some background knowledge of the ORM-based database

access code. In this thesis, we focus on improving the performance of such database

access code due to the popularity of ORM frameworks. In the later chapters of the

thesis, we propose approaches to help developers detect problems in their ORM-

based database access code and automatically find optimal ORM cache configura-

tions.

CHAPTER 4

Maintenance Activities of ORM Code

Despite the advantages of using ORM frameworks, we observe several difficulties in main-
taining ORM code when cooperating with our industrial partner. After conducting studies
on other open source applications, we find that such difficulties are common in other appli-
cations. Our study finds that i) ORM cannot completely encapsulate database accesses in
objects or abstract the underlying database technology, thus may cause ORM code changes
more scattered; ii) ORM code changes are more frequent than regular code, but there is
a lack of tools that help developers verify ORM code at compilation time; iii) we find that
changes to ORM code are more commonly due to performance or security reasons; however,
traditional static code analyzers need to be extended to capture the peculiarities of ORM
code in order to detect such problems. Our study highlights the hidden maintenance costs
of using ORM frameworks and provides some initial insights about potential approaches to
help maintain ORM code.

An earlier version of this chapter is published at the 13th International Conference on
Mining Software Repositories (MSR), 2016. Austin, Texas. Pages 165–176. (Chen et al., 2016c)

26

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 27

4.1 Introduction

MANAGING data consistency between source code and database man-

agement systems (DBMSs) is a difficult task, especially for complex

large-scale applications. As more applications become heavily de-

pendent on DBMSs, it is important to abstract the database accesses from develop-

ers. Hence, developers nowadays commonly make use of Object-Relation Mapping

(ORM) frameworks to provide a conceptual abstraction between objects in Object-

Oriented Languages and data records in the underlying DBMS. Using ORM frame-

works, changes to object states are automatically propagated to the corresponding

database records. However, there may also be costs associated with maintaining

ORM code. Therefore, in this chapter, we aim to study the maintenance activities

that are associated with ORM code, and understand how to help developers main-

tain ORM code.

A recent survey (ZeroturnAround, 2014) shows that 67.5% of Java developers

use ORM frameworks (i.e., Hibernate) to access the database, instead of using Java

Database Connectivity (JDBC) or other frameworks. However, despite ORM’s pop-

ularity and simplicity, maintaining ORM code (i.e., code that makes use of ORM

frameworks) may be very different from maintaining regular code, since ORM code

abstracts the DBMS accesses. Prior studies (Curino et al., 2008a; Gobert et al.,

2013; Qiu et al., 2013) usually focus on the evolution and maintenance of database

schemas. However, the maintenance of database access code, such as ORM code, is

rarely studied. In particular, since ORM introduces another abstraction layer on top

of SQL, introducing extra burden for developers to understand the exact behaviour

of ORM code (Chen et al., 2014a), maintaining ORM code can be effort consuming.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 28

During a recent cooperation with one of our industrial partners, we examined

the challenges associated with maintaining a large-scale Java software application

that uses ORM frameworks to abstract database accesses. We observed several dif-

ficulties in maintaining ORM code in Java applications. For example, changes that

involve ORM code are often scattered across many components of the application

(modifies many times more files than that of regular code). We conjecture that

such scatterness may be caused by ORM’s inability to completely abstract database

accesses.

With such observations on the industrial application, we sought to study sev-

eral open source Java applications that heavily depend on ORM in order to verify

whether maintaining ORM code in these applications also suffers from the difficul-

ties that are observed in the industrial application. We conducted an empirical study

on three open source Java applications, in addition to the one large-scale industrial

Java application. We find that the difficulties in maintaining ORM code are com-

mon among the studied applications, which further highlights that the challenges

of maintaining ORM code is a wide ranging concern.

In particular, we investigate the difficulties of maintaining ORM code through

exploring the following research questions:

RQ1: How Localized are ORM Code Changes?

We find that code changes that involve ORM code are more scattered and complex,

even after we control for fan-in (statistically significant). In other words, ORM can-

not completely encapsulate the underlying database accesses in objects, which may

make ORM code harder to maintain compared to regular code.

RQ2: How does ORM Code Change?

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 29

We find that ORM code is changed more frequently (15%–79% more) than non-

ORM code. In particular, ORM model and query code are often changed, which may

increase potential maintenance problems due to lack of query return type checking

at compilation time (hence many problems might remain undetected till runtime

in the field). On the other hand, developers do not often tune ORM configura-

tions for better performance. Therefore, developers may benefit from tools that can

automatically verify ORM code changes or tune ORM configurations.

RQ3: Why does ORM Code Change?

Through a manual analysis of ORM code changes, we find that compared to regular

code, ORM code is more likely changed due to performance and security reasons.

However, since ORM code is syntactically (i.e., have a unique set of APIs, and dif-

ferent code structure/grammar) and semantically (i.e., access databases) different

from regular code, traditional static code analyzers need to be extended to capture

the peculiarities of ORM code in order to detect such problems.

4.2 The Main Contributions of this Chapter

Our study highlights that practitioners need to be aware of the maintenance cost

when taking advantage of the conveniences of ORM frameworks. Our study also

provides some initial insights about potential approaches to help reduce the main-

tenance effort of ORM code. In particular, our results helped our industrial partner

understand that some types of problems may be more common in ORM code, and

what kinds of specialized tools may be needed to reduce the maintenance effort of

ORM code.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 30

4.3 Related Work

In this chapter, we study the characteristics and maintenance of ORM code, which is

not yet studied nor well understood by researchers and practitioners. In this section,

we survey prior studies on the evolution of database code and non-code artifacts.

While many prior studies examined the evolution of source code, (e.g., Gall et al.

(1997); Godfrey and Tu (2000); Lehman et al. (1997)), this chapter studies the

evolution of software applications from the perspective of the non-code artifacts.

Such non-code artifacts are extensively used in practice, yet the relation between

such artifacts and their associated source code is not widely studied.

4.3.1 Evolution of database code

Prior studies focus on the evolution of database schemas, while our chapter focuses

on the evolution of the database-related code. Qiu et al. (2013) conduct a large-

scale study on the evolution of database schema in database-centric applications.

They study the co-evolution between database schema and application code, and

they find that database schemas evolve frequently, and cause significant code-level

modifications (we observe similar co-evolution even though ORM is supposedly de-

signed to mitigate the need for such co-evolution). Curino et al. (2008b) study the

database schema evolution on Wikipedia, and study the effect of schema evolution

on the application front-end. Curino et al. (2008a) design a tool to evaluate the

effect of schema changes on SQL query optimization. Meurice and Cleve (2014)

and Gobert et al. (2013) develop a tool for visualizing database schema evolu-

tion. Goeminne et al. (2014) analyze the co-evolution between code-related and

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 31

database-related activities in a large open source application, and found that there

was a migration from using SQL to ORM. In another work, Goeminne and Mens

(2015) study the survival rate of several database frameworks in Java projects (i.e.,

when would a database framework be removed or replaced by other frameworks),

and they found that JPA has a higher survival rate than JDBC.

4.3.2 Non-code artifacts

User-visible features. Instead of studying the code directly, some studies have

picked specific features and followed their implementation throughout the lifetime

of the software application. Anton and Potts (2003) study the evolution of tele-

phony software applications by studying the user-visible services and telephony

features in the phone books of the city of Atlanta. They find that functional fea-

tures are introduced in discrete bursts during the evolution. Kothari et al. (2008)

propose a technique to evaluate the efficiency of software feature development by

studying the evolution of call graphs generated during the execution of these fea-

tures. Greevy et al. (2006) use program slicing to study the evolution of features.

His and Potts (2000) study the evolution of Microsoft Word by looking at changes

to its menu structure. Hou and Wang (2009) study the evolution of UI features in

the Eclipse IDE.

Communicated information. Shang et al. (2011, 2014) study the evolution of

communicated information (CI) (e.g., log lines). They find that CI increases by

1.5-2.8 times as the application evolves. Code comments, which are a valuable in-

strument to communicate the intent of the code to programmers and maintainers,

are another source of CI. Jiang and Hassan (2006) study the evolution of source

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 32

code comments and discover that the percentage of functions with header and non-

header comments remains consistent throughout the evolution. Fluri et al. (2007,

2009) study the evolution of code comments in eight software applications. Has-

san and Holt (2006) propose an approach to recover co-change information from

source control repositories, and Malik et al. (2008) study the rational for updating

comments. Ibrahim et al. (2012) study the relationship between comments and

bugs in software applications.

4.4 Preliminary Study

In this section, we first introduce our studied applications, then we discuss the

evolution of ORM code in these applications.

4.4.1 Studied Applications

We study three open-source applications (Broadleaf Commerce (Commerce, 2013),

Devproof Portal (Portal, 2015), and JeeSite (ThinkGem, 2016)) and one large-

scale industrial application (EA) by mining their git repositories. Due to a Non-

Disclosure Agreement (NDA), we cannot expose all the details of EA. Table 4.1

shows an overview of the studied applications, as well as the overall ORM code

density. All of the studied applications follow the typical Model-View-Controller

(MVC) design (Krasner and Pope, 1988), and use Hibernate as the implementation

of ORM. Broadleaf Commerce is an e-commerce application, which is widely used

in both open-source and commercial settings. Devproof Portal is a fully featured

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 33

Table 4.1: Statistics of the studied applications in the latest version. EA is not shown
in detail due to NDA.

Lines of No. of % files No. of Latest Median ORM
code (K) Java files contain studied studied code density

ORM versions version among all
code all versions

Broadleaf 363K 2,249 13% 79 3.1.0 1.3%
Devproof 53.7K 541 20% 7 1.1.1 0.7%
JeeSite 397K 126 16% 5 1.0.4 1.1%
EA >300K >3,000 4% >10 — < 1%

portal, which provides features such as blogging, article writing, and bookmark-

ing. JeeSite provides a framework for managing enterprise information, and offers

a Content Management System (CMS) and administration platform. EA is a real-

world industrial application that is used by millions of users worldwide on a daily

basis.

4.4.2 Evolution of ORM Code

We first conduct a preliminary study on the evolution of ORM code. We use the

following metrics to study the evolution of ORM code:

• Number of database table mappings;

• Number of ORM query calls;

• Number of performance configurations (e.g., caching or batching);

• ORM code density.

We define ORM code density as the total number of ORM code (i.e., lines of code

that perform database table mapping, performance configuration calls, and ORM

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 34

query calls) divided by the total lines of code. Below we discuss our findings for the

above-mentioned metrics.

Figure 4.1 shows the evolution of the three types of ORM code. We find that, in

general, the number of ORM query calls has the steepest increase overtime. We also

find that the number of DBMS table-mappings does not change much overtime, and

that the total number of ORM performance configurations remains relatively stable

in JeeSite and EA. We also find that the change rate of ORM configuration code is

lower than the other types of ORM code in some applications. Since ORM configu-

ration code is usually applied on ORM queries and ORM table mapping code, this

finding may indicate that not all developers spend enough time tuning or adding

the configurations, which may result in performance problems in ORM-based appli-

cations (Chen et al., 2014a, 2016a,d).

4.5 Case Study Results

We now present the results of our research questions. Each research question is

composed of four parts: motivation, approach, experimental results, and discussion.

RQ1: How Localized are ORM Code Changes?

Motivation. To verify the generalizability of our observation in EA and examine

if ORM code changes are more scattered (i.e., complex) by nature, we study the

complexity of ORM code changes in this RQ.

Approach. We study the code change complexity after normalizing the fan-in of

ORM code. High degree of dependence (i.e., high fan-in) is likely to lead to higher

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 35

0 20 40 60 80

20
0

40
0

60
0

80
0

10
00

Version Number

N
um

.

Num. Mapping
Num. Query
Num. Config

(a) Broadleaf

1 2 3 4 5 6 7
20

40
60

80
10

0
12

0

Version Number

N
um

.

Num. Mapping
Num. Query
Num. Config

(b) Devproof

1 2 3 4 5

20
30

40
50

Version Number

N
um

.

Num. Mapping
Num. Query
Num. Config

(c) JeeSite

5 10 15
Version Number

Num. Mapping
Num. Query
Num. Config

(d) EA

Figure 4.1: Evolution of the total number of database table mappings, ORM query
calls, and ORM configurations. The values on the y-axis are not shown for EA due
to NDA.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 36

maintenance costs (due to changing more dependent files). Hence, by controlling

for fan-in, we ensure that our observations are more likely due to the nature of

ORM code.

Dependence on the Files that Contain ORM Code. To measure the dependence

on the files that contain ORM code, we compute the degree of fan-in at the file

level (Henry and Kafura, 1981). We annotate each file as one that contains ORM

code (ORM file) or one that does not contain ORM code (non-ORM file). Fan-in

measures the number of files that depend on a given file. For example, if file B and

C both are calling one or more methods in file A, then the degree of fan-in of file A

is two. We compute the fan-in metric for all files for all studied versions, and then

we compare the degree of fan-in between ORM and non-ORM files.

Complexity of ORM Code Change. To measure the complexity of ORM code

changes, we compute the following metrics for each commit:

• Total number of code churn (lines inserted/deleted) in a commit;

• Total number of files that are modified in a commit;

• Commit change entropy (Hassan, 2009).

The three above-mentioned metrics are used in prior studies to approximate

the complexity of code changes in a commit (Chen et al., 2014b; Soh et al., 2013;

Zaman et al., 2011). We control for fan-in in our study by dividing each metric by

the value of fan-in in the associated files. The reason is that each metric may be

correlated with fan-in to a certain degree, and a division allows us to minimize the

effect of such correlations. We classify commits into ORM commits (i.e., commits

that modify ORM code), and non-ORM commits, and compare the metrics between

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 37

these two types of commits.

Entropy measures the uncertainty in a random variable, and maximum entropy

is achieved when all the files in a commit have the same number of modified lines.

In contrast, minimum entropy is achieved when only one file has the total num-

ber of modified lines in a commit. Therefore, higher entropy values represent a

more complex change (i.e., scattered changes), where smaller entropy values rep-

resent a less complex change (i.e., changes are concentrated in a small number of

files) (Hassan, 2009).

To measure the change entropy, we implement the normalized Shannon Entropy

to measure the complexity of commits (Hassan, 2009; Zaman et al., 2011). The

entropy is defined as:

H(Commit) =
−
∑n

i=1 p(Filei) ∗ logep(Filei)
loge(n)

, (4.1)

where n represents the total number of files in a commit Commit, and H(Commit)

is the entropy value of the commit. p(Filei) is defined as the number of lines

changed in Filei over the total number of lines changed in every file of that commit.

For example, if we modify three files A (modify 1 line), B (modify 1 line), and C

(modify 3 lines), then p(A) will be 1
5

(i.e., 1
1+1+3

).

Statistical Tests for Metrics Comparison. To compare the metric values between

ORM and non-ORM files, we use the single-sided Wilcoxon rank-sum test (also

called Mann-Whitney U test). We choose the Wilcoxon rank-sum test over Stu-

dent’s t-test because our metrics are skewed, and the Wilcoxon rank-sum test is a

non-parametric test, which does not put any assumption on the distribution of two

populations. The Wilcoxon rank-sum test gives a p-value as the test outcome. A p-

value ≤ 0.05 means that the result is statistically significant, and we may reject the

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 38

null hypothesis (i.e., the two populations are different). By rejecting the null hy-

pothesis, we can accept the alternative hypothesis, which tells us if one population

is statistically significantly larger than the other. In this RQ, we set the alternative

hypothesis to check whether the metrics for ORM commits are larger than that of

non-ORM commits. Prior studies have shown that reporting only the p-value may

lead to inaccurate interpretation of the difference between two populations (Kam-

penes et al., 2007; Nakagawa and Cuthill, 2007). When the size of the populations

is large, the p-value will be significant even if the difference is very small. Thus,

we report the effect size (i.e., how large the difference is) using Cliff ’s Delta, which

is a non-parametric effect size measure that does not have any assumption on the

distribution of the population (Cliff, 1993). The strength of the effects and the

corresponding range of Cliff ’s Delta values are (Romano et al., 2006):

effect size =



trivial if Cliff ’s Delta < 0.147

small if 0.147 ≤ Cliff ’s Delta < 0.33

medium if 0.33 ≤ Cliff ’s Delta < 0.474

large otherwise

Results. We find that files that contain ORM code have a higher degree of fan-

in (statistically significant) in the studied applications, which make them good

candidate applications for our study. We compute the degree of fan-in for each

version separately, and report the p-value of comparing the degrees of dependency

from ORM and non-ORM code of each version. The p-value is statistically significant

(<0.05) in every version of all the studied applications (ORM files have a higher fan-

in). Table 4.2 shows the median of the effect sizes across all versions of the degree

of fan-in of files that contain ORM code and files that do not contain ORM code.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 39

The effect sizes of the difference are non-trivial in all of our studied applications.

These findings highlight and confirm the central role of ORM code in the studied

software applications and their evolution. Thus, these applications are indeed good

candidates for our study.

ORM-related commits modify more lines of code and files than other types of

commits, and the commits are more scattered, even after we control for fan-in.

We obtain a p-value of << 0.001 for the result of the Wilcoxon rank-sum test for

the total code churn, the total files modified, and the change entropy of a commit in

the studied applications. Our findings indicate that commits that modify ORM code

are more complex (statistically significant) than commits that do not modify ORM

code. From Table 4.3 we can also see that the median of the metrics for commits

that modify ORM code are all larger than commits that do not modify ORM code.

We find that 88% of the median effect sizes of the ORM code complexity is at least

medium, which further supports the result of our Wilcoxon rank-sum test.

Since we find that files with ORM code have a higher fan-in in general, such

characteristics may affect the complexity of changes that involve ORM code. As a

result, we further study the complexity of ORM code changes after controlling for

fan-in. We calculate the total fan-in of all the files in each commit, and then we

normalize the commit complexity by dividing it by the total fan-in of all involved

files. For example, if a commit modifies 1,000 lines of code, and the total fan-in

of all the files that are modified in the commit is 100, the normalized total lines of

code modified is 10 (1,000/100). We find that, after controlling for fan-in, commits

that modify ORM code are still more complex (all statistically significant, except for

change entropy in JeeSite).

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 40

Table 4.2: Medians (Med., computed across all versions) and effect sizes (Eff., me-
dian across all versions) of fan-in of ORM and non-ORM files. All differences are
statistically significant. We only show the effect sizes for EA due to NDA.

Metric Type
Broadleaf Devproof JeeSite EA

Med. Eff. Med. Eff. Med. Eff. Eff.

Fan-in
ORM 11.0

0.29
5.9

0.32
6.2

0.81 0.34
Non-ORM 6.8 3 2

Table 4.3: Medians (Med., computed across all versions) and effect sizes (Eff., av-
eraged across all versions) of the complexity of ORM code changes. All differences
are statistically significant. We only show the effect sizes for EA due to NDA.

Metric Type
Broadleaf Devproof JeeSite EA

Med. Eff. Med. Eff. Med. Eff. Eff.

LOC ORM 102
0.44

241
0.60

773
0.76 0.50

modified Non-ORM 17 30 21

Files ORM 6
0.53

11
0.51

13
0.69 0.53

modified Non-ORM 2 3 2

Entropy
ORM 0.78

0.34
0.80

0.29
0.85

0.37 0.28
Non-ORM 0.00 0.59 0.61

It may first seem expected that, since ORM code is one of the core components

of an application (i.e., has higher fan-in), ORM code changes should be more scat-

tered. However, the finding highlights a potential issue with ORM code. Although

the goal of ORM code is primarily on abstracting relational databases in object-

oriented programming languages, we find that the underlying database access

is not completely encapsulated inside objects, so changing ORM code requires

changing many other files (we conduct a manual study in RQ3 to understand the

reasons for changing ORM code). Further studies are needed to better understand

and resolve the design problem of ORM code in order to keep database knowledge

completely encapsulated within objects.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 41

Table 4.4: Number of ORM files in the top 100 files with the largest degree of fan-in
(averaged across versions).

Metric Broadleaf Devproof JeeSite EA

of files with ORM
11.5 35 18 14.3

code in the top 100

Table 4.5: Percentage of files that contain each type of ORM code in the top 100
high fan-in files.

Type Broadleaf Devproof JeeSite EA

Data Model 7% 8% 17% 16%
ORM Query Call 1% 26% 3% 1%
Perf. Config. Call 3% 8% 15% 10%

Discussion. We do not know whether the high fan-in of ORM files is caused by

the design of ORM code, or simply because these files are the core components of

the studied applications. Thus, we conduct an experiment on the degree of fan-in

of files with/without ORM code. We first find the top 100 files with the highest

fan-in values for each studied application, and examine how many of the top 100

files have ORM code (Table 4.4). We find that in all the studied applications, about

11–35 files among the top 100 files contain ORM code. In short, we find that files

with ORM code are not the only core components of an application; nevertheless

files with ORM code tend to have a higher change complexity.

Our finding helps our industrial partner recognize the high scatteredness of ORM

code changes. ORM code changes may be much riskier, and require more careful at-

tention and reviewing. Our findings are consistent among the studied open source

applications, and the problems are not specific to EA. Further studies are needed to

understand the reasons that ORM code cannot completely encapsulate the underly-

ing database concerns within objects.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 42

We find that ORM cannot completely encapsulate the underlying database accesses

in objects, which may be the reason for the scattered nature of ORM code changes.

RQ2: How does ORM Code Change?

Motivation. In RQ1, we find that changes involving ORM code are usually more

complex and more scattered. In this RQ, we want to further study the change

frequency of each type of ORM code to find out which type of ORM code requires

the most maintenance effort. Namely, we study how developers change different

types of ORM code (i.e., data model, ORM query, and performance configuration).

Approach. To answer this RQ, we compute the total code churn (i.e., added and

deleted lines) and ORM code churn (i.e., added and deleted ORM code) between

versions. We are particularly interested in how developers change different types

of ORM code, since these changes directly reflect the maintenance activity on ORM

code. Therefore, we compute the following metrics:

• Total code churn;

• Total ORM code churn;

• Code churn for ORM data model, query calls, and performance configurations.

ORM data model code churn (churnmodel) computes the amount of churn re-

lated to data model code. ORM query-related code churn (churnquery) measures the

amount of ORM query-related churns. ORM performance configuration code churn

(churnconfig) measures the amount of ORM performance configurations churns (e.g.,

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 43

●●

●

●

●

●●

●

●●

●

●

●
●

Model Config Query

0
2

4
6

8
10

12
%

 o
f t

ot
al

 a
dd

ed
/d

el
et

ed
 li

ne
s

in
 e

ac
h

ve
rs

io
n

(a) Broadleaf

Model Config Query

0.
0

0.
5

1.
0

1.
5

2.
0

%
 o

f t
ot

al
 a

dd
ed

/d
el

et
ed

 li
ne

s
in

 e
ac

h
ve

rs
io

n

(b) Devproof

Model Config Query

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

%
 o

f t
ot

al
 a

dd
ed

/d
el

et
ed

 li
ne

s
in

 e
ac

h
ve

rs
io

n

(c) JeeSite

●

●●

Model Config Query

(d) EA

Figure 4.2: Distribution of the percentage of code churn for different types of ORM
code changes across all the studied versions. We omit the scale for EA due to NDA.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 44

Table 4.6: Total code churn and ORM-related code churn in the studied applica-
tions.

Code ORM churnmodel churnconfig churnquery

Churn Churn

Broadleaf 1472K 22K (2%) 67% 7% 26%
Devproof 88K 1.1K (1%) 68% 5% 27%
JeeSite 11K 194 (2%) 49% 18% 33%
EA — <1% 41% 0.2% 59%

cache configurations). We also measure the total amount of code churn and ORM

code churn for comparison.

We use the following metric to measure the churn ratio of ORM code:

churnratio =
ORM code churn

ORM code density
, (4.2)

where a high churnratio value means that ORM code has a higher chance of being

modified (assuming each line of code has the same probability of being modified).

Results. Tools such as type checker for ORM queries and automated configura-

tion tuning may help developers with ORM code maintenance. In Broadleaf, we

find that about 2% (22K LOC) of total code churn (across all versions) is related to

ORM (Table 4.6). We also find similar amount of ORM code churn in Devproof (1%

of all churn) and JeeSite (2% of all churn). Given the low ORM code density in the

entire application (Table 4.1), this implies that ORM code changes more frequently

than other code. The churnratio for Broadleaf, Devproof, JeeSite, and EA are 115%,

179%, 164%, and 120%, respectively.

In Broadleaf, Devproof, and JeeSite, most ORM code changes are related to data

models. Developers sometimes make changes to the data models about how the

classes are mapped to the database tables. Such changes may lead to other ORM

code changes. Consider the following example from the studied applications:

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 45

1 -@ManyToMany(fetch = FetchType.LAZY ,

2 -targetEntity = OrderItemImpl.class)

3 -@JoinTable(name = "GIFTWRAP_ORDERITEM")

4 +@OneToMany(fetch = FetchType.LAZY ,

5 +mappedBy = "giftWrapOrderItem",

6 +targetEntity = OrderItemImpl.class)

7 private List <OrderItem > wrappedItems =

8 new ArrayList <OrderItem >();

Developers change the relationship between OrderItemImpl and GitWrapOrderItem

from @ManyToMany to @OneToMany due to data model changes and refactoring.

Such changes may cause some other side effects such as the properties of the data

model in the code (e.g., entity relationships) no longer matching the properties in

the DBMS (Nijjar and Bultan, 2013).

We find that developers in all the studied applications also change ORM query

calls very often. These ORM query calls provide developers a non-encapsulated

(i.e., not Object-Oriented) way to retrieve data from the database. However, evolu-

tion of database models and frequent changes to these ORM query calls may cause

some problems, since there exists no type checking for ORM query calls at compi-

lation time (Bauer and King, 2005). For example, Nijjar and Bultan (2013) found

that there may exist problems in ORM data models due to the abstraction of the

underlying relational models. Therefore, having tools that can help developers

with compile time code verification or type checking for ORM query calls may

reduce ORM code maintenance effort.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 46

Finally, we find that changes to ORM performance configurations are less fre-

quent than the other types of ORM code. This finding is alarming, since the perfor-

mance of ORM code is related to how ORM code is configured (Chen et al., 2014a,

2016d). Prior studies (Dageville et al., 2004; Yagoub et al., 2008) from the database

community have shown that tuning the performance of database-related code (e.g.,

SQL) is a continuous process, and needs to be done as applications evolve. As a re-

sult, automatically helping developers configure ORM code will be of great value

when maintaining ORM code. In Chapter 8, we follow up on this finding, and im-

plement an automated tool for tuning ORM performance configuration code. We

find that our tool helps improve application throughput by 27–138%.

Discussion. Since the amount of each type of ORM code is different, we normalize

the churn by the total existence of each type of ORM code in the application. For

each type of ORM code, we divide the number of modified lines of code by the total

amount of such code. We compute such number for each version, and we report

the median value in Table 4.7. We find that the change size of ORM query code

is about 1.5%–56.8% of all ORM query code, which is significantly larger than the

other two types of ORM code. We find a consistent trend in all studied applications.

Our result shows that ORM query code is changed more often (after normalization),

even though ORM query code bypass the ORM abstraction layer and may be error-

prone (no type checking at compile time).

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 47

Table 4.7: Median churn percentage of each type of ORM code across all versions.
Model Config Query

Broadleaf 0.9% 0.0% 1.5%
Devproof 45.6% 9.8% 56.8%
JeeSite 21.8% 17.8% 38.0%
EA 5.4% 0.0% 8.9%

ORM code has less code density but is changed more frequently (15%–79% more)

than non-ORM code. We also find that both ORM query calls and models are

changed frequently, while ORM configurations are rarely changed. Developers

may benefit from tools for verifying the type of returned objects by ORM queries,

or tools for automated tuning of ORM performance configurations.

RQ3: Why does ORM Code Change?

Motivation. In the previous RQs, we study the characteristics of different ORM code

changes. However, the reasons for changing the ORM code are not known. Since

ORM code is dependent on the DBMS, the reasons for ORM code changes may be

different from regular code changes. However, ORM code may also be different

from regular SQL queries, since ORM abstracts SQL queries from developers. Thus,

in this RQ, we manually study the reasons for ORM code changes, and we compare

such reasons with regular code changes (i.e., changes that do not modify ORM

code).

Approach. We manually study the reasons for the changes that developers make.

We first collect all the commits, and we annotate each commit as ORM-related

or regular commits (commits that do not modify ORM code). In total, there are

2,223 commits that change ORM code, and 9,637 commits that do not change ORM

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 48

Table 4.8: Manually derived categories for commits.
Category Description Abbr.

Bug Fix Code is modified to fix a bug Bug

Compatibility Issue
Modifications to allow code to work

Compat
in an other environment

Feature Enhancement Enhance current functionalities Enhance
New Feature Add new functionalities New

Performance Config.
Performance and performance Config
configuration tuning

Refactoring Code refactoring Refactor

Model
Database schema/ORM data model

Model
is changed

Security Enhancement Enhance security Secure
Test Add test code Test
Upgrade Upgrade dependent changes Upgrade
GUI Modified graphical/web user interface GUI
Documentation Updated documentation Doc
Build Modify/Update build files Build

code (across all the studied open source applications). We do not show data from

EA in this study due to NDA, but our findings in EA (e.g., the categories and the

distributions) are very similar to what we found in the open source applications.

In order to achieve a confidence level of 95% with a confidence interval of 5% in

our results (Boslaugh and Watters, 2008), we randomly sample 328 ORM-related

commits and 369 non-ORM commits for our manual study. We first examine the

randomly sampled commits (both ORM and non-ORM commits) with no particular

categories in mind. Then, we manually derive the set of categories for which these

commits belong. In total, we derive 13 categories for the commits. Table 4.8 has

the descriptions for the categories. For commits that belong to multiple categories,

we assign the commits to all the categories to which they belong. We then study

how the studied commits are distributed in these categories.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 49

Bug Compat Config Enhance Model New Refactor Secure Test Doc Build GUI Upgrade

0
40

80

ORM
non−ORM

8679

7 0 8 0

73
54

23

0

45

22

110 107

2 0
13

29

0

28

0

24 16
0 0 3

Figure 4.3: Distributions of the commits for ORM and non-ORM code in each cate-
gories.

Results. ORM code changes are more likely due to performance, compatibility,

and security problems compared to regular code; automated techniques for de-

tecting such problems in ORM-based applications may be beneficial. Figure 4.3

shows the distributions of the studied commits and the category to which they be-

long. We find that ORM and non-ORM code changes share some common reasons.

Developers spend a large amount of effort on ORM code refactoring (30.64% of all

commits that modify ORM code). In addition, 22.01% of the commits are related to

bug fixing, and 20.33% of the commits are related to feature enhancement. In short,

more than 70% of the commits that change ORM code are related to code main-

tenance activities (i.e., refactoring, enhancement, and bug fixing) (Herraiz et al.,

2013). We find that these maintenance activities have very similar distributions in

non-ORM commits.

Nevertheless, some categories of ORM commits do not exist in non-ORM com-

mits (i.e., Compat, Config, Model, and Secure). Our sampled commits show that

these reasons are more likely to result in ORM code changes, although we expect

that Model only exists in commits that contain ORM code. We also find that ORM

frameworks play a central role in the performance of ORM-based applications –

developers change ORM configuration code more frequently for performance im-

provement. In RQ2 we find that ORM configuration code is not frequently changed.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 50

However, a prior study (Chen et al., 2014a) finds that developers may not always be

aware of the performance impact of the ORM code due to the database abstraction

(i.e., developers may not know the code they write would result in slow database

accesses). Hence, there may be many places in the code that require performance

tuning, and tools that can automatically change/tune ORM configuration code can

be beneficial to developers.

Moreover, even though ORM ideally should ensure that the code is database-

independent (i.e., porting an application to a different database technology should

require no code changes), we still find some counterexamples (see our discussion

below). Finally, since ORM code need to send user requests to the underlying

DBMSs, security may also more likely to be a concern (e.g., SQL injection attacks).

In the discussion, we further discuss some of the compatibility, performance, and

security problems that we found in our manual study.

Discussion. Even though ORM is touted as a solution that would ensure that ORM

code would work against all kinds of database technologies, we still observe DBMS

compatibility issues. For example, in Broadleaf, developers change the database

table name due to an Oracle-specific size limit on table names.

During our manual study, the most commonly observed ORM performance con-

figuration changes are due to data caching. Consider the following example from

Broadleaf:

1 +@Cache(usage =

2 +CacheConcurrencyStrategy.READ_ONLY)

3 private Map <String , String > images;

The images variable stores a binary image for each category of items (represented

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 51

using a Java String). The image for each category does not change often, yet they

often have a large data size. Frequently retrieving the large binary data from

the DBMS may cause significant performance overheads and reduce user experi-

ence (Smith and Williams, 2000). As a result, the developers cache the images into

ORM cache (Figure 3.1). Since the images are read-only, adding a read-only cache

significantly improves application performance. Note that although this problem

may also exist in other applications, the problem may have higher prevalence in

ORM-based applications. Since ORM does not know whether image data is needed

in the code, ORM will always fetch the image data from the DBMS under default

configuration. This problem may be easily observed if developers manually write

SQL queries and decide which columns should be retrieved from the database table.

Finally, we see that developers refactor how the database entity classes are de-

signed and called to enhance application security. They do this by providing more

validation rules (i.e., access control) to the user requests and to database entity

object that are being retrieved from the DBMS.

We find that although there are common reasons for ORM and non-ORM code

changes, some problems are more likely to cause of ORM code changes. Future

studies may propose different techniques to detect such problems in order to assist

developers with maintaining ORM-based applications.

Based on our manually studied samples of code changes, we find that compatibility,

performance, and security problems are common reasons for ORM code changes.

Thus, developing tools to detect such problems in ORM code could assist developers

who are maintaining ORM-based applications.

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 52

4.6 Highlights and Implications of our findings

Our study has helped our industry partner recognize some key challenges associated

with maintaining ORM code. Our study on the open source applications confirms

that our findings are not specific to EA, and maintaining ORM code may be a wide-

ranging concern. Although ORM frameworks are widely used in industry, many

ORM-specific problems do not have a solution from the research world.

The highlights and implications of our findings are:

• ORM cannot completely encapsulate database access concerns. We find that

even though ORM tries to abstract database accesses, such abstraction cannot

be completely encapsulated in objects. Future studies on the reasons that

ORM cannot encapsulate database accesses in objects would help improve the

design of ORM frameworks.

• ORM cannot completely abstract the underlying database technology. Even

though ORM ideally should ensure that the code is database-independent (i.e.,

porting an application to a different database technology should require no

code changes), we still find several counterexamples. Future studies should

examine the reasons that ORM cannot completely abstract the underlying

database technology, and help developers create tools to migrate seamlessly

to different database technologies.

• Although ORM code is frequently modified, there is a lack of tools to help

prevent potential problems after ORM code changes. In RQ2, we found that

ORM code is modified more frequently than regular code, and some types

of ORM code are modified even more frequently. However, since changes

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 53

to ORM model or query code may introduce runtime exceptions that affect

the quality of an application, ORM code would benefit from type checking at

compile time. Future research on providing automated tools to detect such

problems can greatly reduce ORM maintenance efforts, and improve the qual-

ity of applications that make use of ORM frameworks.

• Traditional static code analyzers need to be extended to better capture the

peculiarities of ORM code in order to find ORM-related problems. ORM-

related problems may be different, either syntactically or semantically, from

the problems one may see in regular code (due to ORM’s database abstrac-

tion). Thus, traditional static code analyzers, which usually do not consider

the domain knowledge of ORM code, may not be able to detect these ORM-

related problems without proper extensions. For example, FindBugs1 is able

to detect security problems in JDBC code, but FindBugs cannot detect such

problems in ORM code without a proper extension. A recent study (Chen

et al., 2016b) shows that there are many database access code related prob-

lems that can be detected using static code analysis; however, existing tools

and the research community have not put enough effort into detecting such

domain-specific problems (i.e., related to database access). In general, due

to the large number of available frameworks, a better option would be for

framework developers to provide static code analyzers for the usage of their

frameworks. Thus, developers who are using these frameworks can benefit

from these code analyzers when developing their own applications.

1http://findbugs.sourceforge.net/

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 54

• Developers may benefit from tools that can automatically help them tune

ORM performance configuration code. We found that developers are more

likely to change ORM code for performance reasons compared to regular code.

However, in RQ2 we find that developers do not often change ORM configura-

tion code. Prior studies (Dageville et al., 2004; Yagoub et al., 2008) from the

database community show that tuning the performance of database-related

code (e.g., SQL) is a continuous process, and needs to be done as applications

evolve. Therefore, there may be many potential places in the code that re-

quire performance tuning. Hence, tools that can automatically change/tune

ORM configuration code can be beneficial to developers. In Chapter 8, we fol-

low up on this and propose an automated performance configuration tuning

approach. We observe that finding an optimal configuration can significantly

improve application performance.

Our industry partner is now aware of the high scatteredness of ORM code

changes, and such changes are considered much riskier and require careful atten-

tion and review. In addition, our industry partner also recognizes the benefit of

having tools that can automatically help refactoring and finding problems in ORM

code.

4.7 Threats to Validity

We now discuss the threats to validity of our study.

Internal Validity. In this chapter, we study the characteristics and maintenance of

ORM code. We discover that ORM code exhibits different patterns compared to

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 55

non-ORM code. However, we do not claim a casual relationship. There may be

other confounding factors that influence our results (e.g., developers intentionally

allocate more resources to the maintenance of files with ORM code, or the main-

tenance difficulties are caused by badly written code and not the design of ORM

framework). Controlled user studies are needed to examine these confounding fac-

tors.

External Validity. To extend the generalizability of our results, we conduct our

study on three open source applications and one large-scale industrial application.

We choose these studied open source applications because they either have longer

development history or are similar to the industrial application. There may be other

similar Java applications that are not included in our study. Hence, future studies

should examine additional applications to verify the generalizability of our findings.

However, our current findings are already having an impact on how our industrial

partner maintains ORM code.

We focus our study on JPA (Java ORM standard) because it is widely used in in-

dustry and is used by our industrial partner. However, our findings may be different

for other ORM technologies (e.g, ActiveRecord or Django). Nevertheless, although

the implementation details are different, these ORM frameworks usually share very

similar concepts and configuration settings.

Construct Validity. We automatically scan the studied applications and identify

ORM code. Therefore, how we identify ORM code may affect the result of our

study. Although we use our expert knowledge and references to identify ORM

code (ObjectDB, 2016b), our approach may not be perfect. We annotate a com-

mit as an ORM-related commit if the commit modifies ORM code. Given the large

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 56

number of commits (over 10K), we have chosen to use an automated approach for

commit classification. It is possible that some modifications in the commit are not

related to ORM, or some commits may be related to refactoring activities. However,

during our manual study in RQ3, we find that our approach can successfully iden-

tify ORM-related commits, and we believe our automated approach has a relatively

high accuracy.

We compare ORM code with non-ORM code, but there may be many kinds of

non-ORM code (e.g., GUI or network). However, since we are not experts in the

studied applications, and there can be hundreds of different sub-components (de-

pending on how we categorize non-ORM code), we choose to categorize code as

ORM and non-ORM code. Ideally we would want to compare ORM code with other

types of database access code (e.g., JDBC). However, most applications are imple-

mented using only one database access technology, and it is not realistic to compare

two different applications that use two database access technologies.

4.8 Chapter Summary

Object-Relational Mapping (ORM) provides a conceptual abstraction between DBMS

and source code. Using ORM, developers do not need to worry about how objects in

Object-Oriented languages should be translated to DBMS records. However, when

cooperating with one of our industrial partners, we observed several difficulties in

maintaining ORM code.

To verify our observations, we conducted studies on three open source Java ap-

plications, and we found that the challenges of maintaining ORM code is a wide

ranging concern. Thus, understanding how ORM code is maintained is important,

CHAPTER 4. MAINTENANCE ACTIVITIES OF ORM CODE 57

and may help developers reduce the maintenance costs of ORM code. We found

that 1) ORM code changes are more scattered and complex in nature, which im-

plies that ORM cannot completely encapsulate database accesses in objects; future

studies should study the root causes to help better design ORM code, especially

in Java applications; 2) even though ORM ideally should ensure that the code is

database-independent, we find that it is not always true; 3) ORM query code is

often changed, which may increase potential maintenance problems due to lack

of return type checking at compilation time; 4) traditional static code analyzers

need to be extended to better capture the peculiarities of ORM code in order to

find ORM-related problems; and 5) tools for automated ORM performance config-

uration tuning can be beneficial to developers. In short, our findings highlight the

need for more in-depth research in the software maintenance communities about

ORM frameworks (especially given the growth in ORM usage in software appli-

cations). Based on our empirical findings, in the result of the thesis, we propose

approaches to detect performance anti-patterns in ORM code to help developers

with ORM code maintenance (Chapter 5–7). In Chapter 8, we propose an approach

to help developers automatically find an optimal ORM cache configuration.

CHAPTER 5

Statically Detecting ORM Performance Anti-patterns

As we find in Chapter 2 and Chapter 4, there is a limited tooling support for detecting
performance problems in the database access code, and yet such problems are more likely to
impact application performance. Thus, in this chapter, we propose an automated framework
to detect ORM performance anti-patterns in the source code. Furthermore, as there could be
hundreds or even thousands of instances of anti-patterns, our framework provides support
to prioritize performance bug fixes based on a statistically rigorous performance assessment.
We have successfully evaluated our framework on one open source and one large-scale
industrial applications. Our case studies show that our framework can detect new and
known real-world performance bugs and that fixing the detected performance anti-patterns
can improve the application response time by up to 69%.

An earlier version of this chapter is published at the 36th International Conference on
Software Engineering (ICSE), 2014. Hyderabad, India. Pages 1001–1012. (Chen et al., 2014a)

58

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 59

5.1 Introduction

Object-Relational Mapping (ORM) provides developers a conceptual abstraction

for mapping database records to objects in object-oriented languages. Through

such mapped objects, developers can access database records without worrying

about the database access and query details. For example, developers can call

user.setName(“Peter”) to update a user’s name in a database table. As a result, ORM

gives developers a clean and conceptual abstraction for mapping the application

code to the database management system (DBMS). Such abstraction significantly

reduces the amount of code that developers need to write (Barry and Stanienda,

1998; Leavitt, 2000).

Despite ORM’s advantages, using ORM frameworks may introduce potential per-

formance problems. Developers may not be aware which source code snippets

would result in a database access nor whether such access is inefficient. Thus,

developers would not proactively optimize the database access performance, as we

find in Chapter 4. For example, code that is efficient in memory (e.g., loops) may

cause database performance problems when using ORM due to data retrieval over-

heads. In addition, developers usually only test their code on a small scale (e.g.,

unit tests), while performance problems would often surface at larger scales and

may result in transaction timeouts or even hangs. Therefore, detecting and under-

standing the impact of such potential performance overhead is important for devel-

opers (Shang et al., 2013). Nevertheless, as we find in Chapter 2, state-of-the-art

static anti-pattern detection tools do not focus on detecting performance problems

in database access code.

In this chapter, we propose an automated framework, which detects one type of

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 60

ORM performance anti-pattern, which we call one-by-one processing. Our frame-

work can detect hundreds of instances of one-by-one processing anti-pattern based

on static code analysis. Furthermore, to cope with the sheer number of the de-

tected instances, our framework provides suggestions to prioritize bug fixes based

on a statistically rigorous performance assessment (improvement in response time

if the detected anti-patterns are addressed).

5.2 The Main Contributions of this Chapter

1. This is the first work that proposes a systematic and automated framework to

detect and assess performance anti-patterns for applications developed using

ORM.

2. Our framework provides a practical and statistically rigorous approach to pri-

oritize the detected performance anti-patterns based on the expected perfor-

mance gains (i.e., improvement in response time). The prioritization of de-

tected anti-patterns is novel relative to prior anti-pattern detection efforts (Chis,

2008; Nistor et al., 2013; Parsons and Murphy, 2004; Xiao et al., 2013; Xu

et al., 2010b).

3. Through case studies on one open source applications (BroafLeaf commence (Com-

merce, 2013)) and one large-scale enterprise application (EA), we show that

our framework can find existing and new performance bugs. Our framework,

which has received positive feedback from the EA developers, is currently be-

ing integrated into the software development process to regularly scan the EA

code base.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 61

@Entity
@Table (name = ”company”)
public class Company {

@Id
@Column(name=”company_id”)
private long companyId ;

@Column(name=”company_name”)
private String companyName;

@OneToMany(mappedBy=”company” ,
fetch = FetchType.LAZY)

private List<Department> department ;

void setCompanyName(String name){
this.companyName = name;

}
... other getter and setter functions

}

Company.java

Retrieve departments
when needed

map to DB
columns

map to DB
table

Company.java (OneByOne)

for (Company c:companyList){
for(Department d:c.getDepartment())

{
d.getDepartmentName();

}
}

OneByOne.java

select department as d
where d.companyID = 1
select department as d
where d.companyID = 2
...

select department as d where
d.companyID in (1, 2, ...)
...

...

...

using Company.java using Company.java (OneByOne)

primary key

One-by-one BEFORE fix

One-by-one AFTER fix

(1) Example class

(2) One-by-one Processing

Department.java
one to many

many to one

 @OneToMany(mappedBy=”company”,
fetch = FetchType.LAZY)

 // added to fix one-by-one
 @BatchSize(size = 50)

private List<Department> department ;

Figure 5.1: A motivating example. (1) shows the original class files and the ORM
configurations; and (2) shows the modified Company.java, the one-by-one process-
ing application code, and the resulting SQLs.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 62

5.3 Motivating Examples

In this section, we present realistic examples to show how such ORM performance

anti-patterns may affect the performance of an application. We develop a simple

Java program as an illustration (Figure 5.1 (1)). The program manages a relation-

ship between two classes (Company and Department), and provides a set of getter

and setter methods to access and change the corresponding DB columns (e.g, set-

CompanyName).

In this example, there is a one-to-many relationship between Company and De-

partment, i.e., one company can have multiple departments. This relationship is

represented using annotation @OneToMany on the instance variable department in

Company.java and @ManyToOne on the instance variable company in Department.java

(details not shown in Figure 5.1 but very similar to Company.java). @Column

shows which database column the instance variable is mapped to (e.g., companyId

maps to column company id), and @Entity shows that the class is a database entity

class which maps to the database table specified in @Table (e.g., Company class

maps to company table).

In the following subsections, we discuss how the performance anti-patterns may

affect application performance, and show the performance difference before and

after fixing the anti-patterns. We focus on one performance anti-pattern that is

commonly seen in real-world code (Dubois, 2013; Wegrzynowicz, 2013) and that

can possibly cause serious performance problems: One-by-One Processing, which re-

peatedly performs similar database operations in loops (Smith and Williams, 2001).

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 63

Annotated global
call graph and

data flow graph

Data extraction
Performance anti-
pattern detection

Performance
assessment

Source
Code

Performance
anti-patterns

Performance
anti-patterns

Performance
anti-patterns

Ranked
Performance
anti-patterns

Ranked
Performance
anti-patterns

Ranked
Performance
anti-patterns

Figure 5.2: Overview of our static ORM performance anti-pattern detection and
prioritization framework.

5.3.1 One-by-one Processing

Figure 5.1 (2) shows an example of the one-by-one processing anti-pattern. The

one-by-one processing anti-pattern is a special case of the Empty Semi Trucks anti-

pattern (Smith and Williams, 2001), which occurs when a large number of requests

is needed to perform a task. In this chapter, we study the effect of such anti-pattern

in the ORM context. OneByOne.java shows an application program that iterates

through all the companies (companyList), and finds the names of all the depart-

ments in each company. If we execute OneByOne.java using the same ORM con-

figurations in Company.java, it would generate one select department statement for

each company object.

One way to solve this particular issue is to change the ORM configuration for re-

trieving department objects to the configuration in Company.java (OneByOne). Af-

ter adding a batch size (e.g., @BatchSize(size=50)) to the instance variable de-

partment, ORM will select 50 department objects in each batch. The fix reduces

the number of SQL statements significantly, and could help improve the database

performance. Note that the fix for one-by-one processing may vary in different

situations (e.g., doing database updates in loops) and can be sometimes difficult.

To demonstrate the performance impact of one-by-one processing, we run the

program shown in Figure 5.1 (2) with following setting: we populate the DBMS

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 64

with 300 records in the Company table and 10 records of Department for each record

in the Company table. The response time before fixing the anti-pattern is 1.68 sec-

onds, and the response time after the fix is 1.39 seconds (a 17% improvement).

Our motivating example shows that there is a significant performance improve-

ment even in simple sequential database read operations after fixing instances of

the performance anti-pattern.

5.4 Our Framework

This section describes our framework for detecting and prioritizing ORM perfor-

mance anti-patterns. As shown in Figure 5.2, our framework consists of three

phases: Data Extraction Phase, Performance Anti-pattern Detection phase and Per-

formance Assessment phase. We first extract all the code paths, which involve

database accesses. Then, we detect the performance anti-patterns among these

database access code paths. Finally, we perform a statistically rigorous performance

assessment so that developers can prioritize the performance bug fixes among hun-

dreds of anti-patterns. In the rest of this section, we explain these three phases in

detail. We use the motivating example from Section 5.3 to illustrate our approach.

5.4.1 Data Extraction

In this phase, we identify all the code paths, which involve database accesses. For

each source code file, we extract the local call graphs, database access methods,

and ORM configurations. Then, we combine the information from all the files and

identify code paths (i.e., scenarios), which involve database accesses.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 65

Extracting Database Access Methods, Local Call Graphs, and ORM Configura-

tions

We first extract the call graphs and data flows in each file, then we identify all ORM-

related information such as annotations and configurations. As shown in Chapter 3

and Section 5.3, ORM uses annotations to annotate a Java class as a database en-

tity class or to setup different data retrieving strategies and configurations. We

store the information about the ORM configuration of each database entity class

and database instance variable, and identify methods that could result in database

accesses (e.g., an ORM query or methods that retrieve an object from DBMS us-

ing the primary key). Using Figure 5.1 as an example, we store the relationship

between Company and Department as one-to-many. We also mark the getter and set-

ter methods (e.g., setDepartmentName), which access or modify database instance

variables as database access methods.

Identifying Database Access Code Paths

We identify the code paths which involve database accesses. We accomplish this by:

1) Constructing Global Call and Data Flow Graphs: We build a global call graph

for all the methods and we keep track of each object’s data usage during its lifetime.

Since methods in object-oriented languages are usually invoked through polymor-

phism, we connect the method call graphs using the corresponding methods in the

subclasses for abstract classes or the implemented class for interfaces.

2) Marking Database Access Code Paths and Data Flows Using Taint Analysis:

We use taint analysis, commonly used in computer security (Gollmann, 2011), to

identify code paths and data flows, which involve database accesses. Taint analysis

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 66

keeps track of a possibly malicious variable (e.g., variable V), and if V is used in

an expression to manipulate another variable M, M is also considered suspicious.

Similarly, if a method in a call path contains a database access method that is deter-

mined by our first step, we mark all the methods in the code path as database access

methods. For example, in a call path, method A calls method B and method B calls

method C. If method C is a database access method, we consider the code path of

A→ B→ C as a database access code path. We perform taint analysis statically by

computing the node reachability across methods in the global method call graph.

5.4.2 Performance Anti-pattern Detection

With identified database access code paths and data flows, we use a rule-based

approach to detect ORM performance anti-patterns. Different anti-patterns are en-

coded using different rules. In this chapter, we focus on detecting one of the most

pervasive ORM anti-patterns, but new anti-patterns can be integrated to the frame-

work by adding new detection rules (as illustrated in Chapter 6). Section 5.6 has

more discussions about extending our framework.

Detecting One-by-one Processing Anti-patterns: To detect one-by-one process-

ing anti-patterns, the framework first identifies the methods that are directly called

within both single and nested loops (we consider all kinds of loops, such as for,

while, foreach, and do while). If a directly-called method is a database access

method, the framework simply reports it as an one-by-one processing anti-pattern.

The framework also traverses all the child nodes in the method call graphs of the

methods that are called in loops. We analyze the child nodes across multiple meth-

ods, and determine whether there is a node in the call graph that may access the

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 67

DBMS. If so, the framework reports the call path that contains the node as an in-

stance of one-by-one processing anti-pattern.

Due to ORM configurations, some database access methods may not always ac-

cess the database. In such cases, we do not report them as anti-patterns. For

example, if Department is eagerly retrieved by Company, retrieving Company will

automatically retrieve Department. Therefore, accessing Department through Com-

pany will not result in additional database accesses, and will not be reported by our

framework. If a database access method in a loop is already being optimized using

some ORM configurations (i.e., fetch plan is either Batch, SubSelect, or Join) (Com-

munity, 2016), we do not identify it as a performance anti-pattern.

5.4.3 Performance Assessment

Previous performance anti-pattern detection studies generally treat all the detected

anti-patterns the same and do not provide methodologies for prioritizing the anti-

patterns (Chis, 2008; Nistor et al., 2013; Parsons and Murphy, 2004; Xiao et al.,

2013; Xu et al., 2010b). However, as shown in the case studies (Section 5.5), there

could be hundreds or thousands of performance anti-pattern instances. Hence, it

is not feasible for developers to address them all in a timely manner. Moreover,

some instances of anti-patterns may not be worth fixing due to the high cost of

the fix and small performance improvement. For example, if a one-by-one process-

ing anti-pattern always processes a table with just one row of data, there is little

improvement in fixing this particular anti-pattern instance.

In this phase, we assess the performance impact of the detected anti-patterns

through statistically rigorous performance evaluations. The assessment result may

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 68

not be the actual performance improvement after fixing the anti-patterns, but may

be used to prioritize the fixing efforts. We repeatedly measure and compare the

application performance before and after fixing the anti-patterns by exercising the

readily available test cases. Anti-patterns, which are expected to have big perfor-

mance improvements (e.g., 200% performance improvement) after the fixes, will

result in higher priorities. The rest of this subsection explains the three internal

parts in performance assessment phase: (1) exercising performance anti-patterns

and calculating test coverage, (2) assessing the performance improvement after

fixing the anti-patterns, and (3) statistically rigorous performance evaluations.

Part 1 - Exercising performance anti-patterns and calculating test coverage

One way to measure the impact of performance anti-patterns is to evaluate each

anti-pattern individually. However, since application performance is highly asso-

ciated with run-time context and input workloads (Goldsmith et al., 2007; Xiao

et al., 2013; Zaparanuks and Hauswirth, 2012), we need to assess the impact of

performance anti-patterns using realistic scenarios and workloads.

Since performance anti-patterns are detected in various software components, it

is difficult to generate workloads to exercise all the performance anti-patterns man-

ually. Therefore, we use the readily available performance test cases to exercise the

performance anti-patterns. For the applications that do not have performance test

cases, we use integration test cases as an alternate choice. Although integration test

cases may not be designed for testing performance critical parts of an application,

they are designed to test various features in an application (i.e., use case tests),

which may give a better test coverage. In short, performance and integration test

cases group source code files that have been unit tested into larger units as suites

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 69

(e.g., features or business logic), which better simulate application workflows and

user behaviours (Binder, 2000).

Since we do not have control over which instances of performance anti-patterns

are exercised by executing the test cases, it is important to know how many perfor-

mance anti-patterns are covered by the tests. We use a profiler to profile the code

execution paths of all the tests, and use the execution path to calculate how many

instances of performance anti-patterns are covered in the tests.

Part 2 - Assessing performance improvement after fixing anti-patterns

In this part, we describe our methodology to assess the performance improve-

ment of fixing the one-by-one processing anti-pattern.

Fixing one-by-one processing can be much more complicated than what we have

shown in Section 5.3. One common fix to one-by-one processing is using batches.

However, for example, performing a batch insert to the Department table in ORM

may require writing specific ORM SQL queries, such as “insert into Department

(name) values (’department1’), (’department2’) ... ”, to replace ordinary ORM code.

As a result, manually fixing the anti-patterns of one-by-one processing requires a

deep knowledge about the structure, design and APIs of an application. Due to

the complexity, it is very difficult to fix all the detected one-by-one processing anti-

patterns automatically. Therefore, we follow a similar methodology by Jovic et al.

(2011) to assess the anticipated application performance after fixing the one-by-one

processing anti-patterns.

As shown in Section 5.3, the slow performance in the one-by-one processing

anti-patterns is mainly attributed to the inefficiency in the generated SQL state-

ments. The one-by-one processing anti-patterns in ORM generate repetitive SQL

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 70

statements with minor differences. The repetitive SQL statements can be optimized

using batches, which reduce a large amount of query preparation and transmission

overheads. Therefore, the performance measure for executing the optimized SQL

statements could be a good estimate for the anticipated application performance

after fixing the one-by-one processing anti-patterns. To obtain the generated SQL

statements, we use a SQL logging library called log4jdbc (Bloom, 2013) to log the

SQL statements and SQL parameter values. log4jdbc simply acts as an intermediate

layer between JDBC to the DBMS, which relays the SQL statements to the DBMS

and outputs the SQL statements to log files.

We detect the repetitive SQL statements generated by ORM, and execute the SQL

statements in batches using Java Database Connectivity (JDBC), which assess the

performance impact after fixing the performance anti-pattern. Note that since JDBC

does not support batch operations for select, we exclude select in our assessment. We

execute the original non-optimized and optimized SQL statements separately and

compare the performance differences in terms of response time.

Part 3 - Statistically rigorous performance evaluation

Performance measurements suffer from instability, and may lead to incorrect re-

sults if not handled correctly (Arnold et al., 2002; Georges et al., 2007; Kalibera and

Jones, 2013). Thus, a rigorous study is required when doing performance measure-

ments (Kalibera and Jones, 2013). Therefore, our framework does repeated mea-

surement and computes effect sizes of the performance improvement (i.e., quanti-

fies the increase in response time statistically) to overcome the instability problem.

Repeated measurements: Georges et al. (2007) recommend computing a confi-

dence interval for repeated performance measurements when doing performance

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 71

evaluation, since performance measurements without providing measures of vari-

ation may be misleading and incorrect (Kalibera and Jones, 2013). We repeat the

performance tests 30 times (as suggested by Georges et al. (2007)), and record the

response time before and after doing fixes. We use Student’s t-test to examine if

the improvement is statistically significant different (i.e., p-value ¡ 0.05). A p-value

¡ 0.05 means that the difference between two distributions is likely not by chance.

Then, we compute the mean response time and report the 95% confidence interval.

A t-test assumes that the population distribution is normally distributed. According

to the central limit theorem, our performance measures will be approximately nor-

mally distributed if the sample size is large enough, since the noise in each of our

test run is independent (we reset the application state after each test run) (Georges

et al., 2007; Moore et al., 2009).

Effect size for measuring the performance impact: We conduct a rigorous perfor-

mance improvement experiment by using effect sizes (Kampenes et al., 2007; Naka-

gawa and Cuthill, 2007). Unlike t-test, which only tells us if the differences of the

mean between two populations are statistically significant, effect sizes quantify the

difference between two populations. Researchers have shown that reporting only

the statistical significance may lead to erroneous results (Kampenes et al., 2007)

(i.e., if the sample size is very large, p-value can be small even if the difference

is trivial). We use Cohen’s d to quantify the effects (Kampenes et al., 2007). Co-

hen’s d measures the effect size statistically, and has been used in prior engineering

studies (Kampenes et al., 2007; Kitchenham et al., 2002). Cohen’s d is defined as:

Cohen’s d =
x̄1 − x̄2

s
, (5.1)

where x̄1 and x̄2 are the mean of two populations, and s is the pooled standard

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 72

deviation (Hartung et al., 2011).

The strength of the effects and the corresponding range of Cohen’s d values

are (Kampenes et al., 2007):

effect size =



trivial if Cohen’s d ≤ 0.2

small if 0.2 < Cohen’s d ≤ 0.5

medium if 0.5 < Cohen’s d ≤ 0.8

large if 0.8 < Cohen’s d

We output the performance anti-patterns, ranked by their effect sizes, in an

HTML report. The report contains the database assess methods and the code path

of the detected one-by-one processing anti-patterns.

5.5 Case Study

In this section, we apply our framework on one open source application (BroafLeaf

commence) and one large-scale closed-source enterprise application (EA). We seek

to answer the following two research questions:

RQ1: What is the performance impact of the detected anti-patterns?

RQ2: How do performance anti-patterns affect application performance at differ-

ent input scales?

Each research question is organized into three sections: Motivation, Approach and

the Results. Table 5.1 shows the statistics of the studied applications.

All of our studied applications use JPA for ORM and follow the “Model-View-

Controller” design pattern (Krasner and Pope, 1988). Broadleaf is a large open

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 73

Table 5.1: Statistics of the studied applications and number of detected anti-pattern
instances.

Total lines No. of No. of 1-by-1
of code (K) files processing

Broadleaf 3.0 206K 1,795 228
EA >300K >3,000 >10

source e-commerce application that is used in many commercial companies world-

wide for building online transaction platforms. EA supports a large number of

users concurrently and is used by millions of users worldwide on a daily basis. We

sought to use open source applications, in addition to the commercial application,

so others can verify our findings and replicate our experiments on the open source

applications, as we are not able to provide access to the EA.

RQ1: What is the performance impact of the detected anti-patterns?

Motivation. Application performance is highly associated with run-time context

and input workloads (Goldsmith et al., 2007; Xiao et al., 2013; Zaparanuks and

Hauswirth, 2012). Rarely or never executed anti-patterns would have less per-

formance impact compared to frequently-executed ones. Therefore, we use test

cases to assess the performance impact instead of executing the anti-patterns indi-

vidually. In this research question, we want to detect and prioritize performance

anti-patterns by exercising different features of an application using our proposed

framework (Section 5.4).

Approach. test case Since performance problems are usually revealed under large

data sizes (Goldsmith et al., 2007; Jin et al., 2012), we manually increase the data

sizes in these test cases and write a data loader for loading data into the DBMS. Our

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 74

Table 5.2: Performance assessment result for one-by-one processing. Tests with
p-value < 0.05 have statistically significant performance improvement (marked in
bold). Numbers in the parentheses are the percentage reduction in response time.

Application Test Case No. One-by-one µ Before (sec) µ After (sec) Statistical Effect size
Description Processing Significance

Covered (p-value)

Broadleaf

Customer Phone 61 1.00±0.30 1.09±0.33(-0.09%) 0.68 0.10 (trivial)
Offer Service 67 1.23±0.47 1.08±0.34(-12%) 0.60 0.13 (trivial)
Shopping Cart 52 21.46±1.64 14.58±0.42(-32%) <<0.001 2.07(large)
Checkout 109 13.25±0.30 10.63±0.66(-20%) <<0.001 1.86 (large)
Customer Addr. 61 1.49±0.33 1.08±0.10(-27%) <0.05 0.59 (medium)
Customer 61 1.11±0.42 0.95±0.32(-15%) 0.54 0.15 (trivial)
Order 104 13.12±0.27 10.20±0.18(-22%) <<0.001 4.54 (large)
Offer 62 1.23±0.56 0.95±0.25(-22%) 0.37 0.23 (small)
Payment Info 61 1.08±0.31 1.16±0.38(+8%) 0.74 0.08 (trivial)

EA Multiple Features > 10 — improved by 69% <<0.001 55.3 (large)

framework repeatedly exercises the test cases and computes the effect sizes of the

performance impact. Moreover, we measure the performance impact before and

after fixing all the anti-patterns in each test case, separately. We use the percentage

reduction in response time, statistical significance of such reduction, and effect size

to measure performance impact (i.e., whether there is an actual difference and how

large the effect is).

Results. Anti-pattern detection results: Table 5.1 shows the anti-pattern detection

result. In Broadleaf, our framework detected a total of 308 instances of one-by-one

processing anti-pattern. Since a large number of anti-pattern instances is detected,

we only emailed the top 10 instances of high impact performance anti-patterns to

the developers. We are currently waiting for their reply. Due to non-disclosure

agreement (NDA), we cannot present the exact numbers of detected anti-patterns

in EA. However, we can confirm that our framework is able to detect many of the

existing and new performance problems in EA.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 75

Performance benefits of removing one-by-one processing. Table 5.2 shows the perfor-

mance impact of one-by-one processing in each test case, and the assessed perfor-

mance improvement.

In Broadleaf, one-by-one processing anti-patterns have a statistically significant

performance impact in 4 out of the 9 test cases, and the effect sizes are at least

medium (0.59–4.54). The assessed response time reduction is from 20–32%.

One-by-one processing anti-patterns have a non-statistically significant impact in

other test cases. These test cases have one common behaviour: very short response

time. The results indicate that when the response time of a program is small, adding

batches will not give much improvement. This also shows that not all anti-patterns

are worth fixing.

Although we cannot show the mean response time and confidence interval in

EA, the assessed response time reduction is high (69%) and the effect size is large

(55.3). By using batch operations, the performance of EA was improved signifi-

cantly.

Our performance assessment results show that performance anti-patterns have a

statistically significant performance impact in 5/10 test cases with effect sizes vary-

ing from medium to large. We find that fixing the performance anti-patterns may

improve the response time by up to 69%.

RQ2: How do performance anti-patterns affect application per-

formance at different input scales?

Motivation. In RQ1, we manually change the data sizes to large to study the im-

pact of performance anti-patterns. However, populating large volumes of data into

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 76

Table 5.3: Performance assessment result for different scales of data sizes. We do
not show the effect size for the tests where the performance improvements are not
statistically significant (i.e., p-value >= 0.05).

Application Test Case Effect Sizes for Different Input Sizes
Description small medium large

Broadleaf

Shopping Cart 0.88 1.77 2.08
Checkout – 0.55 1.86
Customer Addr. – 0.51 0.59
Order – 1.46 4.54

EA Multiple Features 16.2 21.8 55.3

the DBMS requires a long time, and a database expert is needed to ensure that the

generated data satisfies all the database schema requirements (Kapfhammer et al.,

2013). In this research question, we study whether we still have the same prioriti-

zation ranking of the performance anti-patterns using smaller data sizes.

Approach. We focus only on the test cases which yield anti-patterns with statisti-

cal significant performance impact in RQ1. We manually modify the test cases to

change the data sizes to medium and small as opposed to big data sizes in RQ1. We

reduce the data sizes by a factor of 2 at each scale (e.g., medium data size is 50%

of large data size and small data size is 50% of the medium data size). Finally, we

re-run the performance tests to study how the performance impact and effect size

change at smaller scales.

Results. Table 5.3 shows the performance impact assessment of one-by-one pro-

cessing at different scales. In general, one-by-one processing anti-patterns in Broadleaf

have a higher performance impact (i.e., larger effect sizes) when the data sizes

increase, because the data sizes directly affect the number of iterations in loops.

However in most test cases, these one-by-one processing anti-patterns still have a

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 77

statistically significant impact at smaller scales. We find that only three test cases do

not have a significant performance impact when the data size is small, but all test

cases have a significant performance impact when the data size is medium (effect

size 0.51–1.77). We find a similar trend in EA, where the effect size increases as

data size increases. We can still identify performance problems in these test cases

using small to medium data sizes.

We find that the priority of the performance anti-patterns at different scales is

consistent, i.e., the rank of the effect sizes in different test cases is consistent across

different input data scales. For example, the rank of the effect sizes for test cases

using medium and large data sizes is the same except for the ranks of the Shopping

cart test and the Order test, which are swapped. As a result, if the generation of

large dataset takes too long or takes too much effort, we are still very likely to

reproduce the same set of severe performance problems using a smaller dataset.

We find that the prioritization of performance anti-patterns when exercised on

medium scale data size is very similar to the large data size. This results show that

developers may not need to deal with all the difficulties of populating large data

into the DBMS to reveal these performance problems.

5.6 Discussion

In this section, we discuss the accuracy of our performance assessment, extensions

of our framework, and initial developer feedback.

The accuracy of our one-by-one processing performance assessment method-

ology. In our performance assessment methodology for one-by-one processing, we

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 78

measure the response time of the original non-optimized and optimized SQL state-

ments instead of directly fixing the code. To study the accuracy of this methodology,

we develop a simple program with a known one-by-one processing anti-pattern (ex-

ample in Section 5.3) for evaluation.

We populate a DBMS with 100, 000 department names in all companies and ver-

ify using the example in Figure 5.1 (2). We fix the one-by-one processing pattern

in the code by writing SQL statements using JPA-specific query language. The orig-

inal code takes about 24.67 ± 0.84 seconds. Fixing the code results in a mean re-

sponse time of 5.36±0.06 seconds, and the assessment shows a mean response time

of 10.42 ± 0.09 seconds. The experiment shows that our assessment methodology

may be an over-estimate but can achieve a comparable performance improvement

(78.3% v.s. 57.8%) to assess the impact of the anti-patterns. In the future, we plan

to investigate automated performance refactoring approaches for fixing the one-by-

one processing anti-patterns.

Framework extension. In this chapter, we proposed a rule-based approach, which

detects and prioritizes one of the most pervasive ORM performance anti-patterns.

Similar to any other pattern detection work, our framework cannot detect unseen

performance anti-patterns. However, our framework could easily be extended by

encoding other performance anti-patterns. In Chapter 6, we discuss how an exten-

sion of the framework is adopted into practice.

Initial Developer Feedback. We received positive feedback from developers and

performance testers in EA. The framework is able to help them narrow down the

performance problems and find potential bottlenecks. The framework is now inte-

grated into the daily development processes of EA.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 79

5.7 Threats to Validity

In this section, we discuss the threats to validity.

5.7.1 External Validity

We have only evaluated our framework on three applications. Some of the findings

might not be generalizable to other applications. Although the studied applications

vary in sizes and domains, other similar applications may have completely different

results. Future work should apply our framework to more applications and even

different programming languages (e.g., C#).

5.7.2 Construct Validity

Detection approach. We use static analysis for detecting performance anti-patterns.

However, static analyses generally suffer from the problem of false positives, and

our framework is no exception. For example, a detected performance anti-pattern

may be seldom or never executed due to reasons like unrealistic scenarios or small

input sizes. Therefore, we provide a performance assessment methodology to verify

the impact and prioritize the fixing of the detected performance anti-patterns.

Experimental setup. We exercise the performance anti-patterns using test cases, so

we do not have control over which performance anti-patterns will be exercised. As a

result, our performance impact assessment study only applies to the exercised per-

formance anti-patterns. However, our performance impact assessment methodol-

ogy is general, and can be used to discover the impact of performance anti-patterns

in different software components and to prioritize QA effort.

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 80

We manually change the data sizes to study how the impact of performance

anti-patterns changes in different scales. Changing the data loader in the code

and loading data in the DBMS require a deep understanding of the application’s

structure and design of each test case. Although we studied the code in each test

case and database schemas carefully, it is still likely that we did not change the

inputs that are directly associated with the performance anti-patterns, or that the

data does not generate representative workloads. However, case studies show that

we can still detect a similar set of high impacting performance anti-patterns using

different sizes of data.

Fixing performance anti-patterns and performance assessment. Fixing some

performance anti-patterns may require API breaks and redesign of the application.

Therefore, fixing them may not be an easy task. For example, to achieve maximal

performance improvement, sometimes it is necessary to write SQL statements in

ORM (Linwood and Minter, 2010). If the anti-pattern is generating many small

database messages, which cause transmitting overheads and inefficient bandwidth

usage, the solution is to apply batching (Smith and Williams, 2003). In addition,

different implementations of ORM support different ways to optimize performance.

As a result, we provide a performance assessment methodology for assessing the

performance impact. We use a similar methodology as Jovic et al. (2011) to mea-

sure the performance impact of one-by-one processing. Although our performance

assessment methodology may not give the exact performance improvement and

there may be other ways to fix the performance anti-patterns, we can still use the

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 81

assessment result to prioritize the manual verification and performance optimiza-

tion effort. We can further reduce the overheads of running the performance assess-

ment approach using the result of our static analysis, and focus only on the parts of

the application that are prone to performance anti-patterns.

It is possible that the performance fixes may have contradicting result in differ-

ent use cases. For example, in some cases using a fetch type of EAGER may yield a

better performance, but may yield performance degradation in other cases. How-

ever, since ORM provides a programming interface to change the configuration and

fetch plans dynamically, the problem can be solved by developers easily.

5.8 Chapter Summary

Object-Relational Mapping (ORM) provides a conceptual abstraction between the

application code and the DBMS. ORM significantly simplifies the software devel-

opment process by automatically translating object accesses and manipulations to

database queries. Developers can focus on business logic instead of worrying about

non-trivial database access details. However, there are hidden costs when using

these ORM frameworks, as we find in Chapter 4. Writing ORM code incorrectly or

inefficiently might lead to performance anti-patterns, causing transactions timeout

or hangs in large-scale software applications.

In Chapter 2, we find that existing static anti-pattern detection tools do not

support detecting performance problems in database access code. Therefore, in

this chapter, we propose a framework, which can detect and prioritize instances of

ORM performance anti-patterns. We applied our framework on two software appli-

cations: one open-source and one large enterprise applications. Case studies show

CHAPTER 5. STATICALLY DETECTING ORM PERFORMANCE ANTI-PATTERNS 82

that our framework can detect hundreds or thousands instances of performance

anti-patterns, while also effectively prioritizing the fixing of these anti-pattern in-

stances using a statistically rigorous approach. Our static analysis result can fur-

ther be used to guide dynamic performance assessment of these performance anti-

patterns, and reduce the overheads of profiling and analyzing the entire application.

We find that fixing these instances of performance anti-patterns can improve the ap-

plications’ response time by up to 69%. In the rest of the thesis, we first discuss an

extension to our static anti-pattern framework and the experience we learned when

adopting the framework in practice. Then, to address the limitation of static anal-

ysis, we propose another anti-pattern detection approach using dynamic analysis.

Finally, to address the problem that we find in Chapter 4, where developers rarely

tune ORM performance configurations, we propose an automated approach to help

developers find an optimal ORM cache configuration.

CHAPTER 6

Adopting Anti-pattern Detection Framework in Practice

In Chapter 5, we propose a static performance anti-pattern detection framework, and our
framework is well received by our industrial partners. In this chapter, we document our
industrial experience over the past few years on finding anti-patterns of database access
code, implementing an anti-pattern detection tool, and integrating the tool into daily prac-
tice. We discuss the challenges that we encountered and the lessons that we learned during
integrating our tool into the development process. We also provide a detailed discussion of
five framework-specific database access anti-patterns that we found. We hope to encour-
age further research efforts on framework-specific detectors, instead of the current research
focus on general programming language anti-patterns and associated detectors.

An earlier version of this chapter is published at the 38th International Conference on Soft-
ware Engineering, Software Engineering in Practice Track (ICSE-SEIP), 2016. Austin, Texas.
Pages 71–80. (Chen et al., 2016b)

83

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 84

6.1 Introduction

DUE to the emergence of cloud computing and big data applications, mod-

ern software applications become more dependent on the underlying

database management systems (DBMSs) for providing data manage-

ment and persistency. As a result, DBMSs have become the core component in such

database-centric applications, with DBMSs usually interconnecting other compo-

nents. Thus, due to the complexity of how developers interact with the DBMSs,

it can be difficult to discover and detect problems (e.g., anti-patterns) in database

access code.

Since the exact behaviour of these DBMSs are often blackboxes to developers,

writing high quality test cases that can uncover all database access problems is

nearly impossible. In additional to testing, developers usually use static anti-pattern

detection tools, such as FindBugs (Hovemeyer and Pugh, 2004) and PMD (2016),

to provide a complete coverage of the entire application. However, these anti-

pattern detection tools usually only provide patterns for detecting general code

bugs, but cannot detect domain-specific anti-patterns that are associated with ac-

cessing databases. For example, modern applications usually leverage different

frameworks to abstract database access to speed up development time and reduce

maintenance difficulty. Thus, using these frameworks incorrectly may introduce

more domain-specific anti-patterns. In addition, existing static anti-pattern detec-

tion tools usually rely on scanning the binary files, but many database access anti-

patterns that we see in practice require parsing specialized annotations in the code

or analyzing external SQL scripts.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 85

In Chapter 5, we implemented a prototype tool to detect a database access anti-

pattern in collaboration with industry. Our research-based domain-specific static

anti-pattern detection tool, DBChecker, received very positive feedback from de-

velopers, and was adopted and integrated as part of the day-to-day development

processes of the industrial application. We have worked closely with developers in

order to ease the adoption of our tool. However, during such process, we encoun-

tered challenges and learned lessons that are associated with how to successfully

make practitioners adopt a research-based domain-specific static anti-pattern de-

tection tool. In this chapter, we document and discuss the challenge and lessons

learned. We believe that our experiences can help other researchers improve anti-

pattern detection tools and ensure a smoother adoption process of their tools in

practice.

This chapter also documents five additional framework-specific database access

anti-patterns that we observed while working on several industrial applications.

Our goal is to give readers concrete examples of framework-specific anti-patterns.

Since most modern applications are leveraging frameworks, framework-specific

anti-patterns can have a large impact in practice. For example, the anti-pattern

that we study in Chapter 5 can have significant performance impact and is common

in database-centric applications (Yan et al., 2016). Hence, we hope to encourage

further research efforts on framework-specific detectors, instead of the current re-

search focus on general programming language anti-patterns and associated detec-

tors.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 86

6.2 The Main Contributions of this Chapter

1. We provide an experience report that discusses the lessons that we learned on

discovering, locating, and detecting the anti-patterns, and the challenges that

we encountered when adopting our anti-pattern detection tool in practice.

2. We provide detailed documentation on the root causes and impact of five

database access anti-patterns that we have seen in the studied industrial ap-

plications over the past few years.

6.3 Related Work

In this section, we discuss related work to our study.

6.3.1 Integrating Code Analysis Research Tools into Practice

In addition to this chapter, there are some prior studies discussing the challenges

associated with adopting static anti-pattern detection research tool into practice.

Johnson et al. (2013) interview 20 developers regarding the challenges that they

see when using static anti-pattern detection tools. Johnson et al. (2013) find that

tool configuration (e.g., filtering mechanism), integration with development work-

flow, and report formatting affect developers’ willingness to use a static anti-pattern

detection tool. Ayewah et al. (2007) evaluate the generated warnings by FindBugs

on production software. They found that FindBugs finds many true bugs with lit-

tle or no functional impact, and there is a need for prioritizing high impact defects.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 87

Nanda et al. (2010) discuss how they use an online portal to help improve the adop-

tion of static anti-pattern detection tools at IBM. The portal provides cloud-based

code scanning and allows developers to communicate by adding discussion to the

static anti-pattern detection reports. Smith et al. (2015) conduct a user study on

the questions that developers ask when using static anti-pattern detection based

security tools. They found that the security tools should provide better reporting

systems to help developers detect the problems.

In this chapter, we focus on database access anti-patterns, which have different

characteristics than general anti-patterns. For example, due to the differences in the

nature of the accessed database tables (e.g., size), some detected instances of anti-

patterns may be more severe in practice. Since adopting research results in practice

can be very challenging (Lo et al., 2015), we discuss the challenges and lessons that

we learned when adopting our static anti-pattern detection tool in practice.

6.4 Background

In this section, we briefly discuss the industrial applications that we use, and the

background story behind creating a tool to detect database access anti-patterns.

Studied Applications. Due to non-disclosure agreement (NDA), we cannot give the

exact details of the applications. However, the industrial applications are very large

in sizes (millions of lines of code), support a large number of users concurrently,

and are used by millions of users worldwide on a daily basis. Below, we discuss

the two main technologies that these industrial applications often use for accessing

DBMS and managing database transactions.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 88

There is a slew of similar technologies used in practice today by researchers and

developers. Hence, the discussed patterns and our experiences are general, and

are not specific to a particular technology; instead, the patterns are due primarily

to the interaction between application code and database. We discuss the technol-

ogy below because of their popularity and our need to provide concrete examples

throughout the chapter, so the reader can better grasp the raised concerns and the

documented patterns.

Transaction Management Using Spring. Spring (SpringSource, 2016) is a widely

used framework for database transaction management, based on an aspect-oriented

approach. A recent survey (ZeroturnAround, 2014) shows that Spring is the most

commonly used Java web framework (more than 40% of developers use Spring).

Spring abstracts database transaction management code using annotations. For

example:

1 @Transactional

2 public void performBusinessTransaction (){

3 ...

4 }

In this simple code example, by adding the annotation @Transactional, the method

performBusinessTransaction and all the timemethods called within it will be executed

in a single database transaction. Thus, developers can avoid writing boilerplate

code, instead they can focus on the business logic of the application.

In practice, we see some database access anti-patterns that are related to how

a transaction is configured when using Spring. For example, a transaction can

have the default configuration, where a transaction will be created if the annotated

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 89

method is not already in a transaction. If the annotated method is already within a

transaction (e.g., one of the caller methods is also annotated with @Transactional),

the method would be executed in the parent transaction and will not create a new

transaction. If the annotation has the property @Transactional(REQUIRES NEW),

then a new transaction will always be created, and the parent transaction will be

suspended until the newly created transaction is completed. If the annotation has

the property @Transactional(NOT SUPPORTED), then the parent transaction will

be suspended until the annotated method returns. In practice, we have seen in-

correct uses of such configuration that cause functional or non-functional problems

(e.g., deadlocks, feature bugs, and scalability issues).

6.5 Challenges and Lessons Learned

We encountered many bugs that are associated with accessing a DBMS when de-

veloping large-scale industrial applications. In our previous Chapter 5, we derived

some anti-patterns based on such bugs, and implemented a prototype static anti-

pattern detection tool. Our tool received very positive feedback from developers,

and attracted interests from various development teams. After active discussion

and cooperation with the developers, we received many additional database access

anti-patterns that the developers have seen over the years in the field. Based on

our experience (Chapter 5), database access anti-patterns can have significant im-

pact on the application quality. As these database access anti-patterns cannot be

detected using readily available static anti-pattern detection tools such as FindBugs

or PMD, we implemented the detection algorithms and integrated them into our

DBChecker tool. However, although developers see value in our database access

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 90

anti-pattern detection tool, we encountered many roadblocks when adopting this

line of research into practice. As a result, we feel that, in addition to discussing new

database access anti-patterns that we have seen since our prior work, documenting

the challenges that we encountered and the lessons that we learned can further

help researchers create tools that have a higher chance to be adopted in practice,

and can reduce the gap between static anti-pattern detection research and practice.

Below, we provide detailed discussions on the challenges that we encountered

when adopting our tool to detect database access anti-patterns. For each challenge,

we provide the description and impact of the challenge, our solutions to address

the challenges, and the lessons that we learned.

C1: Handling the Large Size of Detection Results

Challenge Description. A common challenge when using static anti-pattern detec-

tion tools is that these tools usually report a large number of anti-pattern instances

that overwhelm the developers (Johnson et al., 2013; Shen et al., 2011), and our

tool is not an exception. However, we found that not all of the detected anti-pattern

instances are real problems, since some of them may be false positives. In addition,

to the best of our knowledge, there is no prior study that discusses the integration

of static performance anti-pattern detection tool in practice. We found that many

detected performance anti-patterns are true bugs, but their impact may be too small

to be relevant.

Challenge Impact. Showing all the detected anti-pattern instances to the devel-

opers at once would quickly reduce developers’ interest and trust in the tool. In

addition, developers usually only have limited time and resources to investigate a

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 91

portion of the detected anti-pattern instances. So it is important to highlight the

anti-pattern instances that have the highest impact. Therefore, helping developers

make fast decision on whether a detected anti-pattern instance is a false positive,

and how to prioritize their efforts on reviewing the detection results is very impor-

tant for effective QA resource utilization.

Solutions to Handling the Large Size of Detection Results and Lessons Learned.

We found that in many cases, the detected anti-pattern instances may not have the

same impact, even though the anti-pattern instances belong to the same pattern.

For example, a detected anti-pattern instance that is related to a frequently ac-

cessed database table can have a larger impact in practice, compared to anti-pattern

instances related to rarely accessed tables. We also found that we need to consider

the size the table that the database access code is accessing, since large data sizes

can increase the impact of an anti-pattern instance (Goldsmith et al., 2007). How-

ever, it is impossible to get the above-mentioned information using static analysis,

but the information can greatly help reduce developers’ effort on inspecting the

static analysis results. Based on the feedback we received from developers, we

have integrated several functionalities into DBChecker that helped us improve tool

adoption and acceptance.

Grouping Detected Anti-pattern Instances. Grouping the detected anti-pattern in-

stances allows developers to allocate more resources to important components of

the application. Figure 6.1 shows an example detection report of the nested trans-

action anti-pattern. We group the detected anti-pattern instances according to the

source (i.e., packages or root causes) to which they belong, such that developers can

focus on features that are more important (similar features are usually located in

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 92

{
“p

ro
pa

ga
tio

nL
ea

f”
: [

“N
O

T
_S

U
P

P
O

R
T

E
D

”
]

} su
bm

it

T
ra

n
sa

ct
io

n
a

l M
e

th
o

d
To

ta
l N

u
m

b
e

r
3

p
a

ck
a

g
e

.s
e

rv
ic

e
.U

se
rS

e
rv

ic
e

.d
e

le
te

U
se

r
1

p
a

ck
a

g
e

.s
e

rv
ic

e
.g

ro
u

p
S

e
rv

ic
e

.a
d

d
U

se
r

2R
e

co
ve

re
d

D
B

a

cc
e

ss
P

ro
pa

g
at

io
n

(R

o
o

t)
T

ra
n

s
D

e
cl

a
re

d
a

t C
la

ss
 L

e
ve

l
A

n
n

o
ta

tio
n

N
e

st
ed

T

ra
ns

a
ct

io
n

a
l

M
e

th
o

d

P
ro

p
a

g
a

tio
n

 (
L

e
a

f)
C

a
ll

P
a

th

W
R

IT
E

R
E

Q
U

IR
E

D
F

a
ls

e
@

T
ra

n
sa

ct
io

n
a

l()
p

a
ck

a
g

e
.d

b
.U

se
r

D
a

o
.d

e
le

te
U

se
r

R
E

Q
U

IR
E

S
_

N
E

W
p

ac
ka

g
e.

se
rv

ic
e

.U
se

rS
e

rv
ic

e.
d

el
e

te
U

se
r

->
 p

a
ck

a
g

e
.d

b
.U

se
rD

a
o

.d
e

le
te

U
se

r

Fi
gu

re
6.

1:
A

n
ex

am
pl

e
de

te
ct

io
n

re
po

rt
fo

r
th

e
ne

st
ed

tr
an

sa
ct

io
n

an
ti

-p
at

te
rn

.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 93

the same package and affected by the same problem). In order to identify whether

the detected anti-pattern instance is real and has a sizeable impact in a timely man-

ner, our tool also recommends the experts that should investigate the anti-pattern

instance, based on the developer who last modified the method, in which the de-

tected anti-pattern instance was found.

To help developers allocate quality assurance efforts, we group the detected anti-

pattern instances according to their locations in the code.

Prioritizing Detected Anti-pattern Instances. We found that some of the studied

database access anti-patterns may have varying severity in different use cases, es-

pecially for performance related anti-patterns. For example, if an anti-pattern is

related to relationships between two database tables, a many-to-many relationship

would be more severe than one-to-one (Chen et al., 2014a, 2016d). In the case of

eagerly fetching data from the DBMS, a one-to-many relationship between two ta-

bles means that if we retrieve data of one user from the DBMS, we will also eagerly

retrieve data of all the groups to which the user belongs. Thus, the anti-pattern

instance becomes more severe compared to the same pattern but with a one-to-one

relationship. Hence, it is important to prioritize the detected anti-pattern instances

according to their potential severity to reduce the inspection effort of developers.

We also find that providing a sorting mechanism in the detection report can further

help developers allocate QA resources. Since some database tables are accessed

more frequently or have more data, detected anti-pattern instances that involve

those tables should be ranked higher. Developers should be able to choose the

database table of interest, and the report would prioritize the detected anti-pattern

instances that are related to those tables.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 94

To help developers allocate quality assurance efforts, we prioritize the detected

anti-pattern instances according to their potential severity.

Characterizing the Detected Anti-pattern Instances. In order to improve the readabil-

ity of our report and help developers understand the detected anti-pattern instances

faster, we provide a detailed breakdown of each detected anti-pattern instance in

the report. Figure 6.1 shows an example detection report of the nested transaction

anti-pattern. For each detected anti-pattern instance, the report shows the root

transactional method (deleteUser) and the package to which it belongs. The re-

port further shows that if any of the methods in the subsequently called methods

contain a read or write to the DBMS (Recovered DB Access column in the report),

and the transaction propagation of the root transactional method (REQUIRED). We

also show the actual annotations that are declared in the code for the root trans-

actional method (Annotation column), and whether the annotation is annotated

at the method or class level. Finally, the report shows the nested transactional

method (deleteUser), its propagation level, and the call path from the root transac-

tional method to the nested transactional method. We provide similar breakdowns

of each detected anti-pattern for other database access anti-patterns. In short, we

find that by providing a detailed breakdown of each anti-pattern instance in the

report, we can help developers understand the problem and uncover its root cause

faster. Thus, developers can allocate the QA resources accordingly.

We provide a detailed breakdown of each detected anti-pattern instance in order to

help developers understand the root cause of the problem faster and identify more

important problems.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 95

Learning From Developers. As discussed by Johnson et al. (2013), developers usually

want more customizability of static anti-pattern detection tools or outputs. From

our experience, we found that developers can tolerate a certain amount of false

positives, but it is important for the anti-pattern detection tool to learn which de-

tected patterns should not show up again in the detection report, based on devel-

opers’ feedback. Integrating developers’ feedback on what to do with a reported

anti-pattern instance is useful for hiding detected database access anti-patterns that

developers have already verified, or hiding anti-patterns that are less interesting

(e.g., the anti-patterns have minor impact or the component with the detected anti-

pattern is not a high priority component).

After discussing with developers, we implement a functionality in DBChecker

to integrate developers’ feedback to improve future reports. For example in Fig-

ure 6.1, developers can decide that all detected anti-pattern instances that have a

REQUIRED transaction propagation should be hidden in future reports. Then, by

clicking REQUIRED (under the column Propagation (ROOT)) in the first detected

anti-pattern instance in the report, all detected anti-pattern instances that have the

propagation level of REQUIRED would not appear in future reports.

On the other hand, if a developer decides to hide the detected anti-pattern in-

stances according to the transactional method (e.g., deleteUser), then only that par-

ticular anti-pattern instance would be hidden. Developers can also use the text

area (i.e., the form with a submit button in Figure 6.1) to see and to update their

previous decisions.

In our experience, integrating developers’ feedback on the detected anti-pattern

instances can help developers prioritize their efforts.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 96

C2: Giving Developers Rapid Feedback

Challenge Description. We found that it is difficult to ask every developer to run

static anti-pattern detection tools in his/her own local environment. A similar chal-

lenge was previously encountered by Shen et al. (2011) while using other static

anti-pattern detection tools. Setting up and running the tools may interrupt de-

velopers’ common workflow. However, it is important to provide developers with

prompt alerts about new anti-pattern instances in the code in a timely manner. If

we only scan the code once a while, the tool may find a large number of newly

introduced anti-pattern instances. Such a large number may reduce developers’

motivation to inspect the detection results.

Challenge Impact. Based on our experience, if we only present the report to de-

velopers every once a while, we lower developers’ attention and interest in the de-

tected anti-pattern instances. Developers may forget about the details of the code

that caused the anti-pattern instances, which makes it even more difficult to fix

the detected anti-pattern instances. Moreover, since there may be new code that is

dependent on the detected anti-pattern instances, fixing the detected anti-pattern

instances may sometimes even require redesigning the APIs.

Solutions to the Giving Developers Rapid Feedback and Lessons Learned. In or-

der to allocate resources to investigate detected database bug access patterns more

efficiently, DBChecker is currently integrated in the Continuous Delivery process.

Continuous Delivery (Chen, 2015a) is a common development process for ensur-

ing the quality of the application, where development teams continuously generate

products (newer versions of an application) that are reliable for releasing in short

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 97

cycles. For example, Facebook releases new version of its application into produc-

tion twice a day, and Amazon makes changes to its production applications every

11.6 seconds on average1.

To solve the above-mentioned issues, we host DBChecker in a cloud environment

to scan the newest versions of the applications once a day, and generate a report

of all the detected anti-pattern instances, as well as the new anti-pattern instances

that are introduced since its last run. Since there is not usually a large amount of

new code that is added since the last run, developers only need to examine a small

number of newly introduced anti-pattern instances. In addition, developers do not

need to worry about setting up and running DBChecker on their local environment.

Based on our experience, integrating our static anti-pattern detection tool in the

Continuous Delivery process can help increase developers’ interest in the detection

results and allow prompt attention to the detected anti-pattern instances.

C3: Maintaining Developers’ Interest in the Detection Results

Challenge Description. We found that developers may lose interest in the static

anti-pattern detection results if the detected anti-pattern instances are not related

to the components that are under active development, or if the detected anti-pattern

instances are not related to the currently-faced development challenges. Namely,

developers have goals in their development cycles, so they may focus more on their

current goals first instead of allocating time to fix the detected anti-pattern instances

that might not have an impact in the field yet.

1https://www.thoughtworks.com/insights/blog/case-continuous-delivery

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 98

Challenge Impact. Static anti-pattern detection tools are only useful if the develop-

ers are willing to investigate the detected anti-pattern instances and provide fixes.

Thus, if developers lose interest in the tool, or do not trust the tool’s output, the

tool would provide no benefit to the developers.

Solutions to Maintaining Developers’ Interest in the Detection Results and

Lessons Learned. From our experience, we found that in order to increase de-

velopers’ adoption and interest of static anti-pattern detection tools, it is important

to have developers involved in tool development to some extent. In our previous

chapter, we implemented our static anti-pattern detection tool and walked devel-

opers through the bugs that we found. The developers were not only interested

in the anti-pattern instances that we detected, but they were also interested in

how the tool was developed and whether the tool can be extended to detect other

anti-patterns. Now we sometimes receive requests from developers to implement

detectors for new anti-patterns that they see, and cannot be detected using existing

tools such as FindBugs. We also found that developers have extremely high interest

in reviewing the detected anti-pattern instances related to the new anti-patterns

that they asked us to develop, since developers are still actively working on fixing

those anti-patterns.

Involving developers in the development and discussion of the anti-pattern detec-

tion tool increases developers’ interest and motivation to fix the detected anti-

pattern instances.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 99

C4: Communicating the Anti-patterns with Developers

Challenge Description. As applications become more complex, developers usually

abstract SQL queries as method calls using various frameworks (e.g., Hibernate).

However, since not all developers have deep understanding about the frameworks,

we encountered some challenges when demonstrating the results of our newly im-

plemented detection algorithm. Even after the tool is widely accepted, it is still

very important to assign the right person to fix the anti-pattern to speed up the bug

fixing process.

Challenge Impact. Developers may not take the static anti-pattern detection re-

sults seriously if they cannot understand the impact of the detected anti-pattern

instances. Also, we found that sometimes developers may be unwilling to fix de-

tected anti-pattern instances if they are not the one who introduced the detected

anti-pattern instances.

Solutions to Communicating the Anti-patterns with Developers and Lessons

Learned. We found that when demonstrating the tools to developers, it is impor-

tant to educate them about the anti-patterns. Since it is impossible for every de-

veloper to understand all components of an application, some developers may not

understand the impact and cause of some anti-patterns. Therefore, we had to find

some key examples from the detected anti-pattern instances and demonstrate their

impact. In short, we cannot simply give the detection reports without highlighting

and demonstrating the reasons that the anti-pattern instances are detected, and the

possible impact of the anti-pattern instances.

We hosted several “static anti-pattern detection result workshops” to advertise

our tool to various development teams. We focused on explaining how the tool

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 100

works and the detection results, and letting developers know how the tool can be

extended to help them detect other anti-patterns. One of the benefits of hosting

such workshops is to learn more patterns from developers’ experiences. In fact,

we found most of the studied anti-patterns in this chapter through interacting with

developers in the workshops.

We also found that some developers do not want to take the responsibility of

fixing the detected anti-pattern instances. The reason can be that the developers

are not familiar with the detected anti-pattern instances, or the developers think

they are not the one who introduced the anti-patterns. Thus, it is important to

determine an effective bug triaging mechanism or policy beforehand in order to

react rapidly to the detected anti-pattern instances.

It is necessary to educate developers about the root causes and the possible im-

pact of the detected anti-pattern instances to increase developers’ awareness of the

severity of these instances. In addition, an effective bug triaging policy is needed

to react rapidly to the detected anti-pattern instances.

6.6 Database Access Anti-Patterns

6.6.1 The Need for Framework-Specific and Non-General Anti-

Patterns

The detection algorithms that we use to detect the studied database access anti-

patterns are straightforward, but knowing the anti-patterns in the first place re-

quires extensive domain knowledge. As applications become more complex, devel-

opers start to leverage different frameworks and technologies during development.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 101

There may be many new kinds of anti-patterns that are related to these frameworks,

but since these anti-patterns are not available in most existing static anti-pattern de-

tection tools, developers are left in the dark. As an example, a recent study (Zero-

turnAround, 2014) found that there are three times more Java developers who use

Hibernate (67.5%) than those who use JDBC (22%). However, although there are

many JDBC-related patterns in the surveyed static anti-pattern tools, there is only

one Hibernate-related anti-pattern (which is related to SQL injection) in Coverity.

Therefore, finding anti-patterns that are more specific can further help improve ap-

plication quality significantly. Due to the wide rise of frameworks throughout indus-

try, in the following subsection, we discuss the framework-specific database access

anti-patterns that we have seen in practice. Our goal of presenting these patterns is

to give readers concrete examples of framework-specific anti-patterns. Hence, we

hope to encourage further research efforts on framework-specific detectors, instead

of the current research focus on general programming language anti-patterns and

associated detectors. Future studies should also consider detecting anti-patterns

that may be more specific to certain frameworks but have a significant impact in

most industrial applications.

6.6.2 New Anti-patterns

After our prototype (described in Chapter 5) (Chen et al., 2014a) was adopted in

practice, we received active feedback from developers, and they showed enormous

interest in the detected anti-pattern instances. After active discussion and coopera-

tion with the developers, we found five new database access anti-patterns. Instances

of these anti-patterns have caused both functional and non-functional problems in

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 102

the applications, and some problems were difficult to capture. Unfortunately, cur-

rent static anti-pattern detection tools such as FindBugs or PMD fail to capture most

of these anti-patterns. As a result, we improved our DBChecker tool to further detect

these five database access anti-patterns.

To provide more detailed information and breakdown of each anti-pattern, we

discuss each anti-pattern using the following template:

Impact. Whether it is functional or non-functional (i.e. performance).

Description. A detailed description of the database access anti-pattern.

Example. An example of the anti-pattern.

Developer awareness. We search the database access anti-pattern on developer

forums or blogs (e.g., Stack Overflow) to determine whether the anti-pattern

affects other developers, or whether the anti-pattern is specific to our studied

applications. We also summarize developers’ discussions and thoughts.

Possible solutions. We discuss possible solutions to resolve the anti-pattern.

Detection approach. We briefly describe the implementation of our anti-pattern

detection tool for detecting the anti-pattern.

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 103

Title: Nested Transaction

Impact. Non-functional.

Description. Developers may use the annotation @Transactional to execute

a method and its subsequent method calls in a transaction. In addition to us-

ing the annotation directly, developers can also specify the properties for the

transaction. The properties can be REQUIRES NEW or NOT SUPPORTED (as

described in Section 6.4). When a method (e.g., method A) is annotated us-

ing @Transactional, and its subsequent method (e.g., method B) is annotated

with properties such as REQUIRES NEW, method B will be executed inside a

new transaction. Then, the transaction in which method A resides will be sus-

pended until B is finished. This is the intended behaviour of the properties;

however, as the application becomes more complex, there may be other us-

ages of method B that do not require method B to be executed in a separate

transaction. In addition, the requirement of method A may be changed, and

suspending the transaction may cause a transaction timeout. We also found

that using the properties incorrectly can cause database deadlocks in practice.

As a result, our tool detects and labels Nested Transaction as a warning, and

developers are required to perform further inspection.

Example. As an example:

1 Class A{

2 @Transactional(timeout = 300ms)

3 public User updateUserById(int id) {

4 ...

5 notifyServer ();

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 104

6 ...

7 }

8 }

9 Class B{

10 @Transactional(REQUIRES_NEW)

11 public void notifyServer (){

12 ...

13 }

14 }

Assuming that whenever the data of a user is updated, the server is notified

about the event (e.g., for doing data analysis). In this example, there will be

two transactions, one is created in updateUserById and another one is created

in notifyServer. However, because the transaction property is REQUIRES NEW

in updateUserById, notifyServer would suspend the transaction in updateUserById

until notifyServer is finished. Such transaction configuration may cause transac-

tion timeouts (the timeout time is 300ms for updateUserById) and unnecessary

transaction overhead (we may execute notifyServer asynchronously). Note that,

if any subsequent method in notifySever also requires modifying or reading data

in the User table, a deadlock may occur, because the suspended parent trans-

action is holding the lock but the second transaction is also trying to grant the

lock.

Developer awareness. We found instances of developers discussing the poten-

tial problems of using REQUIRES NEW incorrectly (Jedyk, 2014), such as block-

ing DBMS connection or deadlock. Thus, it is important to notify developers

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 105

about nested transaction, and manually investigate if the detected anti-patterns

can cause potential problems.

Possible solutions. There are many possible solutions depending on the nature

of the problem. For example, developers may remove the transaction property

if the transaction is not needed, or they can execute the second transaction

asynchronously if two transactions do not depend on each other. One may also

refactor the code to place the annotation in other methods, or provide new APIs

that have different transactional behaviours.

Detection approach. Our detection algorithm first constructs the call graph of

the entire application, and records the annotation information for each method.

Then, for each method that will be executed in a transaction, we traverse the

method’s call graph, and report a problem if any subsequent method in the

call graph is annotated with @Transactional and have properties such as RE-

QUIRES NEW.

Title: Unexpected Transaction Behaviour

Impact. Functional.

Description. As the default behaviour of Spring’s transaction management,

the @Transactional annotation does not create a transaction if the annotated

method is called within the same class (i.e., self-invocation). Hence, if devel-

opers call a method that is annotated with @Transactional(REQUIRES NEW)

within the same class, the method would not be executed in a new transaction,

and the transaction would not be rolled back if errors occur.

Example. Consider the following example:

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 106

1 Class A{

2 @Transactional(timeout = 300ms)

3 public User updateUserById(int id) {

4 ...

5 notifyServer ();

6 }

7 @Transactional(REQUIRES_NEW)

8 public void notifyServer (){

9 ...

10 }

11 }

In this example, since both updateUserById and notifyServer are in the same class,

notifyServer would not be executed in a separate transaction when called in up-

dateUserById. Thus, the actual behaviour would be different from the devel-

oper’s intention.

Developer awareness. There are many developers who are facing this prob-

lem and seek help online (StackOverflow, 2010b, 2014). Detecting such anti-

pattern can be beneficial, because as shown in the Stack Overflow posts, de-

velopers may not be fully aware of the mechanism of how Spring manages

transactions. As an application becomes more complex, it is difficult and time

consuming to manually discover such problem in the code, or to notice such

unexpected transaction behaviour during program execution.

Possible solution. To solve Unexpected Transaction Behaviour, one solution is to

refactor the code so that methods annotated with @Transactional(REQUIRES

NEW) are in a different class than the caller methods that are annotated with

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 107

@Transactional().

Detection approach. Our detection algorithm first constructs the call graph of

the entire application, and records the annotation information for each method.

Then, for each method that will be executed in a transaction, we traverse the

method’s call graph, and report it as an instance of the Unexpected Transaction

Behaviour anti-pattern if any subsequent method in the call graph is annotated

with @Transactional(REQUIRES NEW) and both annotated methods are de-

fined in the same class.

Title: Inconsistent Transaction Read-Write Level

Impact. Non-functional.

Description. Developers can specify a transaction annotation to be read-only

when the annotated method (and its subsequent method calls) do not mod-

ify data in the DBMS. Setting a transaction to read-only provides a hint to

the underlying Hibernate engine, and Hibernate may choose to open a read-

only transaction, which has a smaller performance overhead compared to a

read-write transaction. Note that even if the DBMS does not support read-only

transaction, setting a transaction to read-only still has performance benefits

when using Hibernate. Setting a transaction to read-only tells Hibernate not

to automatically flush uncommitted changes to the DBMS. Flushes force Hiber-

nate to synchronize the in-memory data to the DBMS (MIHALCEA, 2014), even

though the transaction is not yet committed. Since read-only transactions do

not modify the data in the DBMS, flushes are not necessary. Thus, setting the

transaction to read-only can help improve performance even if the underlying

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 108

DBMS does not support read-only transactions. Despite the benefits of read-

only transactions, sometimes developers may forget to set the transaction to

read-only for methods with only read-access to the DBMS.

Example. Consider the following example:

1 @Transactional ()

2 public User readUserById(int id) {

3 return session.find(User.Class , id)

4 }

In the above-mentioned example, the transaction read-write level is set to de-

fault, but the method only reads from the DBMS. Thus, ideally setting the trans-

action to read-only may help improve performance.

Developer awareness. In practice, we also see many developers who do not

understand the difference between read-only and the default transaction level.

For example, there are many posts on Stack Overflow asking the benefits of set-

ting a transaction to read-only (StackOverflow, 2009, 2010a). Manually iden-

tifying all methods that have a mismatch between the transaction level and the

database access can be a time-consuming task. Hence, automatically detecting

such patterns can significantly reduce developers’ effort.

Possible solution. The solution would require developers to change the an-

notated transaction to a read-only transaction for methods that do not modify

data in the DBMS.

Detection approach. Our detection algorithm first recovers the call graph for

the entire application, as well as the annotations that are associated with each

method. Then, for each annotated method and its subsequent methods, we

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 109

traverse the call graph to see if there are any API calls that modify data in the

DBMS. If there is only API calls that read data from the DBMS, and the method

is not annotated with read-only, then we report the detected anti-pattern in-

stance as a warning.

Title: Sequence Name Mismatch

Impact. Functional.

Description. In Hibernate, developers may choose which sequence object that

a database entity class uses in the DBMS. Developers can add an annotation to

an instance variable to specify the name of the sequence object that the variable

uses. Sequence objects generate the next sequential number (e.g., primary key)

when a new sequence object is created. However, there may be human errors

that the name of the sequence object in the SQL schema file does not match

with the name that is specified in the annotation in the code. In such cases,

duplicated sequences may occur, and may cause duplicated primary key errors.

Example. Consider the following example:

1 Class User{

2 @Id

3 @SequenceGenerator(sequenceName=

4 "user_seq")

5 @Column(name="user_id")

6 private int id;

7 ...

8 }

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 110

1 user_schema.sql

2 user_id BIGINT NOT NULL DEFAULT nextval (’user_id_seq ’)

In this example, we have a User class, which is mapped to the user table in

the DBMS. The user id instance variable is mapped to the primary key column

in the DBMS, and the name of the sequence object (“user sql”) is specified in

the annotation @SequenceGenerator. However, in the user table schema file,

we can see that the sequence name is “user id sql” and not “user sql”. Such

sequence name mismatch may be caused by copy-and-paste error.

Developer awareness. Although there aren’t many developer discussions on-

line, copy-paste related bugs are common in practice (Li et al., 2006). However,

most existing static anti-pattern tools fail to detect Sequence Name Mismatch,

since the error is caused by copy-paste errors between code and external SQL

scripts, and most tools only consider source code files.

Possible solution. The solution is to use the same sequence name in both the

annotation and in the SQL schema definition.

Detection approach. Our detection algorithms first scan all the annotations in

the source code, and extract the sequence name in the annotation. Then, we

scan all the SQL files, and look for mismatches between the sequence name that

is specified in SQL and the sequence name that is specified in the annotation.

Title: Incorrect SQL Order

Impact. Functional.

Description. When using frameworks such as Hibernate, sometimes the order

of the database access code and the generated SQL queries may not match. For

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 111

example, if developers try to first delete a user using a unique key and then

reinsert the user with an updated key, the resulting SQL queries may be an up-

date follows by a delete, which does not match developers’ intended behaviour

in the code. The reason of the mismatch is that Hibernate may reorder the SQL

queries for some optimization, but such reordering causes unexpected problems

to developers.

Example. Consider the following example:

1 group.getUserList (). clear ();

2 group.addUser(user);

3 update(group);

resulting SQL queries:

1 INSERT into User values ...

2 DELETE from User where ...

In this example, we are trying to first clear all the users in a group, and then add

a new user to the group. However, the generated SQL queries first insert the

new user and then delete users from the group. The order of the SQL queries

is different from the order in the code. This may cause duplicate key problems,

or result in unexpected outcomes.

Developer awareness. There are many discussions related to incorrect SQL or-

der online (Forum, 2004; StackOverflow, 2015), and the problem often causes

many unexpected functional errors.

Possible solution. A possible solution would be to force Hibernate to synchro-

nize the in-memory data with the DBMS. Calling synchronization calls would

allow the SQL queries to be executed in the correct order. However, manually

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 112

detecting where the problems are can be difficult, especially for large-scale ap-

plications.

Detection approach. To detect incorrect SQL order, we perform control flow

analysis on the application source code. Our tool looks for Hibernate update

and delete calls that will be executed together in a method under the same con-

trol flow. Our tool also ensures that the Hibernate update and delete calls will

modify data in the same DBMS table to reduce the number of false positives.

6.7 Chapter Summary

In Chapter 5, we propose a static performance anti-pattern detection tool, and the

tool is well received by our industrial partners. We then extend our tool and inte-

grate the tool in practice. Thus, in this chapter, we provide an experience report

on the challenges and lessons that we learned when adopting our extended static

anti-pattern detection tool in practice. Our static anti-pattern detection tool focuses

on detecting database access anti-patterns that existing static anti-pattern detec-

tion tools cannot detect. Since these database access anti-patterns are different

from general code anti-patterns in many aspects, we discuss how we help develop-

ers prioritize detection results and what is needed to detect additional specialized

anti-patterns. We also discuss how we implement the tool to increase developers’ in-

terest on the tool, and the importance of giving developers rapid feedback. Finally,

we discuss five database access anti-patterns that we have observed in large-scale

industrial applications over the past years. We believe that our findings can help

researchers create static anti-pattern detection tools that have higher chances to

be adopted in practice. We also highlight the need to create tools to detect more

CHAPTER 6. ADOPTING ANTI-PATTERN DETECTION FRAMEWORK 113

framework-specific bugs, since most applications nowadays are leveraging frame-

works instead of being built with basic programming constructs (the main focus of

much of the current research in static anti-pattern detectors). However, static anal-

ysis has some well-known limitations (e.g., prone to false positives and lack runtime

information so that some code paths may not be feasible in practice). Therefore, in

order to propose a more comprehensive set of approaches in this thesis, in the next

chapter, we propose an anti-pattern detection approach using dynamic analysis .

CHAPTER 7

Dynamically Detecting Redundant Data Anti-patterns

In the previous chapters, we propose an approach to statically detect performance anti-
patterns in the source code. However, static analysis approaches are prone to false positives
and lack runtime information. As a result, some of detected anti-pattern instances may not
be valid in practice (i.e., no execution path can lead to the detected anti-pattern instances).
Thus, in this chapter, we propose an automated approach, which we implement as a Java
framework, to dynamically detect redundant data anti-patterns. We apply our framework
on one enterprise and two open source applications. We find that redundant data anti-
patterns exist in 87% of the exercised transactions. Due to the large number of detected
redundant data anti-patterns, we propose an automated approach to assess the impact and
prioritize the resolution efforts. Our performance assessment result shows that by resolving
the redundant data anti-patterns, the application response time for the studied applications
can be improved by an average of 17%.

An earlier version of this chapter is published at IEEE Transactions on Software Engineer-
ing (TSE), 2016. In Press. (Chen et al., 2016d)

114

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 115

7.1 Introduction

SINCE ORM frameworks operate at the data-access level, ORM frameworks

do not know how developers will use the data that is returned from the

DBMS. Therefore, it is difficult for ORM frameworks to provide an opti-

mal data retrieval approach for all applications that use ORM frameworks. Such

non-optimal data retrieval can cause serious performance problems. We use the

following example to demonstrate the problem. In some ORM frameworks (e.g.,

Hibernate, NHibernate, and Django), updating any column of a database entity ob-

ject (object whose state is stored in a corresponding record in the database) would

result in updating all the columns in the corresponding table. Consider the follow-

ing code snippet:

1 // retrieve user data from DBMS

2 user.updateName("Peter");

3 // commit the transaction

4 ...

Even though other columns (e.g., address, phone number, and profile picture)

were not modified by the code, the corresponding generated SQL query is:�

�

�

�
update user set name=‘Peter’, address=‘Waterloo’, phone number = ‘12345’, pro-

file pic = ‘binary data’ where id=1;

Such redundant data anti-patterns may bring significant performance overheads

when, for example, the generated SQLs are constantly updating binary large ob-

jects (e.g., profile picture) or non-clustered indexed columns (e.g., assuming phone

number is indexed) in a database table (Zaitsev et al., 2008). The redundant data

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 116

anti-patterns may also cause a significant performance impact when the number of

columns in a table is large (e.g., retrieving a large number of unused columns from

the DBMS). Prior studies (Meurice and Cleve, 2014; Qiu et al., 2013) have shown

that the number of columns in a table can be very large in real-world applications

(e.g., the tables in the OSCAR application have 30 columns on average (Meurice

and Cleve, 2014)), and some applications may even have tables with more than

500 columns (StackoverFlow, 2016). Thus, detecting redundant data anti-patterns

is helpful for large-scale real-world applications.

In fact, developers have shown that by optimizing ORM configurations and data

retrieval, application performance can increase by as much as 10 folds (as discussed

in Chapter 5 and 8). However, even though developers can change ORM code

configurations to resolve different kinds of redundant data anti-patterns, due to the

complexity of software applications, developers may not be able to detect such anti-

patterns in the code, and thus may not proactively resolve the anti-patterns (Chen

et al., 2014a; Jovic et al., 2011). Besides, there is no guarantee that every developer

knows the impact of such anti-patterns.

In this chapter, we propose an approach for detecting redundant data anti-

patterns in the code. We implemented the approach as a framework for detecting

redundant data anti-patterns in Java-based ORM frameworks. Our framework is

now being used by our industry partner to detect redundant data anti-patterns.

Redundant data or computation is a well-known cause for performance prob-

lems (Nistor et al., 2013, 2015), and in this chapter, we focus on detecting database-

related redundant data anti-patterns. Our approach consists of both static and dy-

namic analysis. We first apply static analysis on the source code to automatically

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 117

identify database access methods (i.e., methods that may access the data in the

DBMS). Then, we use bytecode instrumentation on the application executables to

obtain the code execution traces and the ORM generated SQL queries. We identify

the needed database accesses by finding which database access methods are called

during the application execution. We identify the requested database accesses by

analyzing the ORM generated SQL queries. Finally, we discover instances of the re-

dundant data anti-patterns by examining the data access mismatches between the

needed database accesses and the requested database accesses, within and across

transactions. Our hybrid (static and dynamic analysis) approach can minimize the

inaccuracy of applying only data flow and pointer analysis on the code, and thus

can provide developers a more complete picture of the root cause of the problems

under different workloads.

We perform a case study on two open-source applications (Pet Clinic (PetClinic,

2016) and Broadleaf Commerce (Commerce, 2013)) and one large-scale Enterprise

Application (EA). We find that redundant data anti-patterns exist in all of our ex-

ercised workloads. In addition, our statistical rigorous performance assessment

shows that resolving redundant data anti-patterns can improve the application per-

formance (i.e., response time) of the studied applications by 2–92%, depending on

the workload. Our performance assessment approach can further help developers

prioritize the efforts for resolving the redundant data anti-patterns according to

their performance impact.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 118

7.2 The Main Contributions of this Chapter

1. We survey the redundant data anti-patterns in popular ORM frameworks across

four different programming languages, and we find that all surveyed frame-

works share common problems.

2. We propose an automated approach to detect the redundant data anti-patterns

in ORM frameworks using a hybrid approach (combining static and dynamic

analysis), and we have implemented a Java-version to detect redundant data

anti-patterns in Java applications.

3. Case studies on two open source applications and one enterprise application

(EA) show that resolving redundant data anti-patterns can improve the ap-

plication performance (i.e., response time) by up to 92% (with an average of

17%), when using MySQL as the DBMS and two separate computers, one for

sending requests and one for hosting the DBMS. Our framework receives posi-

tive feedback from EA developers, and is now integrated into the performance

testing process for the EA.

7.3 Related Work

Prior studies propose various approaches to detect different performance bugs through

run-time indicators of such bugs. Nistor et al. (2013) propose a performance bug de-

tection tool, which detects performance problems by finding similar memory-access

patterns during application execution. Chis (2008) provide a tool to detect memory

anti-patterns in Java heap dumps using a catalogue. Parsons and Murphy (2004)

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 119

present an approach for automatically detecting performance issues in enterprise

applications that are developed using component-based frameworks. Parsons and

Murphy (2004) detect performance issues by reconstructing the run-time design of

the application using monitoring and analysis approaches.

Shen et al. (2015) propose a search-based approach for finding application per-

formance bottlenecks by varying application input parameters. Xu et al. (2010b)

introduce copy profiling, an approach that summarizes runtime activity in terms

of chains of data copies, which are indicators of Java runtime bloat (i.e., many

temporary objects executing relatively simple operations). Xiao et al. (2013) use

different workflows to identify and predict workflow-dependent performance bot-

tlenecks (i.e., performance bugs) in GUI applications. Xu et al. (2010a) introduce a

run-time analysis to identify low-utility data structures whose costs are out of line

with their gained benefits. Luo et al. (2015) propose an approach for finding perfor-

mance bottlenecks in applications by analyzing program execution traces obtained

from test executions.

7.4 Our Approach for Detecting Redundant Data Anti-

patterns

The mapping between objects and database records can be complex, and usually

contains some impedance mismatches (i.e., conceptual difference between rela-

tional databases and object-oriented programming). In addition, ORM frameworks

do not know what data developers need and thus cannot optimize all the database

operations automatically. In this section, we present our automated approach for

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 120

Requested
Database
Accesses

Needed
database
accesses

Transactions
with

redundant
data

Static
analysis

Exercising workloads

Combining info

Analyzing SQL

Comparing

Assessing
performance

impact Performance
impact

assessment

Studied
applications

Requested
database
accesses

Source
code

Source
code

Source
code

List of
database access

methods

SQLs

Code
 execution

traces

Figure 7.1: An overview of our approach for detecting and evaluating redundant
data anti-patterns.

detecting the redundant data anti-pattern in the code due to ORM mapping. Note

that our approach is applicable to other ORM frameworks in other languages (may

require some framework-specific modifications).

7.4.1 Overview of Our Approach

Figure 7.1 shows an overview of our approach for detecting redundant data anti-

patterns. We define the needed database accesses as how database access methods

are called during application execution. We define the requested database accesses

as the corresponding generated SQL queries during application execution. Our

approach consists of three different phases. First, we use static source code analysis

to automatically identify the database access methods (methods that read or modify

instance variables that are mapped to database columns). Second, we leverage

bytecode instrumentation to monitor and collect application execution traces. In

particular, we collect the exercised database access methods (and the location of

the call site of such methods) as well as the generated SQLs. Finally, we detect the

redundant data anti-patterns by comparing the exercised database access methods

and the SQLs. We explain the detail of each phase in the following subsections.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 121

7.4.2 Identifying Needed Database Accesses

We use static code analysis to identify the mappings between database tables and

the source code classes. We then perform static taint analysis on all the database

instance variables (e.g., instance variables that are mapped to database columns)

in database entity classes. Static taint analysis allows us to find all the methods

along a method call graph that may read or modify a given variable. If a database

instance variable is modified in a method, we consider the method as a data-write

method. If a database instance variable is being read or returned in a method, we

consider the method as a data-read method. For example, if a database entity class

has an instance variable called name, which is mapped to a column in the database

table, then the method getUserName(), which returns the variable name, is a data-

read method. We also parse JPQL (Java Persistence Query Language, the standard

SQL-like language for Java ORM frameworks) queries to keep track of which entity

objects are retrieved/modified from the DBMS, similar to a prior approach proposed

by Dasgupta et al. (2009). We focus on parsing the FROM and UPDATE clauses in

JPQL queries.

To handle the situation where both superclass and subclass are database entity

classes but they are mapped to different tables, we construct a class inheritance

graph from the code. If a subclass is calling a database access method from its

superclass, we use the result of the class inheritance graph to determine the columns

that the subclass method is accessing.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 122
systems, we found that our discrepancies cover all the
mismatches. Namely, if a transaction has a read/write mis-
match, this transaction has at least one of the discrepancies.

Table 2 shows the total number of transactions that has
discrepancies. We also show the prevalence of each discrep-
ancy in each test suite. Most transactions in these test suites
have discrepancies (above 75% in 5 test suites), and excessive
data (attribute) exists in almost every transaction. On the
other hand, update all does not occur in many transactions
due to the nature of the workflows (i.e., the exercised work-
flows are mostly read, with only a few number of writes). We
also found that Excessive data (table) has higher prevalence
in Pet Clinic but lower prevalence in Broadleaf.

Since duplicate selects occurs across transactions (i.e., it
is caused by ORM cache problem), we list the total number
of SQLs and number of duplicate selects in each test suite
(Table 3). We found that some test suites have much more
duplicate selects than the other. In Pet Clinic, we found that
the duplicate selects are related to selecting the information
about pet’s type (e.g., a bird, dog, or cat) and pets’ visits to
the clinic. Since Pet Clinic only allows a certain pet types
(i.e., 6 types), storing the types in the cache can reduce a
large number of unnecessary selects. In addition, informa-
tion about pets’ visits do not change often, so storing such
information in the cache can further reduce unnecessary se-
lects.

4. PERFORMANCE IMPACT STUDY
In the previous section, we discuss the approach that we

use to discover discrepancies between the database and the
application code. However, it is not clear how these discrep-
ancies may affect system performance and whether they are
candidates for performance anti-patterns. Therefore, in this
section, we evaluate the performance impact of these dis-
crepancies by comparing the response time before and after
removing them.

4.1 Approach for Removing the Discrepancies
ORM supports dynamically configuring how an database

entity object should be retrieved from the database (e.g.,
retrieve all attributes or only a certain attributes) [8]. How-
ever, such configurations require a deep understanding of
the system workflows, design, and APIs. Due to such com-
plexity, it is very difficult to remove all the discrepancies
manually. Thus, we follow a very similar methodology by
previous studies [5, 31] to study the performance impact of
these discrepancies. In the following subsections, we dis-
cuss the approaches that we use to remove each discrepancy
discussed in Section 3.

4.1.1 Removing Update All and Excessive Data (At-
tribute) by Static and Dynamic Analysis

We combine the information of both system execution
traces and the corresponding generated SQLs to remove up-
date all and excessive data (attribute) in the test suites.
For each transaction, we keep track of how the database-
accessing functions are called in the application code. If a
SQL is selecting/updating an attribute that does not have
the corresponding read/write in the source code, we remove
that attribute in the SQL. Listing 1 shows an example trans-
action, where only user name is needed in the application
code but the SQL is selecting more attributes than needed
from the database. To remove the discrepancy, we transform

Listing 1: Example Transaction.
<transaction >

<functionCall >
user.getUserName ()

</functionCall >
<sql>

select u.id, u.name , u.address ,
u.phone number from User u
where u.id=1

</sql>
</transaction >

the SQL to:�
�

�
�select u.id, u.name from User u where u.id=1,

to remove excessive data (attribute). We apply a similar ap-
proach to update all and remove the attributes in SQLs that
are not changed during the system execution. We execute
the SQLs before and after the transformation, and calculate
the difference in response time after removing the discrep-
ancies.

4.1.2 Removing Excessive Data (Table) by Fixing the
Source Code

ORM uses annotation to configure how an related entity
should be retrieved from the database. Using the EAGER
fetch-setting may cause performance problems when the ea-
gerly retrieved data is not used. To remove this discrep-
ancy, we change the fetch type from EAGER to LAZY in
the source code where appropriate. Then, we measure the
response time before and after removing such discrepancy.

4.1.3 Removing Duplicate Selects by SQL Analysis
We perform a SQL analysis to remove duplicate selects in

the test suites. We first obtain information about primary
and foreign keys in each table. Then, we start analyzing
each SQL in the test suite sequentially. For each update
and insert SQL query, we keep track of which attributes it
is modifying.

We then parse the SQL select queries and see if a previ-
ously modified data record is being selected. If so, the select
is necessary; otherwise the select can be skipped. We do this
analysis by parsing the where clause of every select. If the
SQL is selecting based on the primary or foreign key of a
table, then we check if the key is modified previously by one
of the insert or update queries. For example, consider the
following SQL queries:�

�

	

update user set name=’Peter’, address=’Waterloo’,
phone number = ’12345’ where id=1;
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;
...
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;

The first select is needed because it was previously updated
by another SQL query (the same primary key in the where
clause). The second select is not needed as the attributes
are not modified.

7

Figure 7.2: An example of the exercised database access methods and generated
SQL queries during a transaction.

7.4.3 Identifying Requested Database Accesses

We define the requested database accesses as the columns that are accessed in an

SQL query. We develop an SQL query analyzer to analyze database access infor-

mation in SQLs. Our analyzer leverages the SQL parser in FoundationDB (2015),

which supports standard SQL92 syntax. We first transform an SQL query into an

abstract syntax tree (AST), then we traverse the AST nodes and look for informa-

tion such as columns that an SQL query is selecting from or updating to, and the

tables that the SQL query is querying.

7.4.4 Finding Redundant Data

Since database accesses are wrapped in transactions (to assure the ACID property),

we separate the accesses according to the transactions to which they belong. Fig-

ure 7.2 shows an example of the resulting data. In that XML snippet, the method

call user.getUserName() (the needed data access) is translated to a select SQL (the

requested data access) in a transaction.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 123

We find redundant data anti-patterns at both the column and table level by com-

paring the needed and the requested database accesses within and across transac-

tions. Since we know the database columns that a method is accessing, we com-

pare the column reads and writes between the SQL queries and the database ac-

cess methods. If a column that is being selected/updated in an SQL query has no

corresponding method that reads/updates the column, then the transaction has a

redundant data anti-pattern (e.g., in Figure 3.1 the Main.java only modifies user’s

name, but all columns are updated). In other words, an SQL query is selecting a

column from the DBMS, but the column is not needed in the source code (simi-

larly, the SQL query is updating a column but the column was not updated in the

code). Note that after the static analysis step, we know the columns that a table (or

database entity class) has. Thus, in the dynamic analysis step, our approach can tell

us exactly which columns are not needed. In other words, our approach is able to

find, for example, if a binary column is unnecessarily read from the DBMS, or if the

SQL is constantly updating an unmodified but indexed column.

7.4.5 Performance Assessment

We propose an approach to automatically assess the performance impact of the

redundant data anti-patterns. The performance assessment results can be used to

prioritize performance optimization efforts. Since there may be different types of

redundant data anti-patterns and each type may need to be assessed differently,

we discuss our assessment approach in detail in Section 7.6.3, after discussing the

types of redundant data anti-patterns that we discovered in Section 7.6.2.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 124

Table 7.1: Statistics of the studied applications.

Application Total lines No. of Max. No. of
of code (K) files columns

Pet Clinic 3.3K 51 6
Broadleaf 3.0 206K 1,795 28
EA > 300K > 3,000 > 50

7.5 Experimental Setup

In this Section, we discuss the studied applications and experimental setup.

7.5.1 Case Study Applications

We implement our approach as a framework, and apply the framework on two

open-source applications (Pet Clinic (PetClinic, 2016) and Broadleaf Commerce (Com-

merce, 2013)) and one large-scale Enterprise Application (EA). Pet Clinic is an ap-

plication developed by Spring (SpringSource, 2016), which provides a simple yet

realistic design of a web application. Pet Clinic and its predecessor have been used

in a number of performance-related studies (Chen et al., 2014a; Grechanik et al.,

2012; Jiang et al., 2008; Rohr et al., 2008; van Hoorn et al., 2008). Broadleaf (Com-

merce, 2013) is a large open source e-commerce application that is widely used in

both non-commercial and commercial settings worldwide. EA is used by millions of

users around the world on a daily basis, and supports a high level of concurrency

control. Since we are not able to discuss the configuration details of EA due to a

non-disclosure agreement (NDA), we also conduct our study on two open source

applications. Table 7.1 shows the statistics of the three studied applications.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 125

All of our studied applications are web applications that are implemented in

Java. They all use Hibernate as their JPA implementation due to Hibernate’s pop-

ularity (e.g., in 2013, 15% of the Java developer jobs requires the candidates to

have Hibernate experience (Cheung et al., 2013a)). The studied applications fol-

low the typical “Model-View-Controller” design pattern (Krasner and Pope, 1988),

and use Spring (SpringSource, 2016) to manage HTTP requests. We use MySQL as

the DBMS in our experiment.

7.5.2 Experiments

Our approach and framework require dynamic analysis. However, since it is difficult

to generate representative workloads (i.e., application use cases) for an application,

we use the readily available performance test cases in the studied applications (i.e.,

Pet Clinic and EA) to obtain the execution traces. If the performance test cases are

not present (i.e., Broadleaf), we use the integration test cases as an alternate choice.

Both the performance and the integration test cases are designed to test different

features in an application (i.e., use case testing). Both performance and integration

test cases provide more realistic workloads and better test coverage (Binder, 2000).

Table 7.2 shows the descriptions of the exercised test cases. Nevertheless, our ap-

proach can be adapted to deployed applications or to monitor real-world workloads

for detecting redundant data anti-patterns in production.

We group the test execution traces according to the transactions to which they

belong. Typically in database-related applications, a workload may contain one to

many transactions. For example, a workload may contain user login and user logout,

which may contain two transactions (one for each user operation).

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 126

7.6 Evaluation of Our Approach

In this section, we discuss how we implement our approach as a framework for

evaluating our proposed approach, the redundant data anti-patterns that are dis-

covered by our framework, and their performance assessment. We want to know

if our approach can discover redundant data anti-patterns. If so, we want to also

study what are the common redundant data anti-patterns and their prevalence in

the studied applications. Finally, we assess the performance impact of the discov-

ered redundant data anti-patterns.

7.6.1 Framework Implementation

To evaluate our approach, we implement our approach as a Java framework to de-

tect redundant data anti-patterns in three studied JPA applications. We implement

our static analysis tool for finding the needed database accesses using JDT (Eclipse,

2016b). We use AspectJ (Eclipse, 2016a) to perform bytecode instrumentation on

the studied applications. We instrument all the database access methods in the

database entity classes in order to monitor their executions. We also instrument the

JDBC libraries in order to monitor the generated SQL queries, and we separate the

needed and requested database accesses according to the transaction in which they

belong (e.g., Figure 7.2).

7.6.2 Case Study Results

Using our framework, we are able to detect a large number of redundant data

anti-patterns in the studied applications. In fact, on average 87% of the exercised

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 127

Ta
bl

e
7.

2:
Pr

ev
al

en
ce

of
th

e
di

sc
ov

er
ed

re
du

nd
an

t
da

ta
an

ti
-p

at
te

rn
s

in
ea

ch
te

st
ca

se
.

Th
e

de
ta

il
of

EA
is

no
t

sh
ow

n
du

e
to

N
D

A
.

A
pp

li
ca

ti
on

Te
st

C
as

e
To

ta
lN

o.
To

ta
lN

o.
N

o.
of

Tr
an

sa
ct

io
n

s
w

it
h

R
ed

u
n

da
n

t
D

at
a

D
es

cr
ip

ti
on

of
Tr

an
s.

of
Tr

an
s.

w
it

h
U

pd
at

e
A

ll
Se

le
ct

A
ll

Ex
ce

ss
iv

e
Pe

r-
Tr

an
s.

R
ed

u
n

da
n

t
D

at
a

D
at

a
C

ac
he

Pe
t

C
lin

ic
B

ro
w

si
ng

&
Ed

it
in

g
60

60
(1

00
%

)
6

(1
0%

)
60

(1
00

%
)

50
(8

3%
)

7
(1

2%
)

B
ro

ad
le

af

Ph
on

e
C

on
tr

ol
le

r
80

7
80

5
(9

9%
)

4
(0

.5
%

)
80

5
(1

00
%

)
20

3
(2

5%
)

20
2

(2
5%

)
Pa

ym
en

t
In

fo
81

3
61

1
(7

5%
)

10
(1

.6
%

)
61

1
(1

00
%

)
7

(1
.1

%
)

20
0

(2
5%

)
C

us
to

m
er

A
dd

r.
61

1
60

9
(9

9%
)

7
(1

.1
%

)
60

7
(9

9%
)

7
(1

.1
%

)
20

3
(3

3%
)

C
us

to
m

er
60

4
60

2
(9

9%
)

4
(0

.7
%

)
60

2
(1

00
%

)
3

(0
.5

%
)

20
0

(3
3%

)
O

ff
er

41
9

20
1

(4
8%

)
19

(9
%

)
19

(9
%

)
17

(9
%

)
20

1
(1

00
%

)
EA

M
ul

ti
pl

e
Fe

at
ur

es
>

10
00

>
30

%
3%

10
0%

0%
23

%

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 128

Table 7.3: Overview of the redundant data anti-patterns that we discovered in our
exercised workloads. Trans. column shows where the redundant data anti-pattern
is discovered (i.e., within a transaction or across transactions).

Types Trans. Description

Update all Within Updating unmodified data
Select all Within Selecting unneeded data

Excessive data Within
Selecting associated data
but the data is not used

Per-trans cache Across
Selecting unmodified
data (caching problem)

transactions contain at least one redundant data anti-pattern. Our approach is able

to find the redundant data anti-patterns in the code, but we are also interested

in understanding what kinds of redundant data anti-patterns are there. Moreover,

we use the discovered redundant data anti-patterns to illustrate the performance

impact of the redundant data anti-patterns. However, other types of redundant

data anti-patterns may still be discovered using our approach, and the types of the

redundant data anti-patterns that we study here is by no means complete. In the

following subsections, we first describe the type of redundant data anti-patterns

that we discovered, then we discuss their prevalence in our studied applications.

Types of Redundant Data Anti-patterns

We perform a manual study on a statistically representative random sample of

344 transactions (to meet a confidence level of 95% with a confidence interval

of 5% (Moore et al., 2009)) in the exercised test cases that contain at least one

redundant data anti-pattern (as shown in Table 7.2). We find that most instances

of the redundant data anti-patterns can be grouped into four types, which we call:

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 129

update all, select all, excessive data, and per-transaction cache (other types of redun-

dant data anti-patterns may still exist, and may be discovered using our approach).

Table 7.3 shows an overview of the redundant data anti-patterns that we discovered

in our exercised workloads.

Update all. When a developer updates some columns of a database entity object, all

the database columns of the objects are updated (e.g., the example in Section 7.1).

The redundant data anti-pattern is between the translations from objects to SQLs,

where ORM simply updates all the database columns. This redundant data anti-

pattern exists in some, but not all of the ORM frameworks. However, it can cause

serious performance impact if not handle properly. There are many discussions

on Stack Overflow regarding this type of redundant data anti-pattern (StackOver-

flow, 2016d). Developers complain about its performance impact when the number

of columns or the size of some columns is large. For example, columns with bi-

nary data (e.g., pictures) would lead to a significant and unexpected overhead.

In addition, this redundant data anti-pattern can cause significant performance

impact when the generated SQLs are updating unmodified non-cluster indexed

columns (Zaitsev et al., 2008). In such cases, the index will need to be updated

whenever the column is updated, even though the value of the column remains

the same. Prior studies (Meurice and Cleve, 2014; Qiu et al., 2013) have shown

that the number of columns in a table can be very large in real-world applications

(e.g., the tables in the OSCAR database have on average 30 columns (Meurice and

Cleve, 2014)), and some applications may even have tables with more than 500

columns (StackoverFlow, 2016). Even in our studied applications, we find that

some tables have more than 28, or even 50 columns (Table 7.1). Thus, this type of

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 130

redundant data anti-pattern may be more problematic in large-scale applications.

Select all. When selecting entity objects from the DBMS, ORM selects all the

columns of an object, even though only a small number of columns are used in

the source code. For example, if we only need a user’s name, ORM will still select

all the columns, such as profile picture, address, and phone number. Since ORM

frameworks do not know what is the needed data in the code, ORM frameworks

can only select all the columns.

We use the User class from Figure 3.1 as an example. Calling user.getName()

ORM will generate the following SQL query:�
�

�
�

select u.id, u.name, u.address, u.phone number, u.profile pic from User u where

u.id=1.

However, if we only need the user’s name, selecting other columns may bring in

undesirable data transmission or other performance overheads.

Developers also discuss the performance impact of this type of redundant data

anti-pattern (McDonald, 2016; StackOverflow, 2016c). For example, developers

are complaining that the size of some columns is too large, and retrieving them

from the database causes performance issues (StackOverflow, 2016c). Even though

most ORM frameworks provide a way for developers to customize the data fetch,

developers still need to know how the data will be used in the code. The dynamic

analysis part of our approach can discover which data is actually needed in the code

(and can provide a much higher accuracy than using only static analysis), and thus

can help developers configure ORM data retrieval.

Excessive Data. Excessive data is different from select all in all aspects, since this

type of redundant data anti-pattern is caused by querying unnecessary entities from

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 131

other database tables. When using ORM frameworks, developers can specify rela-

tionships between entity classes, such as @OneToMany, @OneToOne, @Many-

ToOne, and @ManyToMany. ORM frameworks provide different optimization

techniques for specifying how the associated entity objects should be fetched from

the database. For example, a fetch type of EAGER means that retrieving the parent

object (e.g., Group) will eagerly retrieve the child objects (e.g., User), regardless

whether the child information is accessed in the source code.

If the relationship is EAGER, then selecting Group will result in the following

SQL:�

�

�

�
select g.id, g.name, g.type, u.id, u.gid, u.name, u.address, u.phone number,

u.profile pic from Group g left outer join User u on u.gid=g.id where g.id=1.

If we only need the group information in the code, retrieving users along with the

group causes undesirable performance overheads, especially when there are many

users in the group.

ORM frameworks usually fetch the child objects using an SQL join, and such an

operation can be very costly. Developers have shown that removing this type of ex-

cessive data anti-pattern can improve application performance significantly (Dubois,

2013). Different ORM frameworks provide different ways to resolve this redundant

data anti-pattern, and our approach can provide guidance for developers on this

type of anti-pattern.

Per-Transaction Cache. Our approach described in Section 7.4 also looks for re-

dundant data anti-patterns across transactions (e.g., some data is repeatedly re-

trieved from the DBMS but the data is not modified). We find that the same SQLs

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 132

are being executed across transactions, with no or only a very little number of up-

dates being called. Per-transaction cache is completely different from one-by-one pro-

cessing studied in Chapter 5. One-by-one processing is caused by repeatedly sending

similar queries with different parameters (e.g., in a loop) within the same transac-

tion. Per-transaction cache is caused by non-optimal cache configuration: different

transactions need to query the database for the same data even though the data is

never modified. For example, consider the following SQLs:�

�

�

�

update user set name=‘Peter’, address=‘Waterloo’, phone number = ‘12345’

where id=1;

select u.id, u.name, u.address, u.phone number from User u where u.id=1;

...

select u.id, u.name, u.address, u.phone number from User u where u.id=1;

The first select is needed because the user data was previously updated by an-

other SQL query (the same primary key in the where clause). The second select

is not needed as the data is not changed. Most ORM frameworks provide cache

mechanisms to reuse fetched data and to minimize database accesses (Section 7.7),

but the cache configuration is never automatically optimized for different appli-

cations (Keith and Stafford, 2008). Thus, some ORM frameworks even turn the

cache off by default. Developers are aware of the advantages of having a global

cache shared among transactions (Sutherland and Clarke, 2016), but they may not

proactively leverage the benefit of such a cache. We have seen cases in real-world

large-scale applications where this redundant data anti-pattern causes the exact

same SQL query to be executed millions of times in a short period of time, even

though the retrieved entity objects are not modified. The cache configuration may

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 133

Table 7.4: Total number of SQLs and the number of duplicated selects in each test
case.

Application Test Case Total No. No. of
Description of SQL queries Duplicate Selects

Pet Clinic Browsing 32,921 29,882 (91%)

Broadleaf

Phone Controller 1,771 431 (24%)
Payment Info 1,591 11 (0.7%)
Customer Addr. 2,817 21 (0.7%)
Customer 1,349 22 (1.6%)
Offer 1,052 41 (3.9%)

EA Multiple Features >> 10,000 > 10%

be slightly different for different ORM frameworks, but our approach is able to give

a detailed view on the overall data read and write. Thus, our approach discussed

in this chapter can also assist developers with cache optimization.

Note that, although some developers are aware of the above-mentioned redun-

dant data anti-patterns, it is not a common knowledge. Moreover, some developers

may still forget to resolve the anti-pattern, as a redundant data anti-pattern may

become more severe as an application ages.

Prevalence of Redundant Data Anti-patterns

Table 7.2 shows the prevalence of the redundant data anti-patterns in the executed

test cases (a transaction may have more than one redundant data anti-pattern).

Due to NDA, we cannot show the detail results for EA. However, we see that many

transactions (>30%) have an instance of a redundant data anti-pattern in EA.

Most exercised transactions in BroadLeaf and Pet Clinic have at least one in-

stance of redundant data anti-pattern (e.g., at least 75% of the transactions in the

five test cases for BroadLeaf), and select all exists in almost every transaction. On

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 134

the other hand, update all does not occur in many transactions. The reason may be

that the exercised test cases mostly read data from the database; while a smaller

number of test cases write data to database. We also find that excessive data has a

higher prevalence in Pet Clinic but lower prevalence in Broadleaf.

Since the per-transaction cache anti-pattern occurs across multiple transactions

(caused by non-optimized cache configuration), we list the total number of SQLs

and the number of duplicate selects (caused by per-transaction cache) in each test

case (Table 7.4). We filter out the duplicated selects where the selected data is

modified. We find that some test cases have a larger number of duplicate selects

than others. In Pet Clinic, we find that the per-transaction cache anti-patterns are

related to selecting the information about a pet’s type (e.g., a bird, dog, or cat)

and its visits to the clinic. Since Pet Clinic only allows certain pet types (i.e., six

types), storing the types in the cache can reduce a large number of unnecessary

selects. In addition, the visit information of a pet does not change often, so storing

such information in the cache can further reduce unnecessary selects. In short,

developers should configure the cache accordingly for different scenarios to resolve

the per-transaction cache anti-pattern.

The four types of redundant data anti-patterns that are discovered by our ap-

proach have a high prevalence in our studied applications. We find that most

transactions (on average 87%) contain at least one instance of our discovered anti-

patterns, and on average 20% of the generated SQLs are duplicate selects (per-

transaction cache anti-pattern).

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 135

7.6.3 Automated Performance Assessment

Since every ORM framework has different ways to resolve the redundant data anti-

patterns, it is impossible to provide an automated ORM optimization for all ap-

plications. Yet, ORM optimization requires a great amount of effort and a deep

understanding of the application workloads and design. Thus, to reduce develop-

ers’ effort on resolving the redundant data anti-patterns, we propose a performance

assessment approach to help developers prioritize their performance optimization

efforts.

Assessing the Performance Impact of Redundant Data Anti-patterns

We follow a similar methodology as mentioned in Chapter 5.4.3 to automatically

assess the performance impact of the redundant data anti-pattern. Note that our as-

sessment approach is only for estimating the performance impact of redundant data

anti-patterns in different workloads, and cannot completely fix the anti-patterns.

Developers may wish to resolve these anti-patterns after further investigation. Be-

low, we discuss the approaches that we use to assess each type of the discovered

redundant data anti-patterns.

Assessing Update All and Select All. We use the needed database accesses and

the requested database accesses collected during execution to assess update all and

select all in the test cases. For each transaction, we remove the requested columns

in an SQL if the columns are never used in the code. We implement an SQL trans-

formation tool for such code transformation. We execute the SQLs before and after

the transformation, and calculate the differences in response time after resolving

the redundant data anti-pattern.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 136

Ta
bl

e
7.

5:
Pe

rf
or

m
an

ce
im

pa
ct

st
ud

y
by

re
so

lv
in

g
th

e
re

du
nd

an
t

da
ta

an
ti

-p
at

te
rn

s
in

ea
ch

te
st

ca
se

.
R

es
po

ns
e

ti
m

e
is

m
ea

su
re

d
in

se
co

nd
s

at
th

e
cl

ie
nt

si
de

.
W

e
m

ar
k

th
e

re
su

lt
s

in
bo

ld
if

re
so

lv
in

g
th

e
re

du
nd

an
t

da
ta

an
ti

-
pa

tt
er

ns
ha

s
a

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
im

pr
ov

em
en

t.
Fo

r
re

sp
on

se
ti

m
e

di
ff

er
en

ce
s,

la
rg

e/
m

ed
iu

m
/s

m
al

l/
tr

iv
ia

l
ef

fe
ct

si
ze

s
ar

e
m

ar
ke

d
w

it
h

L,
M

,S
,a

nd
T,

re
sp

ec
ti

ve
ly

.
A

pp
li

ca
ti

on
Te

st
C

as
e

B
as

e
U

pd
at

e
A

ll
Se

le
ct

A
ll

Ex
ce

ss
iv

e
D

at
a

Pe
r-

tr
an

s.
C

ac
he

re
sp

.
ti

m
e

p-
va

lu
e

re
sp

.
ti

m
e

p-
va

lu
e

re
sp

.
ti

m
e

p-
va

lu
e

re
sp

.
ti

m
e

p-
va

lu
e

Pe
t

C
lin

ic
B

ro
w

si
ng

&
Ed

it
in

g
33

.8
±

0.
45

33
.9
±

0.
44

(0
%

)T
0.

85
23

.3
±

0.
76

(-
31

%
)L
<
<

0.
00

1
2.

7±
0.

08
(-

92
%

)L
<
<

0.
00

1
4.

1±
0.

10
(-

88
%

)L
<
<

0.
00

1

B
ro

ad
le

af

Ph
on

e
C

on
tr

ol
le

r
14

.0
±

0.
69

13
.4
±

0.
60

(-
4%

)M
0.

00
7

13
.9
±

0.
65

(0
%

)T
0.

44
13

.8
±

0.
47

(-
1%

)S
0.

28
13

.0
±

0.
56

(-
7%

)L
<
<

0.
00

1
Pa

ym
en

t
In

fo
18

.7
±

2.
6

17
.3
±

0.
65

(-
7%

)M
0.

04
18

.1
±

0.
88

(-
3%

)S
0.

37
18

.3
±

1.
0

(-
2%

)T
0.

58
18

.0
±

0.
74

(-
4%

)S
0.

33
C

us
to

m
er

A
dd

r.
29

.7
±

1.
17

28
.4
±

0.
58

(-
4%

)M
<
<

0.
00

1
28

.7
±

0.
45

(-
3%

)M
0.

00
1

29
.0
±

0.
68

(-
2%

)S
0.

05
28

.8
±

0.
54

(-
3%

)S
0.

00
8

C
us

to
m

er
13

.7
±

0.
63

13
.0
±

0.
49

(-
5%

)M
<
<

0.
00

1
13

.0
±

0.
57

(-
5%

)M
<
<

0.
00

1
12

.9
±

0.
47

(-
6%

)M
<
<

0.
00

1
13

.3
±

0.
53

(-
3%

)S
0.

03
O

ff
er

22
.9
±

0.
95

21
.3
±

1.
05

(-
7%

)L
<
<

0.
00

1
22

.3
±

1.
08

(-
3%

)S
0.

13
23

.4
±

1.
27

(+
2%

)S
0.

17
21

.9
±

0.
87

(-
4%

)M
0.

00
2

EA
M

ul
ti

pl
e

Fe
at

ur
es

—
0%

>
0.

05
>

30
%

L
<
<

0.
00

1
—

—
>

30
%

L
<
<

0.
00

1

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 137

Assessing Excessive Data. Since we use static analysis to parse all ORM configu-

rations, we know how the entity classes are associated. Then, for each transaction,

we remove the eagerly fetched table in SQLs where the fetched data is not used in

the code. We execute the SQLs before and after the transformation, and calculate

the differences in response time after resolving the discrepancies.

Assessing Per-Transaction Cache. We analyze the SQLs to assess the impact of

per-transaction cache in the test cases. We keep track of the modified database

records by parsing the update, insert, and delete clauses in the SQLs. To improve

the precision, we also parse the database schemas beforehand to obtain the primary

and foreign keys of each table. Thus, we can better find SQLs that are modifying

or selecting the same database record (i.e., according to the primary key or foreign

key). We bypass an SQL select query if the queried data is not modified since the

execution of the last same SQL select.

Results of Performance Impact Study

We first present a statistically rigorous approach for performance assessment. Then

we present the results of our performance impact study.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 138

Statistically rigorous performance assessment

Performance measurements suffer from variances during application execution,

and such variances may lead to incorrect results (Georges et al., 2007; Kalibera and

Jones, 2013). As a result, we repeat the same steps as mentioned in Chapter 5.4.3.

Namely, we repeat each test case 30 times, and use a Student’s t-test and compute

Cohen’s d to obtain statistically rigorous results.

Results of Performance Impact Study

In the rest of this subsection, we present and discuss the results of our perfor-

mance assessment. The experiments are conducted using MySQL as the DBMS and

two separate computers, one for sending requests and one for hosting the DBMS

(our assessment approach compares the performance between executing the orig-

inal and the transformed SQLs). The response time is measured at the client side

(computer that sends the requests). The two computers use Intel Core i5 as their

CPU with 8G of RAM, and they reside in the same local area network (note that the

performance overhead caused by data transfer may be bigger if the computers are

on different networks).

Update All. Table 7.5 shows the assessed performance improvement after resolv-

ing each type of redundant data anti-pattern in each performance test case. For

each test case, we report the total response time (in seconds) along with a confi-

dence interval. In almost all test cases, resolving the update all anti-pattern gives a

statistically significant performance improvement. We find that, by only updating

the required columns, we can achieve a performance improvement of 4–7% with

mostly medium to large effect sizes. Unlike select queries, which can be cached by

the DBMS, update queries cannot be cached. Thus, reducing the number of update

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 139

queries to the DBMS may, in general, have a higher performance improvement. The

only exception is Pet Clinic, because the test case is related to browsing, which only

performs a very small number of updates (only six update SQL queries). EA also

does not have a significant improvement after resolving update all.

As discussed in Section 7.6.2, the update all anti-pattern can cause a significant

performance impact in many situations. In addition, many emerging cloud DBMSs

implement the design of column-oriented data storage, where data is stored as

sections of columns, instead of rows (Shang et al., 2013). As a result, update all has

a more significant performance impact on column-oriented DBMSs, since the DBMS

needs to seek and update many columns at the same time for one update.

Select All. The select all anti-pattern causes a statistically significant performance

impact in Pet Clinic, EA, and two test cases in Broadleaf (3–31% improvement) with

varying effect sizes. Due to the nature of the Broadleaf test cases, some columns

have null values, which reduce the overhead of data transmission. Thus, the effect

of the select all anti-pattern is not as significant as the update all anti-pattern. In

addition to what we discuss in Section 7.6.2, select all may also cause a higher

performance impact in column-oriented DBMSs. When selecting many different

columns from a column-oriented DBMS, the DBMS engine needs to seek for the

columns in different data storage pools, which would significantly increase the time

needed to retrieve data from the DBMS.

Excessive Data. We find that the excessive data anti-pattern has a high performance

impact in Pet Clinic (92% performance improvement), but only 2–6% improvement

in Broadleaf and 5% in EA with mostly non-trivial effect sizes. Since we know that

the performance impact of the redundant data anti-pattern is highly dependent on

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 140

the exercised workloads, we are interested in knowing the reasons that cause the

large differences. After a manual investigation, we find that the excessively selected

table in Pet Clinic has a @OneToMany relationship. Namely, the transaction is se-

lecting multiple associated excessive objects from the DBMS. On the other hand,

most excessive data in Broadleaf has a @ManyToOne or @OneToOne relationship.

Nevertheless, excessively retrieving single associated object (e.g., excessively re-

trieving the child object in a @ManyToOne or @OneToOne relationship) may still

cause significant performance problems (StackOverflow, 2016e). For example, if

the eagerly retrieved object contains large data (e.g., binary data), or the object

has a deep inheritance relationship (e.g., the eagerly retrieved object also eagerly

retrieves many other associated objects), the performance would also be impacted

significantly.

Per-Transaction Cache. The per transaction cache anti-pattern has a statistically

significant performance impact in 4 out of 5 test cases in Broadleaf with non-trivial

effect sizes. We also see a large performance improvement in Pet Clinic, where

resolving the per-transaction cache anti-pattern improves the performance by 88%.

Resolving the per-transaction cache anti-pattern also improves the EA performance

by 10% (with large effect sizes).

The performance impact of the per-transaction cache may be large if, for exam-

ple, some frequently accessed read-only entity objects are stored in the DBMS and

are not shared among transactions (Zaitsev et al., 2008). These objects will be re-

trieved once for each transaction, and the performance overhead increases along

with the number of transactions. Although the DBMS cache may be caching these

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 141

queries, there are still transmission and cache-lookup overheads. Our results sug-

gest that the performance overheads can be minimized if developers use the ORM

cache configuration in order to prevent ORM frameworks from retrieving the same

data from the DBMS across transactions.

All of our detected instances of redundant data anti-patterns have a performance

impact in all studied applications. Depending on the workloads, resolving the

redundant data anti-patterns can improve the performance by up to 92% (17%

on average). Our approach can automatically detect redundant data anti-patterns

that have a statistically significant performance impact, and developers can use our

approach to prioritize their performance optimization efforts.

7.7 A Survey on the Redundant Data Anti-patterns in

Other ORM Frameworks

In previous sections, we apply our approach on the studied applications. We dis-

cover four types of redundant data anti-patterns, and we further illustrate their

performance impact. However, since we only evaluate our approach on the studied

applications, we do not know if the discovered redundant data anti-patterns also

exist in other ORM frameworks. Thus, we conduct a survey on four other popular

ORM frameworks across four programming languages, and study the existence of

the discovered redundant data anti-patterns.

We study the documents on the ORM frameworks’ official websites, and search

for developer discussions about the redundant data anti-patterns. Table 7.6 shows

the existence of the studied redundant data anti-patterns in the surveyed ORM

frameworks under default configurations. Our studied applications use Hibernate

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 142

Table 7.6: Existence of the studied redundant data anti-patterns in the surveyed
ORM frameworks (under default configurations).

Lang. ORM Update Select Exce. Per-trans.
Framework all all Data Cache

Java Hibernate Yes Yes Yes Yes

Java EclipseLink No Yes Yes Yes
C# NHibernate Yes Yes Yes Yes
C# Entity Framework Yes Yes Yes Yes
Python Django Yes Yes Yes Yes
Ruby ActiveRecord No Yes Yes Yes

as the Java ORM solution (i.e., one of the most popular implementations of JPA),

and we further survey EclipseLink, NHibernate, Entity Framework, Django, and Ac-

tiveRecord. EclipseLink is another JPA implementation developed by the Eclipse

Foundation. NHibernate is one of the most popular ORM solution for C#, En-

tity Framework is an ORM framework that is provided by Microsoft for C#, and

Django is the most popular Python web framework, which comes with a default

ORM framework. Finally, ActiveRecord is the default ORM for the most popular

Ruby web framework, Ruby on Rails.

Update all. Most of the surveyed ORM frameworks have the update all anti-pattern,

but the anti-pattern does not exist in EclipseLink and ActiveRecord (EclipseLink,

2016a; Rails, 2016). These two ORM frameworks keep track of which columns

are modified and only update the modified columns. This is the design trade-off

that the ORM developers made. The pros of the design decision is that this re-

dundant data anti-pattern is handled by default. However, this will also introduce

overheads such as tracking modifications and generating different SQLs for each up-

date (StackOverflow, 2016b). All other surveyed ORM frameworks provide some

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 143

way for developers to customize the update to only update the modified columns

(e.g., Hibernate supports a dynamic-update configuration). Although the actual

fixes may be different, the idea on how to fix them is the same.

Select all. All of the surveyed ORM frameworks have the select all anti-pattern. The

reason may be the ORM implementation difficulties, since ORM frameworks do not

know how the retrieved data will be used in the application. Nevertheless, all the

surveyed ORM frameworks provide some way to retrieve only the needed data from

the DBMS (e.g., EclipseLink (2016b); StackOverflow (2016a)).

Excessive data. All of the surveyed ORM frameworks may have the excessive data

anti-pattern. However, some ORM frameworks handle this anti-pattern differently.

For example, the Django, NHibernate, Entity Framework, and ActiveRecord frame-

works allow developers to specify the fetch type (e.g., EAGER v.s. LAZY) for each

data retrieval. Although Hibernate and EclipseLink require developers to set it at

the class level, there are still APIs that can configure the fetch type for each data

retrieval (Sutherland and Clarke, 2016).

Per-transaction cache. All of the surveyed ORM frameworks support some ways

to share an object among transactions through caching. In the case of distributed

applications, it is difficult to find a balance point between performance and stale

data when using caches. Solving the anti-pattern will require developers to recover

the entire workloads, and determine the tolerance level of stale data. Since our

approach analyzes dynamic data, it can be used to help identify where and how to

place the cache in order to optimize application performance.

CHAPTER 7. DYNAMICALLY DETECTING REDUNDANT DATA 144

7.8 Chapter Summary

In Chapter 5 and 6, we find that performance anti-patterns have a significant impact

on application quality. Our proposed approaches in the previous chapters use static

analysis to detect anti-patterns in the application; however, static analysis has its

limitation, such as lack of runtime information and is prone to false positives.

In this chapter, we proposed an automated approach based on dynamic analysis

to detect the redundant data anti-patterns in the code. Compared to using only

static analysis, our approach is able to reduce the false positives by actually execut-

ing the application. Our dynamic analysis approach can also be applied in addition

to the approaches mentioned in the previous chapters. Our dynamic analysis ap-

proach focuses more on how the queried data is used in the application; whereas

our previous approaches focus more on detecting inefficient code patterns (i.e., do

not consider how much data is actually transferred). In this chapter, we also pro-

posed an automated approach for helping developers prioritize the efforts on fixing

the redundant data anti-patterns.

We conducted a case study on two open source and one enterprise application

to evaluate our hybrid approach. We found that, depending on the workflow, all

the redundant data anti-patterns that are discussed in the chapter have statistically

significant performance overheads, and developers are concerned about the impacts

of these redundant data anti-patterns. Developers do not need to manually detect

the redundant data anti-patterns in thousands of lines of code, and can leverage

our approach to automatically detect and prioritize the effort to fix these redundant

data anti-patterns.

CHAPTER 8

Automated ORM Cache Configuration Tuning

In Chapter 4, we find that developers do not usually tune performance-related configura-
tions in ORM code, and yet such tuning is important for improving application performance.
In Chapter 7, we propose an approach to identify potential non-optimal cache configu-
rations in an application; however, as the workload of an application can be constantly
changing (e.g., it may change on a daily or weekly basis), more is needed than simply
pin-pointing the problems to developers. Thus, in this chapter, we propose CacheOpti-
mizer, a lightweight approach that helps developers optimize the configuration of caching
frameworks for web applications that are implemented using Hibernate. CacheOptimizer
leverages readily-available web logs to create mappings between a workload and database
accesses. Given the mappings, CacheOptimizer discovers the optimal cache configuration
using coloured Petri nets, and automatically adds the appropriate cache configurations to
the application. We evaluate CacheOptimizer on three open-source web applications. We
find that i) CacheOptimizer improves the throughput by 27–138%; and ii) after considering
both the memory cost and throughput improvement, CacheOptimizer still brings statistically
significant gains (with mostly large effect sizes) in comparison to the application’s default
cache configuration and blindly enabling all possible caches.

An earlier version of this chapter is published at the 24th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE), 2016. Seattle, WA. Accepted. (Chen
et al., 2016a)

145

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 146

8.1 Introduction

APPLICATION-LEVEL caching frameworks, such as Ehcache (Terracotta, 2016)

and Memcached (Memcached, 2016), are commonly used nowadays to

speed up database accesses in large-scale web applications. Unlike tra-

ditional lower-level caches (e.g., hardware or web proxies) (Altinel et al., 2003;

Candan et al., 2001; Chou and DeWitt, 1985; Johnson and Shasha, 1994), these

application-level caching frameworks require developers to instruct them about

what to cache, otherwise these frameworks are not able to provide any benefit

to the application. Deciding what should be cached can be a very difficult and

time-consuming task for developers, since they need to have in-depth knowledge

of their applications and workload. For example, to decide that the results of a

query should be cached, developers must first know that the query will be fre-

quently executed, and that the fetched data is rarely modified. Furthermore, since

caching frameworks are highly integrated with the application, these frameworks

are configured in a very granular fashion – with cache API calls that are scattered

throughout the code. Hence, developers must manually examine and decide on

hundreds of caching decisions in their application. Even worse, a recent study finds

that most database-related code is undocumented (Linares-Vasquez et al., 2015),

which makes manual configuration even harder.

Moreover, developers must continuously revisit their cache configuration as the

workload of their application changes (Dar et al., 1996). Outdated cache configu-

rations may not provide as much performance improvement, and they might even

lead to performance degradation. However, identifying workload changes is diffi-

cult in practice for large applications (Syer et al., 2014; Zhao et al., 2014). Even

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 147

knowing the workload changes, identifying performance bottlenecks is a difficult

task (Fu et al., 2012), and developers still need to spend great effort to understand

the new workload and manually re-configure the caching framework.

In this chapter, we propose CacheOptimizer, a lightweight approach that auto-

matically helps developers decide what should be cached (and also automatically

places the cache configuration code) in web applications that are implemented us-

ing Hibernate (one of the most popular Java ORM frameworks) in order to optimize

the configuration of caching frameworks. Using CacheOptimizer, developers can

better manage the cost of their database accesses – greatly improving application

performance (Bowman and Salem, 2005; Chen, 2015b; Chen et al., 2014a; Cheung

et al., 2014; Ramachandra and Sudarshan, 2012).

CacheOptimizer first recovers the workload of a web application by mining the

web server access logs. Such logs are typically readily-available even for large-scale

applications that are deployed in production environments. CacheOptimizer further

analyzes the source code statically to identify the database accesses that are asso-

ciated with the recovered workloads. To identify detailed information about the

recovered database accesses, such as the types of the access and the accessed data,

CacheOptimizer leverages static taint analysis (Gollmann, 2011) to map the input

variables of the web requests to the exact database accesses. Combining the recov-

ered workload and the corresponding database accesses, CacheOptimizer models

the workload, the database accesses, and the possible cache configurations as a

coloured Petri net. By analyzing the Petri net, CacheOptimizer is able to determine

an optimal cache configuration (i.e., given a workload, which objects or queries

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 148

should be cached by the caching frameworks). Finally, CacheOptimizer automat-

ically adds the appropriate configuration calls to the caching framework API into

the source code of the application.

We have implemented our approach as a prototype tool and evaluated it on

three representative open-source database-centric web applications (Pet Clinic (Pet-

Clinic, 2016), Cloud Store (CloudScale, 2016), and OpenMRS (OpenMRS, 2016))

that are based on Hibernate (JBoss, 2016). Our approach has no overhead on the

application that is deployed in production, and the static analysis step takes very

little time (a few seconds to minutes). The choice of Hibernate is due to it being

one of the most used Java platforms for database-centric applications in practice

today (ZeroturnAround, 2014). However, our general idea of automatically con-

figuring a caching framework should be extensible to other database abstraction

technologies. We find that after applying CacheOptimizer to configure the caching

frameworks on the three studied applications, we can improve the throughput of

the entire application by 27–138%.

8.2 The Main Contributions of this Chapter

1. We propose an approach, called CacheOptimizer, which helps developers in

automatically optimizing the configuration of caching frameworks for Hibernate-

based web applications. CacheOptimizer does not require modification to ex-

isting applications for recovering the workload, and does not introduce extra

performance overhead.

2. We find that the default cache configuration may not enable any cache or

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 149

may lead to sub-optimal performance, which shows that developers are often

unaware of the optimal cache configuration. Our finding echoes with our

observation in Chapter 4 and 7, where we find that developers rarely tune

ORM performance configuration.

3. Compared to having no cache (NoCache), the default cache configurations

(DefaultCache), and enabling all possible caches (CacheAll), CacheOptimizer

provides better throughput improvement at a lower memory cost.

8.3 Related Work and Background

In this section, we discuss related work to CacheOptimizer. We focus on three closely

related areas: software engineering research on software configuration, optimizing

the performance of database-centric applications, and caching frameworks.

8.3.1 Software Configuration

Improving Software Configurations. Software configurations are essential for the

proper and optimal operation of software applications. Several prior studies have

proposed approaches to analyze the configurations of software applications. For

example, Rabkin and Katz (2011b) use static analysis to extract the configuration

options of an application, and infer the types of these configurations. Tianyin et al.

(2015) conduct an empirical study on the configuration parameters in four open-

source applications in order to help developers design the appropriate amount of

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 150

configurability for their application. Liu et al. (2015) focus on configuring client-

slide browser caches for mobile devices. Grechanik et al. (2016) propose an ap-

proach to automatically learn behavioral models of an application, then use the

model to guide developers on provisioning the application in the cloud.

Detecting and Fixing Software Configuration Problems. Rabkin and Katz (2011a)

use data flow analysis to detect configuration-related functional errors. Zhang and

Ernst (2013) propose a tool to identify the root causes of configuration errors. In

another work, Zhang and Ernst (2014) propose an approach that helps developers

configure an application such that the application’s behaviour does not change as

the application evolves. Chen et al. (2015) propose an analysis framework to auto-

matically tune configurations to reduce energy consumption for web applications.

Xiong et al. (2012) automatically generate fixes for configuration errors using a

constraint-based approach.

Prior research on software configuration illustrates that optimizing configura-

tions is a challenging task for developers. In this chapter, we propose CacheOpti-

mizer, which particularly focuses on helping developers optimize the cache config-

urations to improve the performance of large-scale web applications.

8.3.2 Caching Frameworks

There are many prior studies on cache algorithms and frameworks. Many cache

algorithms such as least recently used (LRU) (Johnson and Shasha, 1994), and

most recently used (MRU) (Chou and DeWitt, 1985) are widely used in practice for

scheduling lower-level caches. For example, such algorithms are used to improve

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 151

the performance of web applications by caching web pages through proxies (Can-

dan et al., 2001; Fan et al., 2000). Most of these caching algorithms operate in an

unsupervised dumb fashion, i.e., these low-level caching algorithms do not require

any application-level knowledge to operate.

Many modern applications generate dynamic content, which may be highly vari-

able and large in size, based on data in the DBMS. Therefore, many low-level cache

frameworks are becoming less effective. Many recent caching frameworks cache

database accesses at the application level (Fitzpatrick, 2004; Nishtala et al., 2013).

When using these application-level caching frameworks, developers have full con-

trol of what should be cached in an application. However, to leverage these caching

frameworks effectively, they must be configured properly.

Unlike most prior studies, CacheOptimizer does not try to manage cache schedul-

ing. Instead, CacheOptimizer is designed to help developers optimize the configu-

ration of application-level caching frameworks, which must be configured correctly

for developers to fully leverage their benefits.

8.4 CacheOptimizer

CacheOptimizer optimizes the configuration of caches that are associated with database

accesses that occur for a given workload. Hence, our approach needs to recover the

workload of an application then to identify which database access occurs within

that particular workload. In the following subsections, we explain each step of the

inner workings of CacheOptimizer in detail using a working example. The input of

the working example shown in Figure 8.1 consists of two parts: 1) source code of

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 152

@RequestMapping(value=”user/{id}”,
method=GET)
public User getUserById(int id){

return findUserById(id);
}

127.0.0.1 [05/Aug/2015:10:38:38 -0400] “GET /user/1 HTTP/1.1'' 200
127.0.0.1 [05/Aug/2015:10:38:40 -0400] “GET /user/1 HTTP/1.1'' 200
127.0.0.1 [05/Aug/2015:10:38:42 -0400] “GET /user/2 HTTP/1.1'' 200
127.0.0.1 [05/Aug/2015:10:38:45 -0400] “GET /user/1 HTTP/1.1'' 200
127.0.0.1 [05/Aug/2015:10:38:47 -0400] “GET /user/1 HTTP/1.1'' 200
127.0.0.1 [05/Aug/2015:10:38:50 -0400] “GET /user/1 HTTP/1.1'' 200

+@Cachable
@Entity
public class User{

...

}
public User findUserById(int id){

Return entityManager.find(User.class, id);
}

Source code

Web access logs

Figure 8.1: A working example of CacheOptimizer. The + sign in front of the
@Cachable line indicates that the caching configuration is added by CacheOpti-
mizer.

the application and 2) web access logs. Figure 8.2 shows an overview of CacheOpti-

mizer. Note that we simulate the entire workload using a coloured petri net for all

cache locations at once, but for the ease of understanding of our overall approach,

we show the process for each cache location separately. Section 8.4.5 contains more

details about our modeling approach using a coloured petri net.

8.4.1 Recovering Control and Data Flow Graphs

We first need to understand the calling and data flow relationships among methods,

and determine which application-level methods are impacted by database caching

(i.e., which methods eventually lead to a database access). We therefore extract the

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 153

Possible caching
locations

 Source
code

Web
access
 logs

Finding database
access code

Call and data
flow graphs

1. Recovering control
and data flow graphs 3. DB

access
workload
recovery

DB access
tables

DB access
params

DB access
types

4. Identifying
possible cache

locations

Possible caching
locations

5. Evaluating
potential cache

benefit using
coloured petri net

Miss ratio > threshold Add cache
Yes

For each
cache location

Analysis

Data

Condition

in a loop

6. Configuring the
caching frameworks

2. Linking logs to
application-level

methods

Recovered
 request-handler

method
Possible cache

locations

Figure 8.2: Overview of CacheOptimizer.

call and data flow graphs of the application by parsing the source code of the appli-

cation using the Eclipse JDT. We opt to parse the source code instead of analyzing

the binary since we need to locate the Hibernate annotations in the source code –

such annotations are lost after compiling the source code to Java byte code.

We mark all Hibernate methods that access the DBMS (e.g., query.execute()) in

the call and data flow graphs. Such methods are easy to identify since they are im-

plemented in the same class (i.e., in the EntityManager and the Query class of Hiber-

nate). Once such methods are marked, we are able uncover all the application-level

methods that are likely to be impacted by optimizing the database cache.

In our working example, after generating the call and data flow graphs, and

identifying the Hibernate database access methods, we would know that the method

getUserById contains one database access, and the parameter is passed in through a

web request.

8.4.2 Linking Logs to Application-Level Methods

We recover the workload of the application by mining its web access logs. We lever-

age web access logs because of the following reasons. First, since web access logs

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 154

are typically readily available without needing additional instrumentation, many

database-centric applications rely on RESTFul web service (based on HTTP web

requests) (Richardson and Ruby, 2008) to accept requests from users (Bloomberg,

2013). For example, large companies like IBM, Oracle, Facebook and Twitter all

provide RESTFul APIs1. Second, unlike application logs, web access logs have a uni-

versal structure (the format of all log lines are the same) (Tomcat, 2016). Hence,

compared to application logs, web access logs are easier to analyze and do not

usually change as an application evolves (Shang et al., 2011).

Web access logs may contain information such as the requestor’s IP, timestamp,

time taken to process the request, requested method (e.g. GET), and status of the

response. An example web access log may look like:�
�

�
�127.0.0.1 [05/Aug/2015:10:38:38 -0400] 1202 “GET /user/1 HTTP/1.1” 200

This web access log shows that a request is sent from the local host at August 05,

2015 to get the information of the user whose ID is 1. The status of the response is

200, and the application took 1,202 milliseconds to respond to the request.

In order to know which application-level methods will be executed for each

web request, we use static analysis to match the web access logs to application-

level methods. CacheOptimizer parses the standard RESTful Web Services (JAX-RS)

specifications in order to find the handler method for each web request (Oracle,

2015). An example of JAX-RS code is shown below:

1http://www.programmableweb.com/apis/directory

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 155

1 @RequestMapping(value = "/user/{id}", method=GET)

2 public User getUserById(int id) {

3 return findUserById(id);

4 }

In this example, based on the JAX-RS annotations, we know that all GET requests

with the URL of form “/user/{id}” will be handled by the getUserById method.

For every line of web access log, CacheOptimizer looks for the corresponding

method that handles that web request. After analyzing all the lines of web access

logs, CacheOptimizer generates a list of methods (and their frequencies) that are

executed during the run of the application.

In our working example, we map every line of web access log to a corresponding

web request handling method, i.e., getUserById method.

8.4.3 Database Access Workload Recovery

We want to determine which database accesses are executed for the workload.

Since application-level cache highly depends on the details of the database ac-

cesses, we need to recover the types of the database access (e.g., a query versus

a select/insert/update/delete of a database entity object by id) and the data that

is associated with the database access (e.g., accessed tables and parameters). Such

detailed information of database accesses helps us in determining the optimal cache

configurations. We first link each web access log to its request-handler method in

code (as described in Section 8.4.2). Therefore, for each workload, we know the

list of request-handler-methods that are executed (i.e., entry points into the appli-

cation). Then, we conduct a call graph and static flow-insensitive interprocedural

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 156

taint analysis on each web-request-handler method, using the generated call and

data flow graphs (as describe in Section 8.4.1).

Our algorithm for recovering the database access workload is shown in Algo-

rithm 1. For each web-request-handler-method, we identify all possible database

accesses by traversing all paths in the call graph, and recording the type of the

database access. After recovering the database access, we traverse the data flow

graph of each web-request-handler method to track the usage of the parameters

that are passed in through the web requests. We want to see if the parameters are

used for retrieving/modifying the data in the DBMS. Such information helps us bet-

ter calculate the optimized cache configuration. For example, we would be able to

count the number of times a database entity object is retrieved (e.g., according to

the id that is specified in the web requests), or how many times a query is executed

(e.g., according to the search term that is specified in the web request). For POST,

PUT, and DELETE requests, we track the URL (e.g., POST /newUser/1) to which

the request is sent, which usually specifies which object the request is updating. If

there is no parameter specified, then we assume that the request may modify any

of the objects to be conservative on our advice on enabling the cache.

In our working example, we recover a list of database accesses. All of the ac-

cesses read data from the User table. In five of the accesses, the parameter is 1 and

in one of the accesses, the parameter is 2.

8.4.4 Identifying Possible Caching Locations

After our static analysis step, we recover the location of all the database access

methods in the code, and the mapping between Java classes and tables in the DBMS.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 157

Algorithm 1: Our algorithm for recovering database accesses.
Input: CG, DG, Mthd /* call graph, data flow graph, the request handler method */
Output: AccessInfo, Params /* accessed DB tables and DB func type (query or key-value

lookup) and parameter of the request */
1 AccessInfo← ∅; Params← ∅;
2 /* Traverse the call graph from Mthd */
3 foreach path ∈ CG.findAllPathFrom(Mthd) do
4 foreach call ∈ path do
5 if isDBCall(call) then
6 AccessInfo← AccessInfo ∪ (getAccessedTable(call), getMthdType(call));
7 end
8 end
9 end

10 /* Track the usage of the input params */
11 foreach param ∈ Mthd.getParams() do
12 foreach path ∈ DG.findAllPathFrom(param) do
13 foreach node ∈ path do
14 node← pointToAnalysis(node)
15 if usedInDBAccessCall(node) then
16 Params← Params ∪ (dbAccessCall, node)
17 end
18 end
19 end
20 end

Namely, we obtain all potential locations for adding calls to the cache configuration

APIs. Thus, if a query needs to be cached, we can easily find the methods in the

code that execute the query. If we need to add object caches, we can easily find the

class that maps to the object’s corresponding table in the DBMS. In our example,

we identify that the class User is a possible location to place an object cache. Note

that our static analysis step is very fast (23–177 seconds on a machine with 16G

RAM, and Intel i5 2.3GHz CPU) for our studied applications (Table 8.1), and is

only required when deploying a new release. Thus, the execution time has minimal

impact.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 158

We use flow-insensitive static analysis approaches to identify possible caching

locations, because it is extremely difficult to recover precise dynamic code execu-

tion paths without introducing additional overhead to the application (e.g., using

instrumentation). During our static analysis step, if we choose to assign differ-

ent probabilities to code branches, we may under-count or over-count reads and

writes to the DBMS. Under-counting reads may result in failing to cache frequently

read objects, which has little or no negative performance impact (i.e., the same as

not adding a cache). However, under-counting writes may result in caching fre-

quently modified objects and thus has significant negative effects on performance.

In contrast, we choose a conservative approach by considering all possible code ex-

ecution paths (over-counting) to avoid under-counting reads and writes. We may

over-count reads and writes to the DBMS, but over-counting reads has minimal per-

formance impact, since in such cases we would only place cache configuring APIs

on objects that are rarely read from the DBMS; over-counting writes means that we

may miss some objects that should have been cached, but will not affect the applica-

tion performance (the same as adding no cache). Hence, our conservative choice by

intentionally considering all possible code execution paths (over-counting) ensures

that the caching suggestions would not have a negative performance impact after

placing the suggested caches. Note that there may be some memory costs when

turning on the cache (i.e., use more memory), and in RQ2 we evaluate the gain of

our approach when considering such costs.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 159

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

1) 2)

3)

T1 T1

T1

T2 T2

T2

Figure 8.3: An example of modeling potential cache benefits using a coloured Petri
net. A red token represents a read to a specific database entity object (e.g., find-
UserById(1)), and a blue token represents write to a specific database entity object
(updateUserById(1)).

8.4.5 Evaluating Potential Cache Benefits Using Coloured Petri

Net

After linking the logs to handler methods and recovering the database accesses,

CacheOptimizer then calculates the potential benefits of placing a cache on each

database access call. We use Petri nets (Peterson, 1981), a mathematical modeling

language for distributed applications, to model the activity of caches such as cache

renewal and invalidation. Petri nets allow us to model the interdependencies, so

the reached caching decisions are global optimal, instead of focusing on top cache

accesses (greedy). Petri nets model the transition of states in an application, and a

net contains places, transitions, and arcs. Places represent conditions in the model,

transitions represent events, and arcs represent the flow relations among places.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 160

Formally, a Petri net N can be defined as:

N = (P, T,A) and A ⊂ (P × T) ∪ (T × P),

where P is the set of places, T is the set of transitions, and A is the set of arcs. Places

may contain tokens, which represent the execution of the net. Any distributions of

the tokens in the places of a net represent a set of configurations. A limitation of

Petri nets is that there is no distinction between tokens. However, to use Petri nets

to evaluate potential cache benefits, we need to model different data types (e.g., a

Hibernate query versus an entity lookup by id) and values (e.g., query parameter).

Thus, we use an extension of Petri nets, called coloured Petri net (CPN) (Jensen,

1997). In a CPN, tokens can have different values, and the values are represented

using colours. Formally, a CPN can be defined as:

CPN = (P, T,A,Σ, C,N,E,G, I),

where P , T , and A are the same as in Petri nets. Σ represents the set of all possible

colours (all possible tokens), C maps P to colours in Σ (e.g., specify the types of

tokens that can be in a place), and N is a node function that maps A into (P ×

T) ∪ (T × P). E is the arc expression function, G is the guard function that maps

each transition into guard expressions (e.g., boolean), and finally I represents an

initialization function that maps each place to a multi-set of token colours.

In our CPN (shown in Figure 8.3), we define P to be the states of the data in

the cache. P3 is a repository that stores the total number of database accesses,

P4 stores the total number of cache hits, and P5 stores the number of invalidated

caches. P2 is an intermediate place for determining whether the data would be

cached or invalidated. We define T to be all database accesses that are recovered

from the logs. We define Σ to distinguish the type of the database access call (e.g.,

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 161

read/write using ids or queries), and the parameters used for the access (obtained

using Algorithm 1). Thus, our C defines that P4 can only have colours of database

access calls that are reads, and P1, P2, P3, and P5 may contain all colours in Σ.

The transition function on T1 always forwards the tokens in the initial place P1 to

P2 and P3. There are two guard functions on T2, where one allows a token to be

moved to P4 if there are two or more tokens of the same colour in P2 (i.e., multiple

reads to the same data, so a cache hit), and another guard function makes sure

that if there is a write in P2, all the same write tokens and the corresponding read

tokens are moved to P5 (e.g., the cache is invalidated).

In our example (Figure 8.3), we let red tokens represent the database access

call findUserById(1), and blue tokens represent updateUserById(1). In (1), there are

two red tokens, and T1 is triggered, so the two red tokens are stored in P2 and P3.

Since there are two red tokens in P2, T2 is triggered, and moves one red token to

P4 (a cache hit). The resulting CPN is shown in (2). When a blue token appears in

P1, T1 is triggered and moves the blue token to both P2 and P3. Since there is a

blue token in P2, T2 is triggered, and we move both the red and blue token to P5

(cache invalidation). The final resulting Petri net is shown in (3). Note that T2 acts

slightly different for tokens that represent query calls. When an object is updated,

the query cache needs to retrieve the updated object from the DBMS to prevent a

stale read. Thus, to model the behaviour, T2 would be triggered to move the query

token to P5 from P2 if we see any token that represents a modification to the query

table.

We use the recovered database accesses of the workload to execute the CPN.

For all tokens that represent the database access to the same data (e.g., a read and

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 162

write to user by id 1), we examine their total counts in P3 and P4 to calculate

the miss ratio (MR) of the cache. MR can be calculated as one minus the total

number of cache hits in P4 divided by the total number of calls in P3 (i.e., number

of hits divided by total number of requests). We choose MR because it is used in

many prior studies to evaluate the effectiveness of caching (e.g., Fan et al. (2000);

Iyer et al. (2002); Paul and Fei (2001); Zhou et al. (2001)). If MR is too high,

caching the data would not give any benefit. For example, if a table is constantly

updated, then we should not configure the caching framework to cache the data

in that table. Thus, we define a threshold to decide whether a database access

call should be cached. In our CPN, if MR is smaller than 35%, then we place the

cache configuration code for the corresponding query (query cache) or table (object

cache). Since object cache must be turned on to utilize query cache, we enable

query cache only if the MR of the object cache is under the threshold. Such that,

there would not exist conflicting decisions for object and query cache. We choose

35% to be more conservative on enabling caches so that we know the cached data

would be invalidated less frequently (lower cache renewal cost). We also vary MR

to 45% and do not see much performance difference compared to using an MR of

35%. However, future work should further investigate the impact of MR.

8.4.6 Configuring the Caching Frameworks

CacheOptimizer automatically adds the appropriate calls to the cache configura-

tion API. Since the locations that require adding cache configuration APIs may be

scattered across the code, CacheOptimizer helps developers reduce manual efforts

by automatically adding these APIs to the appropriate locations. For example, if

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 163

the query that is executed by the request “/user/?query=Peter” should be cached,

CacheOptimizer would automatically call the caching framework’s API to cache the

executed query in the corresponding handler method searchUserByName. In our ex-

ample shown in Figure 8.1, the miss ratio of caching objects in the User class is 0.33,

which is smaller than our threshold 0.35. CacheOptimizer automatically adds the

@Cachable annotation to the source code to enable cache for the User class.

8.5 Evaluation

In this section, we present the evaluation of CacheOptimizer. We first discuss the

applications that we use for our evaluation. Then we focus on two research ques-

tions: 1) what is the performance improvement after using CacheOptimizer; and 2)

what is the gain of CacheOptimizer when considering the cost of such caches.

Experimental Setup. We evaluate CacheOptimizer on three open-source web ap-

plications: Pet Clinic (PetClinic, 2016), Cloud Store (CloudScale, 2016), and Open-

MRS (OpenMRS, 2016). Table 8.1 shows the detailed information of these three

applications. All three applications use Hibernate as the underlying framework to

access database, and use MySQL as the DBMS. We use Tomcat as our web server,

and use Ehcache as our underlying caching framework. Pet Clinic, which is devel-

oped by Spring (SpringSource, 2016), aims to provide a simple yet realistic design

of a web application. Cloud Store is a web-based e-commerce application, which is

developed mainly for performance testing and benchmarking. Cloud Store follows

the TPC-W performance benchmark standard (TPCW, 2016). Finally, OpenMRS is

large-scale open-source medical record application that is used worldwide. Open-

MRS supports both web-based interfaces and RESTFul services.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 164

Table 8.1: Statistics of the studied applications.
Total lines Number of

of code Java files

Pet Clinic 3.8K 51
Cloud Store 35K 193
OpenMRS 3.8M 1,890

We use one machine each for the DBMS (8G RAM, Xeon 2.67GHz CPU), web

server (16G RAM, Intel i5 2.3GHz), and JMeter load driver (12G RAM, Intel Quad

2.67GHz). The three machines are all connected on the same network. We use

performance test suites to exercise these applications when evaluating CacheOpti-

mizer. Performance test suites aim to mimic the real-life usage of the application

and ensure that all of the common features are covered during the test (Binder,

2000). Thus, for our evaluation, performance test suites are a more appropriate

and logical choice over using functional tests. We use developer written tests for

Pet Clinic (Dubois, 2013), and work with BlackBerry developers on creating the

test cases for the other applications. For Cloud Store, we create test cases to cover

searching, browsing, adding items to shopping carts, and checking out. For Open-

MRS, we use its RESTFul APIs to create test cases that are composed of searching

(by patient, concept, encounter, and observation etc), and editing/adding/retriev-

ing patient information. We also add randomness to our test cases to better simulate

real-world workloads. For example, we add some randomness to ensure that some

customers may checkout, and some may not. We use, for our performance tests,

the MySQL backup files that are provided by Cloud Store and OpenMRS develop-

ers. The backup file for Cloud Store contains data for over 5K patients and 500K

observations. The backup file for Cloud Store contains about 300K customer data

and 10K items.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 165

RQ1: What is the performance improvement after using CacheOptimizer?

Motivation. In this RQ, we want to examine how well the performance of the stud-

ied database-centric web applications can be improved when using CacheOptimizer

to configure the caching framework.

Approach. We run the three studied applications using the performance test suites

under four different sets of cache configurations: 1) without any cache configura-

tion (NoCache), 2) with default cache configuration (DefaultCache, cache configura-

tions that are already in the code, which indicates what developers think should be

cached), 3) with enabling all possible caches (CacheAll), and 4) with configurations

that are added by CacheOptimizer. We compare the performance of the applications

when configured using these four different sets of cache configurations. We work

with performance testing experts from BlackBerry to ensure that our evaluation

steps are appropriate, accurate, and realistic. We use throughput to measure the

performance. The throughput is measured by calculating the number of requests

per second throughout the performance test. A higher throughput shows the ef-

fectiveness of the cache configuration, as more requests can be processed within

the same period of time. There may exist many possible locations to place the

calls to the cache configuration APIs. Hence, configuring the caching framework

may require extensive and scattered code changes, which can be a challenging and

time-consuming task. Therefore, to study the effectiveness of CacheOptimizer and

how it helps developers, we also compare the number of cache configurations that

are added by CacheOptimizer relative to the total number of all possible caching

configurations that could be added, and the number of cache configurations that

exist in DefaultCache.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 166

Table 8.2: Performance improvement (throughput) against NoCache after applying
different cache configurations.

Throughput
NoCache CacheOptimizer CacheAll DefaultCache

Pet Clinic 98.7 125.1 (+27%) 108.4 (+10%) —
Cloud Store 110.7 263.4 (+138%) 249.3 (+125%) 114.7 (+4%)
OpenMRS 21.3 30.8 (+45%) 25.5 (+20%) 27.7 (+30%)

Results. CacheOptimizer outperforms DefaultCache and CacheAll in terms of

application performance improvement. Table 8.2 shows the performance im-

provement of the applications under four sets of configurations. We use NoCache

as a baseline, and calculate the throughput improvement after applying CacheOp-

timizer, CacheAll, and DefaultCache. The default cache configuration of Pet Clinic

does not enable any cache. Therefore, we only show the performance improve-

ment of DefaultCache for Cloud Store and OpenMRS. Using CacheOptimizer, we see

a throughput improvement of 27%, 138% and 45% for Pet Clinic, Cloud Store and

OpenMRS, respectively. The throughput improvement of applying CacheOptimizer

is always higher than that of DefaultCache and CacheAll for all the studied appli-

cations. Figure 8.4 further shows the cumulative throughput overtime. We can

see that for the three studied applications, the throughput is about the same at the

beginning regardless of us adding cache or not. However, as more requests are re-

ceived, the benefit of caching becomes more significant. The reason may be that

initially when the test starts, the data is not present in the cache. CacheOptimizer

is able to discover the more temporal localities (reuse of data) in the workload

and help developers configure the application-level cache more optimally (Jin and

Bestavros, 2001). Therefore, as more requests are processed, frequently accessed

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 167

0 50 100 150

0
50

00
10

00
0

15
00

0
20

00
0

Time in sec

N
um

be
r

of
 h

an
dl

ed
 r

eq
ue

st
s

(c
um

ul
at

iv
e)

CacheOptimizer
CacheAll
No Cache

(a) Pet Clinic.

0 50 100 150 200 250 300 350

0
10

00
0

20
00

0
30

00
0

40
00

0

Time in sec

N
um

be
r

of
 h

an
dl

ed
 r

eq
ue

st
s

(c
um

ul
at

iv
e)

CacheOptimizer
CacheAll
Default Cache
No Cache

(b) Cloud Store.

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

Time in sec

N
um

be
r

of
 h

an
dl

ed
 r

eq
ue

st
s

(c
um

ul
at

iv
e)

CacheOptimizer
CacheAll
Default Cache
No Cache

(c) OpenMRS.

Figure 8.4: Number of handled requests overtime (cumulative).

Table 8.3: Total number of possible places to add cache in the code, and the number
of location that are enabled by CacheOptimizer and that exist in the DefaultCache.

Object Cache Query Cache
Total CacheOptimizer DefaultCache Total CacheOptimizer DefaultCache

Pet Clinic 11 6 (55%) 0 4 3 (75%) 0
Cloud Store 33 2 (6%) 10 (30%) 24 9 (38%) 1 (4%)
OpenMRS 112 16 (14%) 7 (6%) 229 2 (0.9%) 0

data is then cached, which significantly reduces the overhead of future accesses. We

see a trend that the longer the test runs, the more benefit we get from adding cache

configuration code using CacheOptimizer. We also observe that the performance of

Cloud Store with DefaultCache is close to the performance with no cache. Such an

observation shows in some instances, developers do not have a good knowledge of

optimizing cache configuration in their own application.

CacheOptimizer enables a small number of caches to improve performance.

CacheOptimizer can help developers change cache configurations quickly without

manually investigating a large number of possible cache locations (e.g., object cache

or query). Table 8.3 shows the total number of possible locations to place calls to

object and query cache APIs in the studied applications.

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 168

We also show the number of CacheOptimizer enabled caches, and the number of

DefaultCache enabled caches. CacheOptimizer suggests adding object cache config-

uration APIs to a fraction (6–55%) of the total number of possible cache locations.

In OpenMRS and Cloud Store, where there are more Hibernate queries, CacheOpti-

mizer is able to improve performance by enabling 0.9% and 38% of all the possible

caches, respectively. For the object cache of Cloud Store, CacheOptimizer even sug-

gests enabling a smaller number of caches than DefaultCache. For large applications

like OpenMRS with 112 possible object caches and 229 possible query caches, man-

ually identifying the optimized cache configuration is time-consuming and may not

even be possible.

Discussion. In our evaluation of CacheOptimizer, we observe a larger improvement

in Cloud Store. After manual investigation, we find that CacheOptimizer caches the

query results that contain large binary data, e.g., pictures. Since the sizes of pictures

are often larger, caching them significantly reduces the network transfer time, and

thus results in a large performance improvement. We see less improvement when

using DefaultCache, because most database access calls are done through queries,

while the default cache configurations of Cloud Store are mostly for object cache

(see Table 8.3). Thus, enabling only object caches does not help improve perfor-

mance. In OpenMRS, both CacheOptimizer and DefaultCache cache some database

entity objects that are not often changed. However, CacheOptimizer is able to iden-

tify more object caches and queries that should be cached to further improve per-

formance. We also see that the overhead of CacheAll causes OpenMRS to run slower

when compared to DefaultCache. In Pet Clinic, we find that caching the owner in-

formation significantly improves the performance of searches. Moreover, since the

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 169

number of vets in the clinic is often unchanged, caching the vet information also

speeds up the application.

Adding cache configuration code, as suggested by CacheOptimizer , improves

throughput by 27–138%, which is higher than using the default cache configura-

tion or enabling all possible caches. The sub-optimal performance of DefaultCache

shows that developers have limited knowledge of adding cache configuration.

RQ2: What is the gain of CacheOptimizer when considering the cost of such

caches?

Motivation. In the previous RQ, we see that CacheOptimizer helps improve appli-

cation throughput significantly. However, caching may also bring some memory

overhead to the application, since we need to store cached objects in the memory.

As a result, in this RQ, we want to evaluate CacheOptimizer -suggested cache config-

uration when considering both the cost (increase in memory usage) and the benefit

(improvement in throughput).

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 170

Approach. In order to evaluate CacheOptimizer when considering both benefit and

cost, we define the gain of applying a configuration as:

Gain(c) = Benefit(c)− Cost(c), (8.1)

where c is the cache configuration,Gain(c) is the gain of applying c, whileBenefit(c)

and Cost(c) measure the benefit and the cost, respectively, of applying c. In our case

study, we measure the throughput improvement in order to quantify the benefit of

caching, and we measure the memory overhead in order to quantify the cost of

caching. We use the throughput and memory usage when no cache is added to the

application as a baseline. Thus, Benefit(c) and Cost(c) are defined as follows:

Benefit(c) = TP (c)− TP (no cache), (8.2)

Cost(c) = MemUsage(c)−MemUsage(no cache), (8.3)

where TP (c) is the average number of processed requests per second with cache

configuration c, and MemUsage(c) is the average memory usage with cache config-

uration c.

Since the throughput improvement and the memory overhead are not in the

same scale, the calculated gain by Equation 8.1 may be biased. Therefore, we

linearly transform both Benefit(c) and Cost(c) into the same scale by applying

min-max normalization, which is defined as follows:

x′ =
(x− xmin)

(xmax − xmin)
, (8.4)

where x and x′ are the values of the metric before and after normalization, re-

spectively; while xmax and xmin are the maximum and the minimum values of the

metric, respectively. We note that if one wants to compare the gain of applying

multiple configurations, the maximum and the minimum values of the metric are

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 171

calculated by considering all the values of the metrics across the different config-

urations, including having no cache. For example, if one would like to compare

the gain of applying CacheOptimizer and CacheAll, throughputmax is the maximum

throughput of applying CacheOptimizer, CacheAll, and NoCache. After the transfor-

mation, the gain represents the ratio between the increase in throughput and in

memory usage. We then compare the ratio across different cache configurations.

To evaluate CacheOptimizer, in this RQ, we compare the gain of applying CacheOp-

timizer, CacheAll, and DefaultCache against NoCache. The larger the gain, the better

the cache configuration. If the gain is larger than 0, the cache configuration is better

than using NoCache. In order to understand the gain of leveraging cache configura-

tion throughout the performance tests, we split each performance test into different

periods. Since a performance test with different cache configurations runs for a dif-

ferent length of time (see Figure 8.4), we split each test by each thousand of com-

pleted requests. For each period, we calculate the gain of applying CacheOptimizer,

CacheAll, and DefaultCache.

We study whether there is a statistically significant difference in gain, between

applying CacheOptimizer and CacheAll, and between applying CacheOptimizer and

DefaultCache. To do this we use the Mann-Whitney U test (Wilcoxon rank-sum

test) (Moore et al., 2009), as the gain may be highly skewed. Since the Mann-

Whitney U test is a non-parametric test, it does not have any assumptions on the

distribution. A p-value smaller than 0.05 indicates that the difference is statisti-

cally significant. We also calculate the effect sizes in order to quantify the differ-

ences in gain between applying CacheOptimizer and CacheAll, and between applying

CacheOptimizer and DefaultCache. Unlike the Mann-Whitney U test, which only tells

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 172

Table 8.4: Comparing the gain of the application under three different configura-
tions: CacheOptimizer, CacheAll, and DefaultCache

gain(CacheOptimizer) > gain(CacheOptimizer) >
gain(CacheAll)? gain(DefaultCache)?

p-value Cliff’s d p-value Cliff’s d

Pet Clinic << 0.001 0.81 (large) — —
Cloud Store < 0.01 0.32 (small) << 0.001 0.61 (large)
OpenMRS << 0.001 0.95 (large) << 0.001 0.95 (large)

us whether the difference between the two distributions is statistically significant,

the effect size quantifies the difference between the two distributions. Since re-

porting only the statistical significance may lead to erroneous results (i.e., if the

sample size is very large, the p-value are likely to be small even if the difference

is trivial) (Cohen, 1977; Kampenes et al., 2007), we use Cliff’s d to quantify the

effect size (Cliff, 1993). We choose Cliff’s d because it is a non-parametric effect

size measure, which does not have any assumption of the underlying distribution.

Cliff’s d is defined as:

Cliff ’s d =
#(xi > xj)−#(xi < xj)

m ∗ n
, (8.5)

where # is defined the number of times, and the two distributions are of the size m

and n with items xi and xj, respecitvely. We use the following thresholds for Cliff’s

d (Cliff, 1993):

effect size =



trivial if Cliff ’s d < 0.147

small if 0.147 ≤ Cliff ’s d < 0.33

medium if 0.33 ≤ Cliff ’s d < 0.474

large if 0.474 ≤ Cliff ’s d

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 173

Results. CacheOptimizer outperforms DefaultCache and CacheAll when consid-

ering the cost of cache. Table 8.4 shows the result of our Mann-Whitney U test

and Cliff’s d value when comparing the gain of applying CacheOptimizer with that

of CacheAll and with DefaultCache. We find that in all three studied applications,

the gain of CacheOptimizer is better than the gain of CacheAll and DefaultCache

(statistically significant). The p-values are all smaller than 0.05. We also find that

the effect sizes of comparing CacheOptimizer with CacheAll on gain are large for

Pet Clinic (0.81) and OpenMRS (0.95). The only exception is Cloud Store, where

the Cliff’s d value indicates that the effect of gain is small (0.32) when comparing

CacheOptimizer with CacheAll. On the other hand, when compared to DefaultCache,

CacheOptimizer has a large effect size for both Cloud Store and OpenMRS.

Discussion. We investigate the memory overhead of applying CacheOptimizer,

CacheAll, and DefaultCache. We use the Mann-Whitney U test and measure effect

sizes using Cliff’s d to compare the memory usage between applying CacheOpti-

mizer and the memory usage of having no cache, CacheAll, and DefaultCache, re-

spectively. The memory usage of applying CacheOptimizer and having no cache is

statistically indistinguishable for Pet Clinic and OpenMRS; while for Cloud Store,

applying CacheOptimizer has statistically significantly more memory usage than

having no cache with a large effect size (0.78). This may explain why we see

larger throughput improvement in Cloud Store. For OpenMRS, the memory us-

age of applying CacheOptimizer and DefaultCacheis statistically indistinguishable.

Finally, when comparing CacheOptimizer with CacheAll, we find that for Pet Clinic

and Cloud Store, the difference in memory usage is statistically indistinguishable;

while for OpenMRS, CacheOptimizer uses statistically significantly less memory than

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 174

CacheAll (p-value < 0.01) with an effect size of 0.61 (large effect). Nevertheless,

after considering both the improvement and cost, CacheOptimizer out-performs all

other cache configurations.

When considering both the benefit (throughput improvement) and cost (memory

overhead), the gain of applying CacheOptimizer is statistically significantly higher

than CacheAll and DefaultCache.

8.6 Threats to Validity

External Validity. We only evaluated CacheOptimizer on three applications, hence

our findings may not generalize to other applications. We choose the studied appli-

cations with various sizes across different domains to make our results more gener-

alizable. However, evaluating CacheOptimizer on other applications would further

show the generalizability of our approach. We implement CacheOptimizer specifi-

cally for Hibernate-based web applications. However, the approach in CacheOpti-

mizer should be applicable to applications using different object-relational mapping

frameworks or other database abstraction technologies. For example, our approach

for recovering the database accesses from logs may also be used by non-Hibernate

based applications. With minor modifications (e.g., changes are needed to the defi-

nitions of the tokens and transition functions in the coloured Petri net), CacheOpti-

mizer can be leveraged to improve cache configurations of other applications.

Construct Validity. The performance benefits of caching highly depends on the

workloads. Thus, we use performance tests to evaluate CacheOptimizer. It is possi-

ble that the workload from the performance tests may not be representative enough

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 175

for field workload. However, CacheOptimizer does not depend on a particular work-

load, nor do we have any assumption on the workload when conducting our exper-

iments. CacheOptimizer is able to analyze any given workload and find the optimal

cache configuration for different workloads. If the workload changes greatly and

the cache configuration is no longer optimal, CacheOptimizer can saves developers’

time and effort by automatically finding a new optimal cache configuration. For ex-

ample, developers can feed their field workloads on a weekly or monthly basis, and

CacheOptimizer would help developers optimize the configuration of their caching

frameworks. To maximize the benefit of caching, our approach aims to “overfit” the

cache configurations to a particular workload. Thus, similar to other caching algo-

rithms or techniques, our approach will not work if the workload does not contain

any repetitive reads from the DBMS.

Our approach for recovering the database access. Prior research leverages con-

trol flow graphs to recover the executed code paths using logs (Zhao et al., 2014).

We do not leverage control flow graphs to recover the database accesses from web

access logs for two reasons. First, as a basic design principal of RESTFul web ser-

vices, typically one web-request-handing method maps to one or very few database

accesses (IBM, 2015; Richardson and Ruby, 2008). Second, although leveraging

control flows may give us richer information about each request, it is impossible

to know which branch would be executed based on web access logs. Heuristics

may be used to calculate the possibility of taking different code paths. However,

placing the cache incorrectly can even cause performance degradation. Thus, to be

conservative when enabling caching and to ensure that CacheOptimizer would al-

ways help improve performance, we consider all possible database access calls. Our

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 176

overestimation ensures that CacheOptimizer would not cache data that has a high

likelihood of being frequently modified, so the CacheOptimizer added cache con-

figurations should not negatively impact the performance. Future research should

consider the use of adding control flow information for optimizing the cache con-

figurations.

Cache concurrency level. There are different cache concurrency levels, such as

read-only and read/write. In this chapter, we only consider the default level, which

is read/write. Read/write cache concurrency strategy is a safer choice if the appli-

cation needs to update cached data. However, considering other cache concurrency

levels may further improve performance. For example, read-only caches may per-

form better than read/write cache if the cached data is never changed. A possible

extension for our work could add cache concurrency level information to CacheOp-

timizer when trying to optimize cache configuration.

Distributed cache environment. Cache scheduling is a challenging problem in a

distributed environment due to cache concurrency management. Most application-

level caching frameworks provide different algorithms or mechanisms to handle

such issues. Since the goal of CacheOptimizer is to instruct these caching frame-

works on what to cache, we rely on the underlying caching frameworks for cache

concurrency management. However, the benefit of using CacheOptimizer may not

be as pronounced in a distributed environment.

8.7 Chapter Summary

Modern large-scale database-centric web-based cloud applications usually leverage

different application-level caching frameworks, such as Ehcache and Memcached,

CHAPTER 8. AUTOMATED ORM CACHE CONFIGURATION TUNING 177

to improve performance. However, these caching frameworks are different from

traditional lower-level caching frameworks, because developers need to instruct

these application-level caching frameworks about what to cache. Otherwise these

caching frameworks are not able to provide any benefit to the application.

In Chapter 4 and 7, we find that developers rarely tune ORM cache configura-

tion. Therefore, in this chapter, we propose CacheOptimizer, a lightweight approach

that helps developers in deciding what should be cached in order to utilize such

application-level caching frameworks for Hibernate-based web applications. Com-

pared to our proposed approach in Chapter 7, CacheOptimizer can automatically

tune ORM cache configuration, and do not need developers to manually exam-

ine/modify every possible caching location detected by our anti-pattern detection

framework. CacheOptimizer combines static analysis on source code and logs to

recover the database accesses, and uses a coloured Petri net to model the most

effective caching configuration for a particular workload. Finally, CacheOptimizer

automatically updates the code with the appropriate calls to the caching frame-

work API. We evaluate CacheOptimizer on three open source web applications (Pet

Clinic, Cloud Store, and OpenMRS), and we find that CacheOptimizer improves the

throughput of the entire application by 27–138% (higher compared to CacheAll and

DefaultCache), and the increased memory usage is smaller than the applications’ de-

fault cache configuration and turning on all caches. The sub-optimal performance

of the default cache configurations highlights the need for automated techniques

to assist developers in optimizing the cache configuration of database-centric web-

based cloud applications.

CHAPTER 9

Conclusion and Future Work

178

CHAPTER 9. CONCLUSION AND FUTURE WORK 179

THIS chapter summarizes the main ideas that are presented in this thesis.

In addition, we propose future work to leverage program analysis to help

improve application performance.

Managing the data consistency between the source code and the DBMS is a

difficult task, especially for complex large-scale applications. Developers nowa-

days usually use different frameworks to abstract database accesses. For example,

Object-Relational Mapping (ORM) frameworks are very popular among develop-

ers. Using ORM frameworks, changes in the object states are propagated auto-

matically to the corresponding records in the database. These abstraction frame-

works significantly reduce the amount of code that developers need to write (Barry

and Stanienda, 1998; Leavitt, 2000); however, due to the black box nature of

such abstraction layers, developers may not fully understand the behaviours of

the framework-generated SQL queries, which may result in performance problems.

Therefore, we believe that in order to help improve the performance of database-

centric applications, it is important to help developers write better database access

code. To evaluate our hypothesis, we propose different approaches to find problems

in the database access code using program analysis, with a focus on ORM code due

to its popularity. Our results show that our approaches are valuable to software

engineering practitioners, and highlight the need in industry for supports from the

research community.

9.1 Thesis Contributions

This thesis aims to first understand then propose approaches to help developers

write better and more efficient database access code. The contributions of the thesis

CHAPTER 9. CONCLUSION AND FUTURE WORK 180

also fill up gaps in the state-of-the-art, as shown in our literature review in Chap-

ter 2. In our literature review, we find that most prior studies only focus on the

database world (i.e., SQL queries). However, most database accesses are now ab-

stracted as method calls, so developers do not need to manually write SQL queries

anymore. Below, we highlight the main contributions of this thesis.

1. Maintenance Activities of ORM Code. We conduct an exploratory study on

the maintenance activities of ORM code, and we find that using ORM comes

with its own cost. We find that ORM cannot completely encapsulate database

accesses in objects or abstract the underlying database technology, thus may

cause ORM code changes to be more scattered; ii) ORM code changes are

more frequent than regular code, but there is a lack of tools that help develop-

ers verify ORM code at compilation time; iii) changes to ORM code are more

commonly due to performance or security reasons; however, traditional static

code analyzers rarely capture the peculiarities of ORM code in order to detect

such problems. Our study highlights the need for approaches that help soft-

ware engineering practitioners improve the performance of database-centric

applications.

2. Statically Detecting ORM Performance Anti-patterns. To help developers,

we first propose an automated framework to detect ORM performance anti-

patterns. Our framework automatically flags performance anti-patterns in the

source code. Furthermore, as there could be hundreds or even thousands

of instances of anti-patterns, our framework provides support to prioritize

performance bug fixes using a statistically rigorous performance assessment.

CHAPTER 9. CONCLUSION AND FUTURE WORK 181

We successfully evaluated our framework on one open source and one large-

scale industrial applications. Our case studies show that our framework can

detect new and known real-world instances of performance anti-patterns and

that fixing the detected anti-patterns can improve the application response

time by up to 69%.

3. Adopting Anti-pattern Detection Framework in Practice. Our anti-pattern

detection framework receives positive feedback from industry, and the frame-

work is extended for detecting additional anti-patterns. We discuss the chal-

lenges that we encountered and the day-to-day lessons that we learned during

the integration of our framework into the development processes. Since most

applications nowadays are leveraging frameworks, we also provide a detailed

discussion of five additional framework-specific database access anti-patterns

patterns that we found. We hope to encourage further research efforts on

framework-specific detectors, instead of the current research focus on general

programming language anti-patterns and associated detectors.

4. Dynamically Detecting Redundant Data Anti-patterns. Since static analy-

sis has its own limitation (e.g., may have false positives, and the results may

not reflect real problems during execution), we also propose a dynamic ap-

proach to locate redundant data anti-patterns. Such anti-patterns are difficult

to detect using static analysis. We find that redundant data anti-patterns exist

in 87% of the exercised transactions in our studied applications. Due to the

large number of detected instances of the redundant data anti-patterns, we

propose an automated approach to assess the impact and prioritize the reso-

lution efforts. Our performance assessment result shows that by resolving the

CHAPTER 9. CONCLUSION AND FUTURE WORK 182

detected instances of redundant data anti-patterns, the application response

time for the studied applications can be improved by an average of 17%.

5. Automated ORM Cache Configuration Tuning. As we find in our exploratory

study, developers usually do not tune performance-related ORM configura-

tions. Thus, to further help improve the performance of these database-centric

applications, we propose an approach to help developers automatically find

the optimal configurations. We propose CacheOptimizer, a lightweight ap-

proach that helps developers optimize the configuration of caching frame-

works for cloud-based web applications that are implemented using Hiber-

nate (one of the most popular ORM frameworks). CacheOptimizer lever-

ages readily-available web logs to create mappings between a workload and

database accesses. Given the mappings, CacheOptimizer discovers the opti-

mal cache configuration using coloured Petri nets, and automatically adds the

appropriate cache configurations to the application. We evaluate CacheOp-

timizer on three open-source web applications. We find that i) CacheOpti-

mizer improves the throughput by 27–138%; and ii) after considering both

the memory cost and throughput improvement, CacheOptimizer still brings

statistically significant gains (with mostly large effect sizes) in comparison to

the applications default cache configuration and blindly enabling all possible

caches.

CHAPTER 9. CONCLUSION AND FUTURE WORK 183

9.2 Future Research Directions

The approaches that are proposed in thesis show promising results on improving

the performance of database-centric applications. However, there are still many

challenges and improvements that can be addressed in future research.

9.2.1 Leveraging Operational Data to Improve Application Per-

formance

As shown in Chapter 8, we can leverage the information in logs to help find optimal

cache configurations in applications. Future studies can follow the approach and

use the log-recovered information to identify performance hotspots in the code, and

prioritize bug fixing efforts.

9.2.2 Recommending API Usage and Coding Structure

Many of the studied performance problems in this thesis are related to incorrect

usage of the ORM APIs, or incorrect coding structure (e.g., the one-by-one pro-

cessing anti-pattern shown in Chapter 5). Therefore, it will be beneficial if we can

automatically recommend and instruct developers to write more performant code

during software development.

CHAPTER 9. CONCLUSION AND FUTURE WORK 184

9.2.3 Documenting and Detecting Additional Performance Anti-

patterns

We propose several approaches to detect database-related performance anti-patterns

in this thesis, but this list is far from complete. Moreover, for different kinds of ap-

plications (e.g., mobile) may have different anti-patterns due to the nature of the

application. Future studies need to examine how performance anti-patterns differ

across platforms and languages.

9.2.4 Finding Mismatches between DBMS and ORM Configura-

tions

Although ORM aims to abstract the underlying DBMS, there can still be some mis-

matches in between the ORM configurations and the DBMS. For example, as shown

in Chapter 6, there can be mismatches in ORM configuration and database schema.

Therefore, future studies should study the mismatches between DBMS and ORM

configurations, given the high frequency of ORM code changes.

Bibliography

Ackermann, H., Reichenbach, C., Mller, C., and Smaragdakis, Y. (2015). A backend

extension mechanism for PQL/Java with free run-time optimisation. In Compiler

Construction, volume 9031 of Lecture Notes in Computer Science, pages 111–130.

Springer Berlin Heidelberg.

Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., and Rein-

wald, B. (2003). Cache tables: Paving the way for an adaptive database cache. In

Proceedings of the 29th International Conference on Very Large Data Bases, VLDB

’03, pages 718–729.

Anton, A. and Potts, C. (2003). Functional paleontology: the evolution of user-

visible system services. IEEE Transactions on Software Engineering, 29(2), 151–

166.

185

BIBLIOGRAPHY 186

Apache (2016). Apache OpenJPA. http://openjpa.apache.org/. Last accessed

March 8 2016.

Arnold, M., Hind, M., and Ryder, B. G. (2002). Online feedback-directed optimiza-

tion of Java. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’02, pages 111–129.

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., and Zhou, Y. (2007). Evaluat-

ing static analysis defect warnings on production software. In Proceedings of the

7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, PASTE ’07, pages 1–8.

Baltopoulos, I., Borgstrm, J., and Gordon, A. (2011). Maintaining database in-

tegrity with refinement types. In ECOOP 2011 Object-Oriented Programming, vol-

ume 6813 of Lecture Notes in Computer Science, pages 484–509. Springer Berlin

Heidelberg.

Barry, D. and Stanienda, T. (1998). Solving the Java object storage problem. Com-

puter, 31(11), 33–40.

Bauer, C. and King, G. (2005). Hibernate in Action. In Action. Manning.

Binder, R. (2000). Testing Object-oriented Systems: Models, Patterns, and Tools.

Addison-Wesley.

Bloom, R. (2013). log4jdbc. https://code.google.com/p/log4jdbc/. Last ac-

cessed April 14 2013.

Bloomberg, J. (2013). The Agile Architecture Revolution: How Cloud Computing,

REST-Based SOA, and Mobile Computing Are Changing Enterprise IT. Wiley.

http://openjpa.apache.org/
https://code.google.com/p/log4jdbc/

BIBLIOGRAPHY 187

Boslaugh, S. and Watters, P. (2008). Statistics in a Nutshell: A Desktop Quick Refer-

ence. In a Nutshell (O’Reilly). O’Reilly Media.

Bowman, I. T. and Salem, K. (2005). Optimization of query streams using semantic

prefetching. ACM Transactions on Database Systems, 30(4), 1056–1101.

Candan, K. S., Li, W.-S., Luo, Q., Hsiung, W.-P., and Agrawal, D. (2001). Enabling

dynamic content caching for database-driven web sites. In Proceedings of the

2001 ACM SIGMOD International Conference on Management of Data, SIGMOD

’01, pages 532–543.

Cao, W. and Shasha, D. (2013). Appsleuth: A tool for database tuning at the

application level. In Proceedings of the 16th International Conference on Extending

Database Technology, EDBT ’13, pages 589–600.

Chaudhuri, S., Narasayya, V., and Syamala, M. (2007). Bridging the application

and DBMS profiling divide for database application developers. In Proceedings

of the 33rd International Conference on Very Large Data Bases, VLDB ’07, pages

1252–1262. VLDB Endowment.

Chavan, M., Guravannavar, R., Ramachandra, K., and Sudarshan, S. (2011a).

Dbridge: A program rewrite tool for set-oriented query execution. In Proceed-

ings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE

’11, pages 1284–1287.

Chavan, M., Guravannavar, R., Ramachandra, K., and Sudarshan, S. (2011b). Pro-

gram transformations for asynchronous query submission. In Proceedings of the

BIBLIOGRAPHY 188

2011 IEEE 27th International Conference on Data Engineering, ICDE ’11, pages

375–386.

Chen, F., Grundy, J., Schneider, J.-G., Yang, Y., and He, Q. (2015). StressCloud:

A tool for analysing performance and energy consumption of cloud applications.

In Proceedings of the IEEE/ACM 37th IEEE International Conference on Software

Engineering, ICSE ’15, pages 721–724.

Chen, L. (2015a). Continuous delivery: Huge benefits, but challenges too. IEEE

Software, 32(2), 50–54.

Chen, T.-H. (2015b). Improving the quality of large-scale database-centric soft-

ware systems by analyzing database access code. In Proceedings of the 31st IEEE

International Conference on Data Engineering, ICDE’15, pages 245–249.

Chen, T.-H., Weiyi, S., Jiang, Z. M., Hassan, A. E., Nasser, M., and Flora, P.

(2014a). Detecting performance anti-patterns for applications developed using

object-relational mapping. In Proceedings of the 36th International Conference on

Software Engineering, ICSE, pages 1001–1012.

Chen, T.-H., Nagappan, M., Shihab, E., and Hassan, A. E. (2014b). An empirical

study of dormant bugs. In Proceedings of the 11th Working Conference on Mining

Software Repositories, MSR 2014, pages 82–91.

Chen, T.-H., Weiyi, S., Hassan, A. E., Nasser, M., and Flora, P. (2016a). CacheOp-

timizer: Helping developers configure caching frameworks for Hibernate-based

database-centric web applications. In Proceedings of the 24th International Sym-

posium on the Foundations of Software Engineering, FSE.

BIBLIOGRAPHY 189

Chen, T.-H., Weiyi, S., Hassan, A. E., Nasser, M., and Flora, P. (2016b). Detecting

problems in the database access code of large scale systems - an industrial ex-

perience report. In Proceedings of the 38th International Conference on Software

Engineering, ICSE ’16, pages 71–80.

Chen, T.-H., Weiyi, S., Yang, J., Hassan, A. E., Nasser, Godfrey, M. W., Mohamed,

and Flora, P. (2016c). An empirical study on the practice of maintaining object-

relational mapping code in Java systems. In Proceedings of the 13th International

Conference on Mining Software Repositories, MSR ’16, pages 165–176.

Chen, T.-H., Weiyi, S., Jiang, h. M., Hassan, A. E., Nasser, M., and Flora, P. (2016d).

Finding and evaluating the performance impact of redundant data access for ap-

plications that are developed using object-relational mapping frameworks. IEEE

Transactions on Software Engineering.

Cheung, A., Madden, S., Arden, O., and Myers, A. C. (2012a). Automatic par-

titioning of database applications. Proceedings of the VLDB Endowment, 5(11),

1471–1482.

Cheung, A., Solar-Lezama, A., and Madden, S. (2012b). Inferring SQL queries using

program synthesis. CoRR.

Cheung, A., Solar-Lezama, A., and Madden, S. (2013a). Optimizing database-

backed applications with query synthesis. In Proceedings of the 34th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI ’13,

pages 3–14.

Cheung, A., Arden, O., Madden, S., and Myers, A. C. (2013b). Speeding up database

BIBLIOGRAPHY 190

applications with pyxis. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’13, pages 969–972.

Cheung, A., Arden, O., Madden, S., Solar-Lezama, A., and Myers, A. C. (2013c).

Statusquo: Making familiar abstractions perform using program analysis. In 6th

Biennial Conference on Innovative Data Systems Research (CIDR).

Cheung, A., Madden, S., and Solar-Lezama, A. (2014). Sloth: Being lazy is a virtue

(when issuing database queries). In Proceedings of the 2014 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’14, pages 931–942.

Chis, A. E. (2008). Automatic detection of memory anti-patterns. In Companion

to the 23rd ACM SIGPLAN conference on Object-oriented programming systems lan-

guages and applications, OOPSLA Companion ’08, pages 925–926.

Chou, H.-T. and DeWitt, D. J. (1985). An evaluation of buffer management strate-

gies for relational database systems. In Proceedings of the 11th International Con-

ference on Very Large Data Bases - Volume 11, VLDB ’85, pages 127–141.

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions.

Psychological Bulletin, 114(3), 494–509.

CloudScale (2016). Cloud store. http://www.cloudscale-project.eu/. Last ac-

cessed March 8 2016.

Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic

Press.

Commerce, B. (2013). Broadleaf commerce. http://www.broadleafcommerce.

org/.

http://www.cloudscale-project.eu/
http://www.broadleafcommerce.org/
http://www.broadleafcommerce.org/

BIBLIOGRAPHY 191

Community, J. (2016). Hibernate. http://docs.jboss.org/hibernate/orm/4.2/

manual/en-US/html/ch20.html#performance-fetching. Last accessed March 8

2016.

Cook, W. R. and Rai, S. (2005). Safe query objects: Statically typed objects as

remotely executable queries. In Proceedings of the 27th International Conference

on Software Engineering, ICSE ’05, pages 97–106.

Cook, W. R. and Wiedermann, B. (2011). Remote batch invocation for SQL

databases. In Proceedings of the 13th International Symposium on Database Pro-

gramming Languages (DBPL), pages 1–6.

Cooper, E. (2009). The script-writers dream: How to write great sql in your own

language, and be sure it will succeed. In Database Programming Languages, vol-

ume 5708 of Lecture Notes in Computer Science, pages 36–51.

Coverity (2016). Coverity code advisor. http://www.coverity.com/. Last accessed

March 8 2016.

Curino, C. A., Moon, H. J., and Zaniolo, C. (2008a). Graceful database schema

evolution: The prism workbench. Proceedings of the VLDB Endowment, 1(1),

761–772.

Curino, C. A., Tanca, L., Moon, H. J., and Zaniolo, C. (2008b). Schema evolution

in Wikipedia: toward a web information system benchmark. In Proceedings of

the International Conference on Enterprise Information Systems, ICEIS 2008, pages

323–332.

 http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch20.html#performance-fetching
 http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch20.html#performance-fetching
http://www.coverity.com/

BIBLIOGRAPHY 192

Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M., and Ziauddin, M. (2004).

Automatic sql tuning in oracle 10g. In Proceedings of the Thirtieth International

Conference on Very Large Data Bases, VLDB ’04, pages 1098–1109. VLDB Endow-

ment.

Dar, S., Franklin, M. J., Jónsson, B. T., Srivastava, D., and Tan, M. (1996). Semantic

data caching and replacement. In Proceedings of the 22th International Conference

on Very Large Data Bases, VLDB ’96, pages 330–341.

Dasgupta, A., Narasayya, V., and Syamala, M. (2009). A static analysis framework

for database applications. In Proceedings of the 2009 IEEE International Conference

on Data Engineering, ICDE ’09, pages 1403–1414.

Dubois, J. (2013). Improving the performance of the spring-

petclinic sample application. http://blog.ippon.fr/2013/03/14/

improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/.

Last accessed March 8 2016.

Eclipse (2016a). Aspectj. http://eclipse.org/aspectj/. Last accessed March 16,

2016.

Eclipse (2016b). Eclipse Java development tools. https://eclipse.org/jdt/. Last

accessed March 16, 2016.

Eclipse (2016c). Eclipselink. http://www.eclipse.org/eclipselink/. Last ac-

cessed March 16, 2016.

Eclipse (2016d). Eclipselink JPA 2.1. https://wiki.eclipse.org/EclipseLink/

Release/2.5/JPA21#Entity_Graphs. Last accessed May 16, 2016.

 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-petclinic-sample-application-part-4-of-5/
http://eclipse.org/aspectj/
https://eclipse.org/jdt/
http://www.eclipse.org/eclipselink/
https://wiki.eclipse.org/EclipseLink/Release/2.5/JPA21#Entity_Graphs
https://wiki.eclipse.org/EclipseLink/Release/2.5/JPA21#Entity_Graphs

BIBLIOGRAPHY 193

EclipseLink (2016a). Eclipselink documentation. http://www.eclipse.org/

eclipselink/documentation/2.5/solutions/migrhib002.htm. Last accessed

March 16, 2016.

EclipseLink (2016b). Eclipselink documentation. http://eclipse.org/

eclipselink/documentation/2.4/concepts/descriptors002.htm. Last ac-

cessed March 16, 2016.

Facebook (2016). Infer. http://fbinfer.com/. Last accessed March 8 2016.

Fan, L., Cao, P., Almeida, J., and Broder, A. Z. (2000). Summary cache: A scalable

wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking,

8(3), 281–293.

Ferreira, V. (2016). Pitfalls of the Hibernate second-level / query caches. https:

//dzone.com/articles/pitfalls-hibernate-second-0. Last accessed March 3

2016.

Fitzpatrick, B. (2004). Distributed caching with memcached. Linux Journal,

2004(124), 1–5.

Fluri, B., Wursch, M., and Gall, H. C. (2007). Do Code and Comments Co-Evolve?

On the Relation between Source Code and Comment Changes. In Proceedings of

the 14th Working Conference on Reverse Engineering, pages 70–79, Vancouver, BC,

Canada. IEEE Computer Society.

Fluri, B., Würsch, M., Giger, E., and Gall, H. C. (2009). Analyzing the co-evolution

of comments and source code. Software Quality Control, 17, 367–394.

http://www.eclipse.org/eclipselink/documentation/2.5/solutions/migrhib002.htm
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/migrhib002.htm
http://eclipse.org/eclipselink/documentation/2.4/concepts/descriptors002.htm
http://eclipse.org/eclipselink/documentation/2.4/concepts/descriptors002.htm
http://fbinfer.com/
https://dzone.com/articles/pitfalls-hibernate-second-0
https://dzone.com/articles/pitfalls-hibernate-second-0

BIBLIOGRAPHY 194

Forum, H. U. (2004). Delete then insert in collection - order of executed sql. https:

//forum.hibernate.org/viewtopic.php?t=934483. Last accessed 15 Feb 2016.

FoundationDB (2015). FoundationDB. http://community.foundationdb.com/.

Last accessed Feb 16, 2015.

Fu, Q., Lou, J.-G., Lin, Q., Ding, R., Zhang, D., Ye, Z., and Xie, T. (2012). Per-

formance issue diagnosis for online service systems. In Proceedings of the 31st

International Symposium on Reliable Distributed Systems, SRDS’12, pages 273–

278.

Gall, H., Jazayeri, M., Klösch, R., and Trausmuth, G. (1997). Software Evolution

Observations Based on Product Release History. In Proceedings of the International

Conference on Software Maintenance, pages 160–166.

Georges, A., Buytaert, D., and Eeckhout, L. (2007). Statistically rigorous Java per-

formance evaluation. In Proceedings of the 22nd annual ACM SIGPLAN conference

on Object-oriented programming systems and applications, OOPSLA ’07, pages 57–

76.

Gligoric, M. and Majumdar, R. (2013). Model checking database applications. In

Proceedings of the 19th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’13, pages 549–564.

Gobert, M., Maes, J., Cleve, A., and Weber, J. (2013). Understanding schema evo-

lution as a basis for database reengineering. In Proceedings of the 29th IEEE Inter-

national Conference on Software Maintenance, ICSM’13, pages 472–475.

https://forum.hibernate.org/viewtopic.php?t=934483
https://forum.hibernate.org/viewtopic.php?t=934483
http://community.foundationdb.com/

BIBLIOGRAPHY 195

Godfrey, M. W. and Tu, Q. (2000). Evolution in Open Source Software: A Case

Study. In Proceedings of the International Conference on Software Maintenance,

pages 131–142, San Jose, California, USA. IEEE Computer Society.

Goeminne, M. and Mens, T. (2015). Towards a survival analysis of database frame-

work usage in Java projects. In Proceedings of the 2015 IEEE International Confer-

ence on Software Maintenance and Evolution, ICSME ’15, pages 551–555.

Goeminne, M., Decan, A., and Mens, T. (2014). Co-evolving code-related and

database-related changes in a data-intensive software system. In Proceedings of

the Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week, pages 353–357.

Goldsmith, S. F., Aiken, A. S., and Wilkerson, D. S. (2007). Measuring empirical

computational complexity. In Proceedings of the the 6th joint meeting of the Eu-

ropean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, ESEC-FSE ’07, pages 395–404.

Gollmann, D. (2011). Computer Security. Wiley.

Google (2016). Error prone. http://errorprone.info/. Last accessed March 8

2016.

Gould, C., Su, Z., and Devanbu, P. (2004). Static checking of dynamically gen-

erated queries in database applications. In Proceedings of the 26th International

Conference on Software Engineering, ICSE ’04, pages 645–654.

http://errorprone.info/

BIBLIOGRAPHY 196

Grechanik, M., Fu, C., and Xie, Q. (2012). Automatically finding performance prob-

lems with feedback-directed learning software testing. In Proceedings of the 34th

International Conference on Software Engineering, ICSE ’12, pages 156–166.

Grechanik, M., Hossain, B. M. M., Buy, U., and Wang, H. (2013a). Preventing

database deadlocks in applications. In Proceedings of the 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013, pages 356–366.

Grechanik, M., Hossain, B., and Buy, U. (2013b). Testing database-centric appli-

cations for causes of database deadlocks. In Proceedings of the 6th International

Conference on Software Testing Verification and Validation, ICST ’13, pages 174–

183.

Grechanik, M., Luo, Q., Poshyvanyk, D., and Porter, A. (2016). Enhancing rules for

cloud resource provisioning via learned software performance models. In Proceed-

ings of the 7th ACM/SPEC on International Conference on Performance Engineering,

ICPE ’16, pages 209–214.

Greevy, O., Ducasse, S., and Ĝırba, T. (2006). Analyzing software evolution through

feature views: Research Articles. Journal of Software Maintenance and Evolution,

18, 425–456.

Grust, T., Mayr, M., Rittinger, J., and Schreiber, T. (2009). Ferry: Database-

supported program execution. In Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’09, pages 1063–1066.

Guravannavar, R. and Sudarshan, S. (2008). Rewriting procedures for batched

bindings. Proceedings of the VLDB Endowment, 1(1), 1107–1123.

BIBLIOGRAPHY 197

Hartung, J., Knapp, G., and Sinha, B. (2011). Statistical Meta-Analysis with Appli-

cations. Wiley.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In

Proceedings of the 31st International Conference on Software Engineering, ICSE ’09,

pages 78–88.

Hassan, A. E. and Holt, R. C. (2006). Replaying development history to assess the

effectiveness of change propagation tools. Empirical Software Engineering, 11(3),

335–367.

Henry, S. and Kafura, D. (1981). Software structure metrics based on information

flow. IEEE Transactions on Software Engineering, SE-7(5), 510–518.

Herraiz, I., Rodriguez, D., Robles, G., and Gonzalez-Barahona, J. M. (2013). The

evolution of the laws of software evolution: A discussion based on a systematic

literature review. ACM Computing Survey, 46(2), 28:1–28:28.

His, I. and Potts, C. (2000). Studying the Evolution and Enhancement of Software

Features. In Proceedings of the International Conference on Software Maintenance,

pages 143–151.

Hoekstra, M. (2011). Static source code analysis with respect to ORM performance

antipatterns. Master’s thesis.

Hou, D. and Wang, Y. (2009). An empirical analysis of the evolution of user-

visible features in an integrated development environment. In Proceedings of

the 2009 Conference of the Center for Advanced Studies on Collaborative Research,

CASCON’09, pages 122–135.

BIBLIOGRAPHY 198

Hovemeyer, D. and Pugh, W. (2004). Finding bugs is easy. ACM SIGPLAN Notices,

39(12), 92–106.

IBM (2015). Restful web services: The basics. http://www.ibm.com/

developerworks/library/ws-restful/. Last Accessed Mar 11 2016.

IBM (2016a). Security appscan source. http://www-03.ibm.com/software/

products/en/appscan-source. Last accessed March 8 2016.

IBM (2016b). Websphere. http://www-01.ibm.com/software/ca/en/websphere/.

Last accessed March 16, 2016.

Ibrahim, A. and Cook, W. R. (2006). Automatic prefetching by traversal profiling in

object persistence architectures. In Proceedings of the 20th European Conference

on Object-Oriented Programming, ECOOP’06, pages 50–73.

Ibrahim, W. M., Bettenburg, N., Adams, B., and Hassan, A. E. (2012). On the

relationship between comment update practices and software bugs. Journal of

Systems and Software, 85(10), 2293–2304.

Iu, M.-Y. and Zwaenepoel, W. (2006). Queryll: Java database queries through byte-

code rewriting. In Middleware 2006, volume 4290 of Lecture Notes in Computer

Science, pages 201–218. Springer Berlin Heidelberg.

Iu, M.-Y., Cecchet, E., and Zwaenepoel, W. (2010). JReq: Database queries in

imperative languages. In Compiler Construction, volume 6011 of Lecture Notes in

Computer Science, pages 84–103. Springer Berlin Heidelberg.

http://www.ibm.com/developerworks/library/ws-restful/
http://www.ibm.com/developerworks/library/ws-restful/
http://www-03.ibm.com/software/products/en/appscan-source
http://www-03.ibm.com/software/products/en/appscan-source
http://www-01.ibm.com/software/ca/en/websphere/

BIBLIOGRAPHY 199

Iyer, S., Rowstron, A., and Druschel, P. (2002). Squirrel: A decentralized peer-to-

peer web cache. In Proceedings of the Twenty-first Annual Symposium on Principles

of Distributed Computing, PODC ’02, pages 213–222.

JBoss (2016). Hibernate. http://www.hibernate.org/. Last accessed March 8

2016.

Jedyk, M. (2014). Transactions (mis)management: how to

kill your app. http://www.resilientdatasystems.co.uk/java/

transactions-mis-management-how-to-kill-app/. Last accessed 15 Feb

2016.

Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-

cal Use. Coloured Petri Nets. Springer.

Jiang, Z. M. and Hassan, A. E. (2006). Examining the evolution of code comments in

postgresql. In Proceedings of the 2006 international workshop on Mining software

repositories, pages 179–180.

Jiang, Z. M., Hassan, A. E., Hamann, G., and Flora, P. (2008). Automatic identifica-

tion of load testing problems. In Proceedings of 24th IEEE International Conference

on Software Maintenance, ICSM’2008, pages 307–316.

Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. (2012). Understanding and

detecting real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN

conference on Programming Language Design and Implementation, PLDI ’12.

Jin, S. and Bestavros, A. (2001). Greedydual* web caching algorithm: Exploiting

http://www.hibernate.org/
http://www.resilientdatasystems.co.uk/java/transactions-mis-management-how-to-kill-app/
http://www.resilientdatasystems.co.uk/java/transactions-mis-management-how-to-kill-app/

BIBLIOGRAPHY 200

the two sources of temporal locality in web request streams. Computer Commu-

nications, 24(2), 174–183.

Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. (2013). Why don’t soft-

ware developers use static analysis tools to find bugs? In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 672–681.

Johnson, R. (2005). J2EE development frameworks. Computer, 38(1), 107–110.

Johnson, T. and Shasha, D. (1994). 2q: A low overhead high performance buffer

management replacement algorithm. In Proceedings of the 20th International Con-

ference on Very Large Data Bases, VLDB ’94, pages 439–450.

Jovic, M., Adamoli, A., and Hauswirth, M. (2011). Catch me if you can: perfor-

mance bug detection in the wild. In Proceedings of the 2011 ACM international

conference on Object oriented programming systems languages and applications,

OOPSLA ’11, pages 155–170.

Jula, H., Tralamazza, D., Zamfir, C., and Candea, G. (2008). Deadlock immunity:

Enabling systems to defend against deadlocks. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08, pages 295–

308.

Kalibera, T. and Jones, R. (2013). Rigorous benchmarking in reasonable time. In

Proceedings of the 2013 international symposium on International symposium on

memory management, ISMM ’13, pages 63–74.

Kampenes, V. B., Dybå, T., Hannay, J. E., and Sjøberg, D. I. K. (2007). Systematic

BIBLIOGRAPHY 201

review: A systematic review of effect size in software engineering experiments.

Information and Software Technology, 49(11-12), 1073–1086.

Kapfhammer, G. M., McMinn, P., and Wright, C. J. (2013). Search-based testing

of relational schema integrity constraints across multiple database management

systems. In Proceedings of the 6th International Conference on Software Testing

Verification and Validation, ICST ’13, pages 31–40.

Keith, M. and Stafford, R. (2008). Exposing the orm cache. Queue, 6(3), 38–47.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and

Rosenberg, J. (2002). Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.

Kothari, J., Bespalov, D., Mancoridis, S., and Shokoufandeh, A. (2008). On eval-

uating the efficiency of software feature development using algebraic manifolds.

In Proceedings of the International Conference on Software Maintenance, ICSM ’08,

pages 7–16.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view con-

troller user interface paradigm in smalltalk-80. Journal of Object Oriented Pro-

gramming, 1(3), 26–49.

Leavitt, N. (2000). Whatever happened to object-oriented databases? Computer,

33(8), 16–19.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. M. (1997).

Metrics and Laws of Software Evolution - The Nineties View. In Proceedings of the

4th International Symposium on Software Metrics, pages 20–32.

BIBLIOGRAPHY 202

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006). Cp-miner: Finding copy-paste

and related bugs in large-scale software code. IEEE Transactions on Software

Engineering, 32(3), 176–192.

Linares-Vasquez, M., Li, B., Vendome, C., and Poshyvanyk, D. (2015). How do

developers document database usages in source code? (N). In Proceedings of the

30th IEEE/ACM International Conference on Automated Software Engineering, ASE

’15, pages 36–41.

Linwood, J. and Minter, D. (2010). Beginning Hibernate. Apresspod Series. Apress.

Liu, X., Ma, Y., Liu, Y., Xie, T., and Huang, G. (2015). Demystifying the imper-

fect client-side cache performance of mobile web browsing. IEEE Transactions on

Mobile Computing, PP(99).

Lo, D., Nagappan, N., and Zimmermann, T. (2015). How practitioners perceive the

relevance of software engineering research. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 415–425.

Luo, Q., Nair, A., Grechanik, M., and Poshyvanyk, D. (2015). Forepost: finding

performance problems automatically with feedback-directed learning software

testing. Empirical Software Engineering, pages 1–51.

Malik, H., Chowdhury, I., Tsou, H.-M., Jiang, Z. M., and Hassan, A. E. (2008).

Understanding the rationale for updating a function’s comment. In Proceedings

of 24th IEEE International Conference on Software Maintenance, ICSM ’08, pages

167–176.

BIBLIOGRAPHY 203

Manjhi, A., Garrod, C., Maggs, B. M., Mowry, T. C., and Tomasic, A. (2009). Holistic

query transformations for dynamic web applications. In Proceedings of the 2009

IEEE International Conference on Data Engineering, ICDE ’09, pages 1175–1178.

McDonald, C. (2016). JPA performance, don’t ignore the database.

https://weblogs.java.net/blog/caroljmcdonald/archive/2009/08/28/

jpa-performance-dont-ignore-database-0. Last accessed March 16, 2016.

Memcached (2016). Memcached. http://memcached.org/. Last accessed March 8

2016.

Meurice, L. and Cleve, A. (2014). Dahlia: A visual analyzer of database schema

evolution. In Proceedings of the Software Evolution Week - IEEE Conference on

Software Maintenance, Reengineering and Reverse Engineering, pages 464–468.

MIHALCEA, V. (2014). A beginner’s guide to JPA/Hiber-

nate flush strategies. http://vladmihalcea.com/2014/08/07/

a-beginners-guide-to-jpahibernate-flush-strategies/. Last accessed

15 Feb 2016.

Moore, D., MacCabe, G., and Craig, B. (2009). Introduction to the Practice of Statis-

tics. W.H. Freeman and Company.

Nakagawa, S. and Cuthill, I. C. (2007). Effect size, confidence interval and statisti-

cal significance: a practical guide for biologists. Biological Reviews, 82, 591–605.

Nanda, M. G., Gupta, M., Sinha, S., Chandra, S., Schmidt, D., and Balachandran,

P. (2010). Making defect-finding tools work for you. In Proceedings of the 32nd

International Conference on Software Engineering, ICSE ’10, pages 99–108.

https://weblogs.java.net/blog/caroljmcdonald/archive/2009/08/28/jpa-performance-dont-ignore-database-0
https://weblogs.java.net/blog/caroljmcdonald/archive/2009/08/28/jpa-performance-dont-ignore-database-0
http://memcached.org/
http://vladmihalcea.com/2014/08/07/a-beginners-guide-to-jpahibernate-flush-strategies/
http://vladmihalcea.com/2014/08/07/a-beginners-guide-to-jpahibernate-flush-strategies/

BIBLIOGRAPHY 204

Nijjar, J. and Bultan, T. (2011). Bounded verification of Ruby on Rails data mod-

els. In Proceedings of the 2011 International Symposium on Software Testing and

Analysis, ISSTA ’11, pages 67–77.

Nijjar, J. and Bultan, T. (2013). Data model property inference and repair. In

Proceedings of the 2013 International Symposium on Software Testing and Analysis,

ISSTA ’13, pages 202–212.

Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy,

R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., and Venkataramani, V.

(2013). Scaling Memcache at facebook. In Proceedings of the 10th USENIX Confer-

ence on Networked Systems Design and Implementation, NSDI’13, pages 385–398.

Nistor, A., Song, L., Marinov, D., and Lu, S. (2013). Toddler: detecting perfor-

mance problems via similar memory-access patterns. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 562–571.

Nistor, A., Chang, P.-C., Radoi, C., and Lu, S. (2015). Caramel: Detecting and fixing

performance problems that have non-intrusive fixes. In Proceedings of the 2015

International Conference on Software Engineering, ICSE ’15, pages 902–912.

ObjectDB (2016a). JPA performance benchmark. http://www.jpab.org/All/All/

All.html. Last accessed March 16, 2016.

ObjectDB (2016b). JPA2 annotations - the complete reference. http://www.

objectdb.com/api/java/jpa/annotations. Last accessed March 10 2016.

OpenMRS (2016). OpenMRS. http://openmrs.org/. Last accessed March 8 2016.

http://www.jpab.org/All/All/All.html
http://www.jpab.org/All/All/All.html
http://www.objectdb.com/api/java/jpa/annotations
http://www.objectdb.com/api/java/jpa/annotations
http://openmrs.org/

BIBLIOGRAPHY 205

Oracle (2015). Java ee platform specification. https://java.net/projects/

javaee-spec/pages/Home. Last accessed Mar 11 2016.

Parsons, T. and Murphy, J. (2004). A framework for automatically detecting and

assessing performance antipatterns in component based systems using run-time

analysis. In The 9th International Workshop on Component Oriented Programming,

WCOP ’04, pages 1–7.

Paul, S. and Fei, Z. (2001). Distributed caching with centralized control. Comput.

Commun., 24(2), 256–268.

PetClinic, S. (2016). Petclinic. https://github.com/SpringSource/

spring-petclinic/. Last accessed March 8 2016.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall

PTR.

PMD (2016). Pmd. https://pmd.github.io/. Last accessed March 8 2016.

Pohjalainen, P. and Taina, J. (2008). Self-configuring object-to-relational mapping

queries. In Proceedings of the 6th International Symposium on Principles and Prac-

tice of Programming in Java, PPPJ ’08, pages 53–59.

Portal, D. (2015). Devproof portal. https://code.google.com/p/devproof/. Last

accessed June 1 2015.

Qiu, D., Li, B., and Su, Z. (2013). An empirical analysis of the co-evolution of

schema and code in database applications. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 125–135.

https://java.net/projects/javaee-spec/pages/Home
https://java.net/projects/javaee-spec/pages/Home
https://github.com/SpringSource/spring-petclinic/
https://github.com/SpringSource/spring-petclinic/
https://pmd.github.io/
https://code.google.com/p/devproof/

BIBLIOGRAPHY 206

Rabkin, A. and Katz, R. (2011a). Precomputing possible configuration error di-

agnoses. In Proceedings of the 2011 26th IEEE/ACM International Conference on

Automated Software Engineering, ASE ’11, pages 193–202.

Rabkin, A. and Katz, R. (2011b). Static extraction of program configuration options.

In Proceedings of the 33rd International Conference on Software Engineering, ICSE

’11, pages 131–140.

Rails (2016). What’s new in edge rails partial up-

dates. http://archives.ryandaigle.com/articles/2008/4/1/

what-s-new-in-edge-rails-partial-updates. Last accessed March 16,

2016.

Ramachandra, K. and Sudarshan, S. (2012). Holistic optimization by prefetching

query results. In Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’12, pages 133–144.

Ramachandra, K., Guravannavar, R., and Sudarshan, S. (2012). Program analysis

and transformation for holistic optimization of database applications. In Pro-

ceedings of the ACM SIGPLAN International Workshop on State of the Art in Java

Program Analysis, SOAP ’12, pages 39–44.

Ramachandra, K., Chavan, M., Guravannavar, R., and Sudarshan, S. (2015). Pro-

gram transformations for asynchronous and batched query submission. IEEE

Transactions on Knowledge and Data Engineering, 27(2), 531–544.

Richardson, L. and Ruby, S. (2008). RESTful Web Services. O’Reilly Media.

http://archives.ryandaigle.com/articles/2008/4/1/what-s-new-in-edge-rails-partial-updates
http://archives.ryandaigle.com/articles/2008/4/1/what-s-new-in-edge-rails-partial-updates

BIBLIOGRAPHY 207

Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S., and

Hasselbring, W. (2008). Kieker: Continuous monitoring and on demand visu-

alization of Java software behavior. In Proceedings of the IASTED International

Conference on Software Engineering, SE ’08, pages 80–85.

Romano, J., Kromrey, J., Coraggio, J., and Skowronek, J. (2006). Appropriate

statistics for ordinal level data: Should we really be using t-test and Cohen’sd for

evaluating group differences on the NSSE and other surveys? In Annual meeting

of the Florida Association of Institutional Research, pages 1–3.

Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser, M.,

and Flora, P. (2011). An exploratory study of the evolution of communicated

information about the execution of large software systems. In Proceedings of the

2011 18th Working Conference on Reverse Engineering, WCRE ’11, pages 335–344.

Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., and Martin, P.

(2013). Assisting developers of big data analytics applications when deploying

on hadoop clouds. In Proceedings of the 2013 International Conference on Software

Engineering, ICSE ’13, pages 402–411.

Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser, M.,

and Flora, P. (2014). An exploratory study of the evolution of communicated

information about the execution of large software systems. Journal of Software:

Evolution and Process, 26(1), 3–26.

Shen, D., Luo, Q., Poshyvanyk, D., and Grechanik, M. (2015). Automating perfor-

mance bottleneck detection using search-based application profiling. In Proceed-

ings of the 2015 International Symposium on Software Testing and Analysis, ISSTA

BIBLIOGRAPHY 208

2015, pages 270–281.

Shen, H., Fang, J., and Zhao, J. (2011). EFindBugs: Effective error ranking for

FindBugs. In Proceedings of the 2011 IEEE International Conference on Software

Testing, Verification and Validation, ICST ’11, pages 299–308.

Smith, A. J. (1985). Cache evaluation and the impact of workload choice. In

Proceedings of the 12th Annual International Symposium on Computer Architecture,

ISCA ’85, pages 64–73.

Smith, C. and Williams, L. (2001). Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software. The Addison-Wesley object technology

series. ADDISON WESLEY Publishing Company Incorporated.

Smith, C. U. and Williams, L. (2003). More new software performance antipatterns:

Even more ways to shoot yourself in the foot. In Proceedings of the 2003 Computer

Measurement Group Conference, CMG 2003, pages 1–9.

Smith, C. U. and Williams, L. G. (2000). Software performance antipatterns. In Pro-

ceedings of the 2Nd International Workshop on Software and Performance, WOSP

’00, pages 127–136.

Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., and Lipford, H. R. (2015). Ques-

tions developers ask while diagnosing potential security vulnerabilities with static

analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, pages 248–259.

Soh, Z., Khomh, F., Gueheneuc, Y.-G., and Antoniol, G. (2013). Towards under-

standing how developers spend their effort during maintenance activities. In

BIBLIOGRAPHY 209

Proceedings of the 2013 Working Conference on Reverse Engineering, WCRE ’13,

pages 152–161.

SpringSource (2016). Spring framework. www.springsource.org/. Last accessed

25 July 2016.

StackOverflow (2009). Spring @Transactional read-only prop-

agation. http://stackoverflow.com/questions/1614139/

spring-transactional-read-only-propagation. Last accessed 15 Feb

2016.

StackOverflow (2010a). Spring transaction readonly. http://stackoverflow.

com/questions/2562865/spring-transaction-readonly. Last accessed 15 Feb

2016.

StackOverflow (2010b). Starting new transaction in spring

bean. http://stackoverflow.com/questions/3037006/

starting-new-transaction-in-spring-bean. Last accessed 15 Feb 2016.

StackOverflow (2014). Spring transaction: requires new be-

harivour. http://stackoverflow.com/questions/22927763/

spring-transaction-requires-new-beharivour. Last accessed 15 Feb

2016.

StackOverflow (2015). How to change the ordering of SQL execu-

tion in Hibernate. http://stackoverflow.com/questions/20395543/

how-to-change-the-ordering-of-sql-execution-in-\hibernate. Last

accessed 15 Feb 2016.

www.springsource.org/
http://stackoverflow.com/questions/1614139/spring-transactional-read-only-propagation
http://stackoverflow.com/questions/1614139/spring-transactional-read-only-propagation
http://stackoverflow.com/questions/2562865/spring-transaction-readonly
http://stackoverflow.com/questions/2562865/spring-transaction-readonly
http://stackoverflow.com/questions/3037006/starting-new-transaction-in-spring-bean
http://stackoverflow.com/questions/3037006/starting-new-transaction-in-spring-bean
http://stackoverflow.com/questions/22927763/spring-transaction-requires-new-beharivour
http://stackoverflow.com/questions/22927763/spring-transaction-requires-new-beharivour
http://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-\hibernate
http://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-\hibernate

BIBLIOGRAPHY 210

StackOverflow (2016a). Django objects values select only

some fields. http://stackoverflow.com/questions/7071352/

django-objects-values-select-only-some-fields. Last accessed March

16, 2016.

StackOverflow (2016b). Hibernate : dynamic-update dynamic-insert -

performance effects. http://stackoverflow.com/questions/3404630/

hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1.

Last accessed March 16, 2016.

StackOverflow (2016c). Hibernate criteria query to get spe-

cific columns. http://stackoverflow.com/questions/11626761/

hibernate-criteria-query-to-get-specific-columns. Last accessed March

16, 2016.

StackOverflow (2016d). JPA2.0/hibernate: Why JPA fires query

to update all columns value even some states of managed

beans are changed? http://stackoverflow.com/questions/

15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\

-all-columns-value-even-some-stat. Last accessed March 16, 2016.

StackOverflow (2016e). Making a OneToOne-relation lazy. http://

stackoverflow.com/questions/1444227/making-a-onetoone-relation-lazy.

Last accessed March 16, 2016.

StackoverFlow (2016). MySQL - how many columns is too

many? http://stackoverflow.com/questions/3184478/

how-many-columns-is-too-many-columns. Last accessed March 16, 2016.

http://stackoverflow.com/questions/7071352/django-objects-values-select-only-some-fields
http://stackoverflow.com/questions/7071352/django-objects-values-select-only-some-fields
http://stackoverflow.com/questions/3404630/hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1
http://stackoverflow.com/questions/3404630/hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1
http://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns
http://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/1444227/making-a-onetoone-relation-lazy
http://stackoverflow.com/questions/1444227/making-a-onetoone-relation-lazy
http://stackoverflow.com/questions/3184478/how-many-columns-is-too-many-columns
http://stackoverflow.com/questions/3184478/how-many-columns-is-too-many-columns

BIBLIOGRAPHY 211

Sutherland, J. and Clarke, D. (2016). Java persistence. https://en.wikibooks.

org/wiki/Java_Persistence. Last accessed March 16, 2016.

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M., and Flora,

P. (2014). Continuous validation of load test suites. In Proceedings of the 5th

ACM/SPEC International Conference on Performance Engineering, ICPE ’14, pages

259–270.

Tamayo, J. M., Aiken, A., Bronson, N., and Sagiv, M. (2012). Understanding the

behavior of database operations under program control. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’12, pages 983–996.

Terracotta (2016). Ehcache. http://ehcache.org/. Last accessed March 8 2016.

ThinkGem (2016). JEEsite. http://jeesite.com/. Last accessed June 13 2016.

Tianyin, Jin, L., Fan, X., and Zhou, Y. (2015). Hey, you have given me too many

knobs! understanding and dealing with over-designed configuration in system

software. In Proceedings of the 10th Joint Meeting of the European Software Engi-

neering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering, ESEC/FSE ’15.

Tomcat, A. (2016). Logging in tomcat. https://tomcat.apache.org/tomcat-8.

0-doc/logging.html. Last accessed March 8 2016.

TPCW (2016). Transactional web e-commerce benchmark. http://www.tpc.org/

tpcw/. Last accessed March 3 2016.

https://en.wikibooks.org/wiki/Java_Persistence
https://en.wikibooks.org/wiki/Java_Persistence
http://ehcache.org/
http://jeesite.com/
https://tomcat.apache.org/tomcat-8.0-doc/logging.html
https://tomcat.apache.org/tomcat-8.0-doc/logging.html
http://www.tpc.org/tpcw/
http://www.tpc.org/tpcw/

BIBLIOGRAPHY 212

van Hoorn, A., Rohr, M., and Hasselbring, W. (2008). Generating probabilistic

and intensity-varying workload for web-based software systems. In Performance

Evaluation: Metrics, Models and Benchmarks, volume 5119 of Lecture Notes in

Computer Science, pages 124–143.

Wegrzynowicz, P. (2013). Performance anti-patterns in hibernate. http://www.

devoxx.com/display/DV11/Performance+Anti-Patterns+in+Hibernate. Last

accessed April 10 2013.

Wiedermann, B. and Cook, W. R. (2007). Extracting queries by static analysis of

transparent persistence. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’07, pages 199–210.

Wiedermann, B., Ibrahim, A., and Cook, W. R. (2008). Interprocedural query ex-

traction for transparent persistence. In Proceedings of the 23rd ACM SIGPLAN

Conference on Object-oriented Programming Systems Languages and Applications,

OOPSLA ’08, pages 19–36.

Xiao, X., Han, S., Zhang, D., and Xie, T. (2013). Context-sensitive delta inference

for identifying workload-dependent performance bottlenecks. In Proceedings of

the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,

pages 90–100.

Xiong, Y., Hubaux, A., She, S., and Czarnecki, K. (2012). Generating range fixes

for software configuration. In Proceedings of the 34th International Conference on

Software Engineering, ICSE ’12, pages 58–68.

Xu, G., Mitchell, N., Arnold, M., Rountev, A., Schonberg, E., and Sevitsky, G.

http://www.devoxx.com/display/DV11/Performance+Anti-Patterns+in+Hibernate
http://www.devoxx.com/display/DV11/Performance+Anti-Patterns+in+Hibernate

BIBLIOGRAPHY 213

(2010a). Finding low-utility data structures. In Proceedings of the 2010 ACM

SIGPLAN conference on Programming language design and implementation, PLDI

’10, pages 174–186.

Xu, G., Mitchell, N., Arnold, M., Rountev, A., and Sevitsky, G. (2010b). Software

bloat analysis: finding, removing, and preventing performance problems in mod-

ern large-scale object-oriented applications. In Proceedings of the FSE/SDP work-

shop on Future of software engineering research, FoSER ’10, pages 421–426.

Yagoub, K., Belknap, P., Dageville, B., Dias, K., Joshi, S., and Yu, H. (2008). Oracle’s

SQL Performance Analyzer. IEEE Data Engineering Bulletin.

Yan, C., Chu, Z., Cheung, A., and Lu, S. (2016). Database-backed applications in

the wild: How well do they work? arXiv preprint arXiv:1607.02561.

Zaitsev, P., Tkachenko, V., Zawodny, J., Lentz, A., and Balling, D. (2008). High Per-

formance MySQL: Optimization, Backups, Replication, and More. O’Reilly Media.

Zaman, S., Adams, B., and Hassan, A. E. (2011). Security versus performance bugs:

a case study on firefox. In Proceedings of the 8th Working Conference on Mining

Software Repositories, MSR ’11, pages 93–102.

Zaparanuks, D. and Hauswirth, M. (2012). Algorithmic profiling. In Proceedings of

the 33rd ACM SIGPLAN conference on Programming Language Design and Imple-

mentation, PLDI ’12, pages 67–76.

ZeroturnAround (2014). Java tools and technologies land-

scape for 2015. http://zeroturnaround.com/rebellabs/

http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/

BIBLIOGRAPHY 214

java-tools-and-technologies-landscape-for-2014/. Last accessed March 8

2016.

Zhang, H., Tan, H. B. K., Zhang, L., Lin, X., Wang, X., Zhang, C., and Mei, H. (2011).

Checking enforcement of integrity constraints in database applications based on

code patterns. Journal of Systems and Software, 84(12), 2253 – 2264.

Zhang, S. and Ernst, M. D. (2013). Automated diagnosis of software configuration

errors. In Proceedings of the 35th International Conference on Software Engineering,

ICSE ’13, pages 312–321.

Zhang, S. and Ernst, M. D. (2014). Which configuration option should I change?

In Proceedings of the 36th International Conference on Software Engineering, ICSE

2014, pages 152–163.

Zhao, X., Zhang, Y., Lion, D., Ullah, M. F., Luo, Y., Yuan, D., and Stumm, M. (2014).

Lprof: A non-intrusive request flow profiler for distributed systems. In Proceedings

of the 11th USENIX Conference on Operating Systems Design and Implementation,

OSDI’14, pages 629–644. USENIX Association.

Zhou, Y., Philbin, J., and Li, K. (2001). The multi-queue replacement algorithm

for second level buffer caches. In Proceedings of the General Track: 2001 USENIX

Annual Technical Conference, pages 91–104.

http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/

	Abstract
	Acknowledgments
	Dedication
	Related Publications
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Thesis Overview
	Thesis Contributions

	Literature Review
	Paper Selection Process
	Program Analysis
	Code Transformation
	Domain specific languages and APIs
	Chapter Summary

	Background about Object-Relational Mapping
	Background on ORM Frameworks
	Translating Objects to SQL Queries
	Caching
	Chapter Summary

	Maintenance Activities of ORM Code
	Introduction
	The Main Contributions of this Chapter
	Related Work
	Preliminary Study
	Case Study Results
	Highlights and Implications of our findings
	Threats to Validity
	Chapter Summary

	Statically Detecting ORM Performance Anti-patterns
	Introduction
	The Main Contributions of this Chapter
	Motivating Examples
	Our Framework
	Case Study
	Discussion
	Threats to Validity
	Chapter Summary

	Adopting Anti-pattern Detection Framework
	Introduction
	The Main Contributions of this Chapter
	Related Work
	Background
	Challenges and Lessons Learned
	Database Access Anti-Patterns
	Chapter Summary

	Dynamically Detecting Redundant Data
	Introduction
	The Main Contributions of this Chapter
	Related Work
	Our Approach for Detecting Redundant Data Anti-patterns
	Experimental Setup
	Evaluation of Our Approach
	A Survey on the Redundant Data Anti-patterns in Other ORM Frameworks
	Chapter Summary

	Automated ORM Cache Configuration Tuning
	Introduction
	The Main Contributions of this Chapter
	Related Work and Background
	CacheOptimizer
	Evaluation
	Threats to Validity
	Chapter Summary

	Conclusion and Future Work
	Thesis Contributions
	Future Research Directions

